File size: 8,840 Bytes
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# coding=utf-8
# Copyright 2022 shunxing1234 and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GLM model configuration """

from typing import Dict

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

GLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "shunxing1234/GLM": "https://huggingface.co/shunxing1234/GLM/resolve/main/config.json",
    # See all GLM models at https://huggingface.co/models?filter=glm
}


class GLMConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`~GLMModel`].
    It is used to instantiate an GLM model according to the specified arguments, defining the model
    architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
    the GLM [shunxing1234/GLM-base-cased](https://huggingface.co/shunxing1234/GLM-base-cased) architecture.

    Configuration objects inherit from  [`PretrainedConfig`] and can be used
    to control the model outputs. Read the documentation from  [`PretrainedConfig`]
    for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the GLM model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`~GLMModel`] or
            [`~TFGLMModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler.
            If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with.
            Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`~GLMModel`] or
            [`~TFGLMModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        last_logits_l2_alpha ('float', *optional*, defaults to -1.0):
            Whether use l2 norm for last output logits.
            If < 0, will not compute last logits l2 norm,
            elif == 0, will compute l2 norm but not plus in the loss,
            while > 0, will plus this loss in the total loss.
        rotary_type (`str` or `function`, *optional*, defaults to `"none"`):
            The Rotary Embedding type to used in SelfAttention.
            If string, `"none"`, `"1d"`, `"2d"` are supported.
        unidirectional ('bool', *optional*, defaults to `False`):
            Whether or not the model is train with prefix LM or causal LM.
        Example:

    ```python
    >>> from transformers import GLMModel, GLMConfig

    >>> # Initializing a GLM shunxing1234/GLM-base-cased style configuration
    >>> configuration = GLMConfig()

    >>> # Initializing a model from the shunxing1234/GLM-base-cased style configuration
    >>> model = GLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    """

    model_type = "glm"
    attribute_map = {"num_hidden_layers": "num_layers"}

    def __init__(
        self,
        num_layers=24,
        vocab_size=30592,
        hidden_size=1024,
        num_experts=1,
        expert_capacity=None,
        moe_config: Dict = {},
        num_attention_heads=16,
        num_key_value_heads=0,
        embedding_dropout_prob=0.1,
        attention_dropout_prob=0.1,
        output_dropout_prob=0.1,
        max_sequence_length=512,
        checkpoint_activations=False,
        checkpoint_num_layers=1,
        parallel_output=True,
        relative_encoding=False,
        block_position_encoding=True,
        output_predict=False,
        spell_length=None,
        spell_func="lstm",
        attention_scale=1.0,
        initializer_range=0.02,
        pool_token="cls",
        max_memory_length=0,
        bf16=True,
        intermediate_size=None,
        last_logits_l2_alpha=-1.0,
        rotary_type='none',
        use_rmsnorm=False,
        use_atorch_rmsnorm=False,
        use_swiglu=False,
        rope_scaling=1.0,
        use_cache=True,
        focused_attention=False,
        cache_in_memory=False,
        attention_grouping=None,
        output_hidden_states=False,
        tie_word_embeddings=True,
        unidirectional=False,
        use_bias=True,
        use_qkv_bias=False,
        mlp_version='v1',
        norm_softmax=False,
        norm_head=False,
        num_decoder_image_token=1024,
        num_decoder_audio_token=512,
        **kwargs,
    ):
        self.num_layers = num_layers
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_experts = num_experts
        self.expert_capacity = expert_capacity
        self.moe_config = moe_config
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.embedding_dropout_prob = embedding_dropout_prob
        self.attention_dropout_prob = attention_dropout_prob
        self.output_dropout_prob = output_dropout_prob
        self.max_sequence_length = max_sequence_length
        self.checkpoint_activations = checkpoint_activations
        self.checkpoint_num_layers = checkpoint_num_layers
        self.parallel_output = parallel_output
        self.relative_encoding = relative_encoding
        self.block_position_encoding = block_position_encoding
        self.output_predict = output_predict
        self.spell_length = spell_length
        self.spell_func = spell_func
        self.attention_scale = attention_scale
        self.initializer_range = initializer_range
        self.pool_token = pool_token
        self.max_memory_length = max_memory_length
        self.bf16 = bf16
        self.intermediate_size = intermediate_size
        self.last_logits_l2_alpha = last_logits_l2_alpha
        self.rotary_type = rotary_type
        self.use_rmsnorm = use_rmsnorm
        self.use_atorch_rmsnorm = use_atorch_rmsnorm
        self.use_swiglu = use_swiglu
        self.rope_scaling = rope_scaling
        self.use_cache = use_cache
        self.focused_attention = focused_attention
        self.cache_in_memory = cache_in_memory
        self.attention_grouping = attention_grouping
        self.unidirectional = unidirectional
        self.use_bias = use_bias
        self.use_qkv_bias = use_qkv_bias
        self.mlp_version = mlp_version
        self.norm_softmax = norm_softmax
        self.norm_head = norm_head
        self.num_decoder_image_token = num_decoder_image_token
        self.num_decoder_audio_token = num_decoder_audio_token

        super().__init__(output_hidden_states=output_hidden_states, tie_word_embeddings=tie_word_embeddings, **kwargs)