File size: 14,418 Bytes
e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a 81a8221 e92022a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
from typing import List, Tuple, Dict, Optional, Any, Union
import os
import copy
import numpy as np
import torch
import torch.utils.data
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import whisper
from torch.nn.utils.rnn import pad_sequence
from transformers.utils import TensorType
from transformers.feature_extraction_utils import FeatureExtractionMixin, BatchFeature
NORM_FACTOR_FOR_DTYPE = {
torch.int8: 2**7,
torch.int16: 2**15,
torch.int32: 2**31,
torch.int64: 2**63,
torch.float32: 1,
torch.float64: 1,
}
# special tokens
DEFAULT_IMAGE_PATCH_TOKEN = "<imagePatch>"
DEFAULT_IM_START_TOKEN = "<image>"
DEFAULT_IM_END_TOKEN = "</image>"
DEFAULT_VID_START_TOKEN = "<video>"
DEFAULT_VID_END_TOKEN = "</video>"
DEFAULT_GEN_IMAGE_PATCH_TOKEN = "<gen_imagePatch>"
DEFAULT_GEN_IM_START_TOKEN = "<gen_image>"
DEFAULT_GEN_IM_END_TOKEN = "</gen_image>"
PLACEHOLDER_IMAGE_TOKEN_IN_TEXT = "<imageHere>"
DEFAULT_END_OF_CHUNK_TOKEN = "<end_of_chunk>"
DEFAULT_END_OF_AUDIO_TOKEN = "<end_of_audio>"
DEFAULT_AUDIO_PATCH_TOKEN = "<audioPatch>"
DEFAULT_AU_START_TOKEN = "<audio>"
DEFAULT_AU_END_TOKEN = "</audio>"
DEFAULT_GEN_AUDIO_PATCH_TOKEN = "<gen_audioPatch>"
DEFAULT_GEN_AU_START_TOKEN = "<gen_audio>"
DEFAULT_GEN_AU_END_TOKEN = "</gen_audio>"
PLACEHOLDER_AUDIO_TOKEN_IN_TEXT = "<audioHere>"
DEFAULT_FRAME_PATCH_TOKEN = "<framePatch>"
DEFAULT_TEXT_TOKEN = '<text>'
DEFAULT_ASR_TOKEN = '<asr>'
DEFAULT_TTS_TOKEN = '<tts>'
class BailingMMAudioProcessor(FeatureExtractionMixin):
def __init__(self, wav_frontend_args: Dict[str, Any]=None, whisper_frontend_args: Dict[str, Any]=None, **kwargs):
super().__init__(**kwargs)
self.sample_rate = 16000
if wav_frontend_args is not None:
self.wav_frontend = WavFrontend(**wav_frontend_args)
if whisper_frontend_args is not None:
self.whisper_frontend = WhisperFrontend(**whisper_frontend_args)
def to_dict(self) -> Dict[str, Any]:
output = copy.deepcopy(self.__dict__)
output["wav_frontend"] = output["wav_frontend"].__dict__
output["wav_frontend"]["cmvn"] = output["wav_frontend"]["cmvn"].tolist()
output["wav_frontend"]["_non_persistent_buffers_set"] = list(output["wav_frontend"]["_non_persistent_buffers_set"])
output["audio_processor_type"] = self.__class__.__name__
if 'whisper_frontend' in output:
output["whisper_frontend"] = output["whisper_frontend"].__dict__
return output
@classmethod
def get_feature_extractor_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
Auto-fill the cmvn file path.
"""
result, kwargs = super().get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)
if not result["wav_frontend_args"]["cmvn_file"].startswith("/"):
# Convert to an absolute path.
if os.path.isdir(pretrained_model_name_or_path):
pretrained_model_dir = pretrained_model_name_or_path
else:
pretrained_model_dir = os.path.dirname(pretrained_model_name_or_path)
result["wav_frontend_args"]["cmvn_file"] = os.path.join(
pretrained_model_dir, result["wav_frontend_args"]["cmvn_file"]
)
return result, kwargs
def __call__(self, audios, **kwargs) -> BatchFeature:
"""Preprocess an audio or a batch of audios."""
return self.preprocess(audios, **kwargs)
def _preprocess_audio(self, waveform: torch.Tensor, sample_rate: int, use_whisper_encoder: bool=False) -> torch.Tensor:
waveform = normalize_audio_tensor(waveform, sample_rate, target_sample_rate=self.sample_rate)
if not use_whisper_encoder:
audio_feat = self.wav_frontend(waveform.unsqueeze(0), [len(waveform)])[0].squeeze(0)
else:
audio_feat = self.whisper_frontend(waveform.unsqueeze(0), [len(waveform)])[0].squeeze(0)
return audio_feat
def _make_batched_audios(self, audio_feat_list: List[torch.Tensor], use_whisper_encoder=False) -> Dict[str, Any]:
audio_feats_lengths = torch.tensor([[audio_feat.shape[0]] for audio_feat in audio_feat_list], dtype=torch.long)
if not use_whisper_encoder:
encoder_feats_lengths = audio_feats_lengths
else:
# whisper + project layer has two conv
encoder_feats_lengths = ((audio_feats_lengths-3+2*1)//2+1-3+2*1)//2+1
max_length = max(audio_feat.shape[0] for audio_feat in audio_feat_list)
audio_feats = torch.stack(
[
torch.cat(
(audio_feat, torch.zeros((max_length - audio_feat.shape[0], *audio_feat.shape[1:]), dtype=audio_feat.dtype)),
dim=0,
) for audio_feat in audio_feat_list
], dim=0,
)
return {"audio_feats": audio_feats.numpy(), "audio_feats_lengths": audio_feats_lengths.numpy(), "encoder_feats_lengths": encoder_feats_lengths}
def preprocess(
self,
audios: Union[Tuple[torch.Tensor, int], List[Tuple[torch.Tensor, int]]],
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchFeature:
if isinstance(audios, List):
audio_inputs = self._make_batched_audios([self._preprocess_audio(waveform, sr, use_whisper_encoder=kwargs.get('use_whisper_encoder', False)) for waveform, sr in audios], use_whisper_encoder=kwargs.get('use_whisper_encoder', False))
else:
waveform, sr = audios
audio_inputs = self._make_batched_audios([self._preprocess_audio(waveform, sr, use_whisper_encoder=kwargs.get('use_whisper_encoder', False))])
return BatchFeature(data=audio_inputs, tensor_type=return_tensors)
class WavFrontend(torch.nn.Module):
"""Conventional frontend structure for ASR.
"""
def __init__(
self,
cmvn_file: Optional[str] = None,
fs: int = 16000,
window: str = 'hamming',
n_mels: int = 80,
frame_length: int = 25,
frame_shift: int = 10,
filter_length_min: int = -1,
filter_length_max: int = -1,
lfr_m: int = 1,
lfr_n: int = 1,
dither: float = 1.0,
snip_edges: bool = True,
upsacle_samples: bool = True,
):
super().__init__()
self.fs = fs
self.window = window
self.n_mels = n_mels
self.frame_length = frame_length
self.frame_shift = frame_shift
self.filter_length_min = filter_length_min
self.filter_length_max = filter_length_max
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.cmvn_file = cmvn_file
self.dither = dither
self.snip_edges = snip_edges
self.upsacle_samples = upsacle_samples
self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
def output_size(self) -> int:
return self.n_mels * self.lfr_m
def forward(
self,
input: torch.Tensor,
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
waveform_length = input_lengths[i]
waveform = input[i][:waveform_length]
if self.upsacle_samples:
waveform = waveform * (1 << 15)
waveform = waveform.unsqueeze(0)
mat = kaldi.fbank(waveform,
num_mel_bins=self.n_mels,
frame_length=self.frame_length,
frame_shift=self.frame_shift,
dither=0.0, #self.dither
energy_floor=0.0,
window_type=self.window,
sample_frequency=self.fs,
snip_edges=self.snip_edges)
if self.lfr_m != 1 or self.lfr_n != 1:
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
if self.cmvn is not None:
mat = apply_cmvn(mat, self.cmvn)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
if batch_size == 1:
feats_pad = feats[0][None, :, :]
else:
feats_pad = pad_sequence(feats,
batch_first=True,
padding_value=0.0)
# import ipdb;ipdb.set_trace()
return feats_pad, feats_lens
def forward_fbank(
self,
input: torch.Tensor,
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
waveform_length = input_lengths[i]
waveform = input[i][:waveform_length]
waveform = waveform * (1 << 15)
waveform = waveform.unsqueeze(0)
mat = kaldi.fbank(waveform,
num_mel_bins=self.n_mels,
frame_length=self.frame_length,
frame_shift=self.frame_shift,
dither=self.dither,
energy_floor=0.0,
window_type=self.window,
sample_frequency=self.fs)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats,
batch_first=True,
padding_value=0.0)
return feats_pad, feats_lens
def forward_lfr_cmvn(
self,
input: torch.Tensor,
input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
mat = input[i, :input_lengths[i], :]
if self.lfr_m != 1 or self.lfr_n != 1:
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
if self.cmvn is not None:
mat = apply_cmvn(mat, self.cmvn)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats,
batch_first=True,
padding_value=0.0)
return feats_pad, feats_lens
class WhisperFrontend:
def __init__(self, n_mels: int=128):
self.n_mels = n_mels
def __call__(self, input: torch.Tensor, input_lengths: List[int]):
"""
input: [B, T]
input_lengths: [B]
"""
assert input.size(0) == 1
mel = whisper.log_mel_spectrogram(input.squeeze(0), n_mels=self.n_mels).to(input.device) # [n_mels, T]
feats_pad = mel.transpose(0, 1).unsqueeze(0) # [B=1, T, n_mels]
feats_lens = torch.tensor([mel.size(1)], dtype=torch.long) # [B=1]
return feats_pad, feats_lens
def load_cmvn(cmvn_file):
with open(cmvn_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
means_list = []
vars_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == '<AddShift>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
add_shift_line = line_item[3:(len(line_item) - 1)]
means_list = list(add_shift_line)
continue
elif line_item[0] == '<Rescale>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
rescale_line = line_item[3:(len(line_item) - 1)]
vars_list = list(rescale_line)
continue
means = np.array(means_list).astype(np.float32)
vars = np.array(vars_list).astype(np.float32)
cmvn = np.array([means, vars])
cmvn = torch.as_tensor(cmvn, dtype=torch.float32)
return cmvn
def apply_cmvn(inputs, cmvn): # noqa
"""
Apply CMVN with mvn data
"""
device = inputs.device
dtype = inputs.dtype
frame, dim = inputs.shape
means = cmvn[0:1, :dim]
vars = cmvn[1:2, :dim]
inputs += means.to(device)
inputs *= vars.to(device)
return inputs.type(torch.float32)
def apply_lfr(inputs, lfr_m, lfr_n):
LFR_inputs = []
T = inputs.shape[0]
T_lfr = int(np.ceil(T / lfr_n))
left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
inputs = torch.vstack((left_padding, inputs))
T = T + (lfr_m - 1) // 2
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append((inputs[i * lfr_n:i * lfr_n + lfr_m]).view(1, -1))
else: # process last LFR frame
num_padding = lfr_m - (T - i * lfr_n)
frame = (inputs[i * lfr_n:]).view(-1)
for _ in range(num_padding):
frame = torch.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
LFR_outputs = torch.vstack(LFR_inputs)
return LFR_outputs.type(torch.float32)
def normalize_audio_tensor(
waveform: torch.Tensor,
sample_rate: int,
device=None,
target_sample_rate: Optional[int] = None,
):
# Ensure dtype == float32.
assert waveform.dtype in NORM_FACTOR_FOR_DTYPE, f"Unsupported waveform dtype: {waveform.dtype}"
norm_factor = NORM_FACTOR_FOR_DTYPE[waveform.dtype]
waveform = waveform.to(torch.float32) / norm_factor
# Remove the channel dimension.
while len(waveform.shape) > 1:
waveform = waveform[0]
# Move to device.
if device is not None:
waveform = waveform.to(device)
# Resample.
if target_sample_rate is not None and sample_rate != target_sample_rate:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
if device is not None:
resampler = resampler.to(device)
waveform = resampler(waveform.unsqueeze(0)).squeeze(0)
return waveform
|