File size: 14,418 Bytes
e92022a
 
 
 
 
 
 
 
 
81a8221
e92022a
 
 
81a8221
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8221
e92022a
 
81a8221
 
 
 
e92022a
 
 
 
 
 
 
81a8221
 
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8221
e92022a
81a8221
 
 
 
e92022a
 
81a8221
e92022a
81a8221
 
 
 
 
 
e92022a
 
 
 
 
 
 
 
 
81a8221
e92022a
 
 
 
 
 
 
 
81a8221
e92022a
 
81a8221
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81a8221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92022a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from typing import List, Tuple, Dict, Optional, Any, Union
import os
import copy

import numpy as np
import torch
import torch.utils.data
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import whisper
from torch.nn.utils.rnn import pad_sequence

from transformers.utils import TensorType
from transformers.feature_extraction_utils import FeatureExtractionMixin, BatchFeature

NORM_FACTOR_FOR_DTYPE = {
    torch.int8: 2**7,
    torch.int16: 2**15,
    torch.int32: 2**31,
    torch.int64: 2**63,
    torch.float32: 1,
    torch.float64: 1,
}

# special tokens
DEFAULT_IMAGE_PATCH_TOKEN = "<imagePatch>"
DEFAULT_IM_START_TOKEN = "<image>"
DEFAULT_IM_END_TOKEN = "</image>"
DEFAULT_VID_START_TOKEN = "<video>"
DEFAULT_VID_END_TOKEN = "</video>"
DEFAULT_GEN_IMAGE_PATCH_TOKEN = "<gen_imagePatch>"
DEFAULT_GEN_IM_START_TOKEN = "<gen_image>"
DEFAULT_GEN_IM_END_TOKEN = "</gen_image>"
PLACEHOLDER_IMAGE_TOKEN_IN_TEXT = "<imageHere>"
DEFAULT_END_OF_CHUNK_TOKEN = "<end_of_chunk>"

DEFAULT_END_OF_AUDIO_TOKEN = "<end_of_audio>"
DEFAULT_AUDIO_PATCH_TOKEN = "<audioPatch>"
DEFAULT_AU_START_TOKEN = "<audio>"
DEFAULT_AU_END_TOKEN = "</audio>"
DEFAULT_GEN_AUDIO_PATCH_TOKEN = "<gen_audioPatch>"
DEFAULT_GEN_AU_START_TOKEN = "<gen_audio>"
DEFAULT_GEN_AU_END_TOKEN = "</gen_audio>"
PLACEHOLDER_AUDIO_TOKEN_IN_TEXT = "<audioHere>"
DEFAULT_FRAME_PATCH_TOKEN = "<framePatch>"
DEFAULT_TEXT_TOKEN = '<text>'
DEFAULT_ASR_TOKEN = '<asr>'
DEFAULT_TTS_TOKEN = '<tts>'


class BailingMMAudioProcessor(FeatureExtractionMixin):
    def __init__(self, wav_frontend_args: Dict[str, Any]=None, whisper_frontend_args: Dict[str, Any]=None, **kwargs):
        super().__init__(**kwargs)
        self.sample_rate = 16000
        if wav_frontend_args is not None:
            self.wav_frontend = WavFrontend(**wav_frontend_args)
        if whisper_frontend_args is not None:
            self.whisper_frontend = WhisperFrontend(**whisper_frontend_args)

    def to_dict(self) -> Dict[str, Any]:
        output = copy.deepcopy(self.__dict__)
        output["wav_frontend"] = output["wav_frontend"].__dict__
        output["wav_frontend"]["cmvn"] = output["wav_frontend"]["cmvn"].tolist()
        output["wav_frontend"]["_non_persistent_buffers_set"] = list(output["wav_frontend"]["_non_persistent_buffers_set"])
        output["audio_processor_type"] = self.__class__.__name__
        if 'whisper_frontend' in output:
            output["whisper_frontend"] = output["whisper_frontend"].__dict__
        return output

    @classmethod
    def get_feature_extractor_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        """
        Auto-fill the cmvn file path.
        """
        result, kwargs = super().get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)
        if not result["wav_frontend_args"]["cmvn_file"].startswith("/"):
            # Convert to an absolute path.
            if os.path.isdir(pretrained_model_name_or_path):
                pretrained_model_dir = pretrained_model_name_or_path
            else:
                pretrained_model_dir = os.path.dirname(pretrained_model_name_or_path)
            result["wav_frontend_args"]["cmvn_file"] = os.path.join(
                pretrained_model_dir, result["wav_frontend_args"]["cmvn_file"]
            )
        return result, kwargs

    def __call__(self, audios, **kwargs) -> BatchFeature:
        """Preprocess an audio or a batch of audios."""
        return self.preprocess(audios, **kwargs)

    def _preprocess_audio(self, waveform: torch.Tensor, sample_rate: int, use_whisper_encoder: bool=False) -> torch.Tensor:
        waveform = normalize_audio_tensor(waveform, sample_rate, target_sample_rate=self.sample_rate)
        if not use_whisper_encoder:
            audio_feat = self.wav_frontend(waveform.unsqueeze(0), [len(waveform)])[0].squeeze(0)
        else:
            audio_feat = self.whisper_frontend(waveform.unsqueeze(0), [len(waveform)])[0].squeeze(0)
        return audio_feat

    def _make_batched_audios(self, audio_feat_list: List[torch.Tensor], use_whisper_encoder=False) -> Dict[str, Any]:
        audio_feats_lengths = torch.tensor([[audio_feat.shape[0]] for audio_feat in audio_feat_list], dtype=torch.long)
        if not use_whisper_encoder:
            encoder_feats_lengths = audio_feats_lengths
        else:
            # whisper + project layer has two conv
            encoder_feats_lengths = ((audio_feats_lengths-3+2*1)//2+1-3+2*1)//2+1

        max_length = max(audio_feat.shape[0] for audio_feat in audio_feat_list)
        audio_feats = torch.stack(
            [
                torch.cat(
                    (audio_feat, torch.zeros((max_length - audio_feat.shape[0], *audio_feat.shape[1:]), dtype=audio_feat.dtype)),
                    dim=0,
                ) for audio_feat in audio_feat_list
            ], dim=0,
        )
        return {"audio_feats": audio_feats.numpy(), "audio_feats_lengths": audio_feats_lengths.numpy(), "encoder_feats_lengths": encoder_feats_lengths}

    def preprocess(
        self,
        audios: Union[Tuple[torch.Tensor, int], List[Tuple[torch.Tensor, int]]],
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs,
    ) -> BatchFeature:
        if isinstance(audios, List):
            audio_inputs = self._make_batched_audios([self._preprocess_audio(waveform, sr, use_whisper_encoder=kwargs.get('use_whisper_encoder', False)) for waveform, sr in audios], use_whisper_encoder=kwargs.get('use_whisper_encoder', False))
        else:
            waveform, sr = audios
            audio_inputs = self._make_batched_audios([self._preprocess_audio(waveform, sr, use_whisper_encoder=kwargs.get('use_whisper_encoder', False))])
        return BatchFeature(data=audio_inputs, tensor_type=return_tensors)


class WavFrontend(torch.nn.Module):
    """Conventional frontend structure for ASR.
    """

    def __init__(
            self,
            cmvn_file: Optional[str] = None,
            fs: int = 16000,
            window: str = 'hamming',
            n_mels: int = 80,
            frame_length: int = 25,
            frame_shift: int = 10,
            filter_length_min: int = -1,
            filter_length_max: int = -1,
            lfr_m: int = 1,
            lfr_n: int = 1,
            dither: float = 1.0,
            snip_edges: bool = True,
            upsacle_samples: bool = True,
    ):
        super().__init__()
        self.fs = fs
        self.window = window
        self.n_mels = n_mels
        self.frame_length = frame_length
        self.frame_shift = frame_shift
        self.filter_length_min = filter_length_min
        self.filter_length_max = filter_length_max
        self.lfr_m = lfr_m
        self.lfr_n = lfr_n
        self.cmvn_file = cmvn_file
        self.dither = dither
        self.snip_edges = snip_edges
        self.upsacle_samples = upsacle_samples
        self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)

    def output_size(self) -> int:
        return self.n_mels * self.lfr_m

    def forward(
            self,
            input: torch.Tensor,
            input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = input.size(0)
        feats = []
        feats_lens = []
        for i in range(batch_size):
            waveform_length = input_lengths[i]
            waveform = input[i][:waveform_length]
            if self.upsacle_samples:
                waveform = waveform * (1 << 15)
            waveform = waveform.unsqueeze(0)
            mat = kaldi.fbank(waveform,
                              num_mel_bins=self.n_mels,
                              frame_length=self.frame_length,
                              frame_shift=self.frame_shift,
                              dither=0.0, #self.dither
                              energy_floor=0.0,
                              window_type=self.window,
                              sample_frequency=self.fs,
                              snip_edges=self.snip_edges)

            if self.lfr_m != 1 or self.lfr_n != 1:
                mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
            if self.cmvn is not None:
                mat = apply_cmvn(mat, self.cmvn)
            feat_length = mat.size(0)
            feats.append(mat)
            feats_lens.append(feat_length)

        feats_lens = torch.as_tensor(feats_lens)
        if batch_size == 1:
            feats_pad = feats[0][None, :, :]
        else:
            feats_pad = pad_sequence(feats,
                                     batch_first=True,
                                     padding_value=0.0)
        # import ipdb;ipdb.set_trace()
        return feats_pad, feats_lens

    def forward_fbank(
            self,
            input: torch.Tensor,
            input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = input.size(0)
        feats = []
        feats_lens = []
        for i in range(batch_size):
            waveform_length = input_lengths[i]
            waveform = input[i][:waveform_length]
            waveform = waveform * (1 << 15)
            waveform = waveform.unsqueeze(0)
            mat = kaldi.fbank(waveform,
                              num_mel_bins=self.n_mels,
                              frame_length=self.frame_length,
                              frame_shift=self.frame_shift,
                              dither=self.dither,
                              energy_floor=0.0,
                              window_type=self.window,
                              sample_frequency=self.fs)

            feat_length = mat.size(0)
            feats.append(mat)
            feats_lens.append(feat_length)

        feats_lens = torch.as_tensor(feats_lens)
        feats_pad = pad_sequence(feats,
                                 batch_first=True,
                                 padding_value=0.0)
        return feats_pad, feats_lens

    def forward_lfr_cmvn(
            self,
            input: torch.Tensor,
            input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = input.size(0)
        feats = []
        feats_lens = []
        for i in range(batch_size):
            mat = input[i, :input_lengths[i], :]
            if self.lfr_m != 1 or self.lfr_n != 1:
                mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
            if self.cmvn is not None:
                mat = apply_cmvn(mat, self.cmvn)
            feat_length = mat.size(0)
            feats.append(mat)
            feats_lens.append(feat_length)

        feats_lens = torch.as_tensor(feats_lens)
        feats_pad = pad_sequence(feats,
                                 batch_first=True,
                                 padding_value=0.0)
        return feats_pad, feats_lens


class WhisperFrontend:
    def __init__(self, n_mels: int=128):
        self.n_mels = n_mels

    def __call__(self, input: torch.Tensor, input_lengths: List[int]):
        """
        input: [B, T]
        input_lengths: [B]
        """

        assert input.size(0) == 1

        mel = whisper.log_mel_spectrogram(input.squeeze(0), n_mels=self.n_mels).to(input.device)   # [n_mels, T]
        feats_pad = mel.transpose(0, 1).unsqueeze(0)  # [B=1, T, n_mels]
        feats_lens = torch.tensor([mel.size(1)], dtype=torch.long)  # [B=1]
        return feats_pad, feats_lens

def load_cmvn(cmvn_file):
    with open(cmvn_file, 'r', encoding='utf-8') as f:
        lines = f.readlines()
    means_list = []
    vars_list = []
    for i in range(len(lines)):
        line_item = lines[i].split()
        if line_item[0] == '<AddShift>':
            line_item = lines[i + 1].split()
            if line_item[0] == '<LearnRateCoef>':
                add_shift_line = line_item[3:(len(line_item) - 1)]
                means_list = list(add_shift_line)
                continue
        elif line_item[0] == '<Rescale>':
            line_item = lines[i + 1].split()
            if line_item[0] == '<LearnRateCoef>':
                rescale_line = line_item[3:(len(line_item) - 1)]
                vars_list = list(rescale_line)
                continue
    means = np.array(means_list).astype(np.float32)
    vars = np.array(vars_list).astype(np.float32)
    cmvn = np.array([means, vars])
    cmvn = torch.as_tensor(cmvn, dtype=torch.float32)
    return cmvn


def apply_cmvn(inputs, cmvn):  # noqa
    """
    Apply CMVN with mvn data
    """

    device = inputs.device
    dtype = inputs.dtype
    frame, dim = inputs.shape

    means = cmvn[0:1, :dim]
    vars = cmvn[1:2, :dim]
    inputs += means.to(device)
    inputs *= vars.to(device)

    return inputs.type(torch.float32)


def apply_lfr(inputs, lfr_m, lfr_n):
    LFR_inputs = []
    T = inputs.shape[0]
    T_lfr = int(np.ceil(T / lfr_n))
    left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
    inputs = torch.vstack((left_padding, inputs))
    T = T + (lfr_m - 1) // 2
    for i in range(T_lfr):
        if lfr_m <= T - i * lfr_n:
            LFR_inputs.append((inputs[i * lfr_n:i * lfr_n + lfr_m]).view(1, -1))
        else:  # process last LFR frame
            num_padding = lfr_m - (T - i * lfr_n)
            frame = (inputs[i * lfr_n:]).view(-1)
            for _ in range(num_padding):
                frame = torch.hstack((frame, inputs[-1]))
            LFR_inputs.append(frame)
    LFR_outputs = torch.vstack(LFR_inputs)
    return LFR_outputs.type(torch.float32)


def normalize_audio_tensor(
    waveform: torch.Tensor,
    sample_rate: int,
    device=None,
    target_sample_rate: Optional[int] = None,
):
    # Ensure dtype == float32.
    assert waveform.dtype in NORM_FACTOR_FOR_DTYPE, f"Unsupported waveform dtype: {waveform.dtype}"
    norm_factor = NORM_FACTOR_FOR_DTYPE[waveform.dtype]
    waveform = waveform.to(torch.float32) / norm_factor

    # Remove the channel dimension.
    while len(waveform.shape) > 1:
        waveform = waveform[0]

    # Move to device.
    if device is not None:
        waveform = waveform.to(device)

    # Resample.
    if target_sample_rate is not None and sample_rate != target_sample_rate:
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
        if device is not None:
            resampler = resampler.to(device)
        waveform = resampler(waveform.unsqueeze(0)).squeeze(0)

    return waveform