File size: 20,196 Bytes
1a29f83 1d7a3e1 1a29f83 1d7a3e1 1a29f83 9df570f 1a29f83 9df570f 1a29f83 9df570f 1a29f83 9df570f 1a29f83 9df570f 9eaf668 9df570f dbdbb0d 9df570f dbdbb0d 9eaf668 dbdbb0d 9df570f 1a29f83 9e9710a b1abe51 9eaf668 b1abe51 9e9710a b1abe51 1a29f83 9e9710a 07c8d8d 9e9710a 07c8d8d 9eaf668 b1abe51 1a29f83 1eebdfb 1a29f83 0b22878 1a29f83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import cv2
import glob
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers import PreTrainedModel
from timm import create_model
from .configuration import TotalClassifierConfig
from .label2index import label2index
_PYDICOM_AVAILABLE = False
try:
from pydicom import dcmread
_PYDICOM_AVAILABLE = True
except ModuleNotFoundError:
pass
_PANDAS_AVAILABLE = False
try:
import pandas as pd
_PANDAS_AVAILABLE = True
except ModuleNotFoundError:
pass
class RNNHead(nn.Module):
def __init__(
self,
rnn_type: str,
rnn_num_layers: int,
rnn_dropout: float,
feature_dim: int,
linear_dropout: float,
num_classes: int,
):
super().__init__()
self.rnn = getattr(nn, rnn_type)(
input_size=feature_dim,
hidden_size=feature_dim // 2,
num_layers=rnn_num_layers,
dropout=rnn_dropout,
batch_first=True,
bidirectional=True,
)
self.dropout = nn.Dropout(linear_dropout)
self.linear = nn.Linear(feature_dim, num_classes)
@staticmethod
def convert_seq_and_mask_to_packed_sequence(
seq: torch.Tensor, mask: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
assert seq.shape[0] == mask.shape[0]
lengths = mask.sum(1)
seq = nn.utils.rnn.pack_padded_sequence(
seq, lengths.cpu().int(), batch_first=True, enforce_sorted=False
)
return seq
def forward(
self, x: torch.Tensor, mask: torch.Tensor | None = None
) -> torch.Tensor:
skip = x
if mask is not None:
# convert to PackedSequence
L = x.shape[1]
x = self.convert_seq_and_mask_to_packed_sequence(x, mask)
x, _ = self.rnn(x)
if mask is not None:
# convert back to tensor
x = nn.utils.rnn.pad_packed_sequence(x, batch_first=True, total_length=L)[0]
x = x + skip
return self.linear(self.dropout(x))
class TotalClassifierModel(PreTrainedModel):
config_class = TotalClassifierConfig
def __init__(self, config):
super().__init__(config)
self.image_size = config.image_size
self.backbone = create_model(
model_name=config.backbone,
pretrained=False,
num_classes=0,
global_pool="",
features_only=True,
in_chans=config.in_chans,
)
self.cnn_dropout = nn.Dropout(p=config.cnn_dropout)
self.head = RNNHead(
rnn_type=config.rnn_type,
rnn_num_layers=config.rnn_num_layers,
rnn_dropout=config.rnn_dropout,
feature_dim=config.feature_dim,
linear_dropout=config.linear_dropout,
num_classes=config.num_classes,
)
self.label2index = label2index
self.index2label = {v: k for k, v in self.label2index.items()}
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor | None = None,
return_logits: bool = False,
return_as_dict: bool = False,
return_as_list: bool = False,
return_as_df: bool = False,
threshold: float = 0.5, # only used for return_as_list=True
) -> torch.Tensor:
if return_as_df:
assert (
_PANDAS_AVAILABLE
), "`return_as_df=True` requires pandas to be installed"
# x.shape = (b, n, c, h, w)
b, n, c, h, w = x.shape
# x = rearrange(x, "b n c h w -> (b n) c h w")
x = x.reshape(b * n, c, h, w)
x = self.normalize(x)
# avg pooling
features = self.backbone(x)
# take last feature map
features = F.adaptive_avg_pool2d(features[-1], 1).flatten(1)
features = self.cnn_dropout(features)
# features = rearrange(features, "(b n) d -> b n d", b=b, n=n)
features = features.reshape(b, n, -1)
logits = self.head(features, mask=mask)
if return_logits:
# return raw logits
return logits
probas = logits.sigmoid()
if return_as_dict or return_as_df:
# list of dictionaries
batch_list = []
for i in range(probas.shape[0]):
dict_for_batch = {}
probas_i = probas[i]
for each_class in range(probas_i.shape[1]):
dict_for_batch[self.index2label[each_class]] = probas_i[
:, each_class
]
if return_as_df:
batch_list.append(
pd.DataFrame(
{k: v.cpu().numpy() for k, v in dict_for_batch.items()}
)
)
else:
batch_list.append(dict_for_batch)
return batch_list
if return_as_list:
# returns list of list of lists of strings
# innermost list - list of strings for each organ present based on threshold
# inner list - list of above for each slice
# outer list - list of above for each batch element (studies)
batch_list = []
# probas.shape = (batch_size, num_slices, num_classes)
for i in range(probas.shape[0]):
probas_i = probas[i]
# probas_i.shape = (num_slices, num_classes)
list_for_batch = []
for each_slice in range(probas_i.shape[0]):
for each_class in range(probas_i.shape[1]):
list_for_batch.append(
[
self.index2label[each_class]
for each_class in range(probas_i.shape[1])
if probas_i[each_slice, each_class] >= threshold
]
)
batch_list.append(list_for_batch)
return batch_list
return probas
def normalize(self, x: torch.Tensor) -> torch.Tensor:
# [0, 255] -> [-1, 1]
mini, maxi = 0.0, 255.0
x = (x - mini) / (maxi - mini)
x = (x - 0.5) * 2.0
return x
@staticmethod
def window(x: np.ndarray, WL: int, WW: int) -> np.ndarray[np.uint8]:
# applying windowing to CT
lower, upper = WL - WW // 2, WL + WW // 2
x = np.clip(x, lower, upper)
x = (x - lower) / (upper - lower)
return (x * 255.0).astype("uint8")
@staticmethod
def validate_windows_type(windows):
assert isinstance(windows, tuple) or isinstance(windows, list)
if isinstance(windows, tuple):
assert len(windows) == 2
assert [isinstance(_, int) for _ in windows]
elif isinstance(windows, list):
assert all([isinstance(_, tuple) for _ in windows])
assert all([len(_) == 2 for _ in windows])
assert all([isinstance(__, int) for _ in windows for __ in _])
@staticmethod
def determine_dicom_orientation(ds) -> int:
iop = ds.ImageOrientationPatient
# Calculate the direction cosine for the normal vector of the plane
normal_vector = np.cross(iop[:3], iop[3:])
# Determine the plane based on the largest component of the normal vector
abs_normal = np.abs(normal_vector)
if abs_normal[0] > abs_normal[1] and abs_normal[0] > abs_normal[2]:
return 0 # sagittal
elif abs_normal[1] > abs_normal[0] and abs_normal[1] > abs_normal[2]:
return 1 # coronal
else:
return 2 # axial
def load_image_from_dicom(
self, path: str, windows: tuple[int, int] | list[tuple[int, int]] | None = None
) -> np.ndarray:
# windows can be tuple of (WINDOW_LEVEL, WINDOW_WIDTH)
# or list of tuples if wishing to generate multi-channel image using
# > 1 window
if not _PYDICOM_AVAILABLE:
raise Exception("`pydicom` is not installed")
dicom = dcmread(path)
array = dicom.pixel_array.astype("float32")
m, b = float(dicom.RescaleSlope), float(dicom.RescaleIntercept)
array = array * m + b
if windows is None:
return array
self.validate_windows_type(windows)
if isinstance(windows, tuple):
windows = [windows]
arr_list = []
for WL, WW in windows:
arr_list.append(self.window(array.copy(), WL, WW))
array = np.stack(arr_list, axis=-1)
if array.shape[-1] == 1:
array = np.squeeze(array, axis=-1)
return array
@staticmethod
def is_valid_dicom(
ds,
fname: str = "",
sort_by_instance_number: bool = False,
exclude_invalid_dicoms: bool = False,
) -> bool:
attributes = [
"pixel_array",
"RescaleSlope",
"RescaleIntercept",
]
if sort_by_instance_number:
attributes.append("InstanceNumber")
else:
attributes.append("ImagePositionPatient")
attributes.append("ImageOrientationPatient")
attributes_present = [hasattr(ds, attr) for attr in attributes]
valid = all(attributes_present)
if not valid and not exclude_invalid_dicoms:
raise Exception(
f"invalid DICOM file [{fname}]: missing attributes: {list(np.array(attributes)[~np.array(attributes_present)])}"
)
return valid
@staticmethod
def most_common_element(lst):
return max(set(lst), key=lst.count)
@staticmethod
def center_crop_or_pad_borders(image, size):
height, width = image.shape[:2]
new_height, new_width = size
if new_height < height:
# crop top and bottom
crop_top = (height - new_height) // 2
crop_bottom = height - new_height - crop_top
image = image[crop_top:-crop_bottom]
elif new_height > height:
# pad top and bottom
pad_top = (new_height - height) // 2
pad_bottom = new_height - height - pad_top
image = np.pad(
image,
((pad_top, pad_bottom), (0, 0)),
mode="constant",
constant_values=0,
)
if new_width < width:
# crop left and right
crop_left = (width - new_width) // 2
crop_right = width - new_width - crop_left
image = image[:, crop_left:-crop_right]
elif new_width > width:
# pad left and right
pad_left = (new_width - width) // 2
pad_right = new_width - width - pad_left
image = np.pad(
image,
((0, 0), (pad_left, pad_right)),
mode="constant",
constant_values=0,
)
return image
def load_stack_from_dicom_folder(
self,
path: str,
windows: tuple[int, int] | list[tuple[int, int]] | None = None,
dicom_extension: str = ".dcm",
sort_by_instance_number: bool = False,
exclude_invalid_dicoms: bool = False,
fix_unequal_shapes: str = "crop_pad",
return_sorted_dicom_files: bool = False,
) -> np.ndarray | tuple[np.ndarray, list[str]]:
if not _PYDICOM_AVAILABLE:
raise Exception("`pydicom` is not installed")
dicom_files = glob.glob(os.path.join(path, f"*{dicom_extension}"))
if len(dicom_files) == 0:
raise Exception(
f"No DICOM files found in `{path}` using `dicom_extension={dicom_extension}`"
)
dicoms = [dcmread(f) for f in dicom_files]
dicoms = [
(d, dicom_files[idx])
for idx, d in enumerate(dicoms)
if self.is_valid_dicom(
d, dicom_files[idx], sort_by_instance_number, exclude_invalid_dicoms
)
]
# handles exclude_invalid_dicoms=True and return_sorted_dicom_files=True
# by only including valid DICOM filenames
dicom_files = [_[1] for _ in dicoms]
dicoms = [_[0] for _ in dicoms]
slices = [dcm.pixel_array.astype("float32") for dcm in dicoms]
shapes = np.stack([s.shape for s in slices], axis=0)
if not np.all(shapes == shapes[0]):
unique_shapes, counts = np.unique(shapes, axis=0, return_counts=True)
standard_shape = tuple(unique_shapes[np.argmax(counts)])
print(
f"warning: different array shapes present, using {fix_unequal_shapes} -> {standard_shape}"
)
if fix_unequal_shapes == "crop_pad":
slices = [
self.center_crop_or_pad_borders(s, standard_shape)
if s.shape != standard_shape
else s
for s in slices
]
elif fix_unequal_shapes == "resize":
slices = [
cv2.resize(s, standard_shape) if s.shape != standard_shape else s
for s in slices
]
slices = np.stack(slices, axis=0)
# find orientation
orientation = [self.determine_dicom_orientation(dcm) for dcm in dicoms]
# use most common
orientation = self.most_common_element(orientation)
# sort using ImagePositionPatient
# orientation is index to use for sorting
if sort_by_instance_number:
positions = [float(d.InstanceNumber) for d in dicoms]
else:
positions = [float(d.ImagePositionPatient[orientation]) for d in dicoms]
indices = np.argsort(positions)
slices = slices[indices]
# rescale
m, b = (
[float(d.RescaleSlope) for d in dicoms],
[float(d.RescaleIntercept) for d in dicoms],
)
m, b = self.most_common_element(m), self.most_common_element(b)
slices = slices * m + b
if windows is not None:
self.validate_windows_type(windows)
if isinstance(windows, tuple):
windows = [windows]
arr_list = []
for WL, WW in windows:
arr_list.append(self.window(slices.copy(), WL, WW))
slices = np.stack(arr_list, axis=-1)
if slices.shape[-1] == 1:
slices = np.squeeze(slices, axis=-1)
if return_sorted_dicom_files:
return slices, [dicom_files[idx] for idx in indices]
return slices
def preprocess(
self,
x: np.ndarray,
mode: str = "2d",
torchify: bool = True,
add_batch_dim: bool = False,
device: str | torch.device | None = None,
) -> np.ndarray:
if device is not None:
assert torchify, "`torchify` must be `True` if specifying `device`"
mode = mode.lower()
if mode == "2d":
x = cv2.resize(x, self.image_size)
if x.ndim == 2:
x = x[:, :, np.newaxis]
elif mode == "3d":
x = np.stack([cv2.resize(s, self.image_size) for s in x], axis=0)
if x.ndim == 3:
x = x[:, :, :, np.newaxis]
if torchify:
if x.ndim == 3:
x = rearrange(torch.from_numpy(x).float(), "h w c -> c h w")
elif x.ndim == 4:
x = rearrange(torch.from_numpy(x).float(), "n h w c -> n c h w")
if add_batch_dim:
if torchify:
x = x.unsqueeze(0)
else:
x = x[np.newaxis]
if device is not None:
x = x.to(device)
return x
def crop_single_plane(
self,
x: np.ndarray,
device: str | torch.device,
organ: str | list[str],
threshold: float = 0.5,
buffer: float | int = 0,
speed_up: str | None = None,
) -> np.ndarray:
num_slices = x.shape[0]
if speed_up is not None:
assert speed_up in ["fast", "faster", "fastest"]
if speed_up == "fast":
# 75% of slices
reduce_num_slices = 3 * num_slices // 4
elif speed_up == "faster":
# 50% of slices
reduce_num_slices = num_slices // 2
elif speed_up == "fastest":
# 33% of slices
reduce_num_slices = num_slices // 3
indices = np.linspace(0, num_slices - 1, reduce_num_slices).astype(int)
x = x[indices]
x = self.preprocess(x, mode="3d")
x = torch.from_numpy(x)
x = rearrange(x, "n h w c -> n c h w").float().to(device)
x = rearrange(x, "n c h w -> 1 n c h w")
if x.size(2) > 1:
# if multi-channel, take mean
x = x.mean(2, keepdim=True)
organ_cls = self.forward(x)[0]
if speed_up is not None:
# organ_cls.shape = (num_slices, num_classes)
organ_cls = (
F.interpolate(
organ_cls.transpose(1, 0).unsqueeze(0),
size=(num_slices,),
mode="linear",
)
.squeeze(0)
.transpose(1, 0)
)
assert organ_cls.shape[0] == num_slices
slices = []
for each_organ in organ:
slices.append(
torch.where(organ_cls[:, self.label2index[each_organ]] >= threshold)[0]
)
slices = torch.cat(slices)
slice_min, slice_max = slices.min().item(), slices.max().item()
if buffer > 0:
if isinstance(buffer, float):
# % buffer
diff = slice_max - slice_min
buf = int(buffer * diff)
else:
# absolute slice buffer
buf = buffer
slice_min = max(0, slice_min - buf)
slice_max = min(num_slices - 1, slice_max + buf)
return slice_min, slice_max
@torch.no_grad()
def crop(
self,
x: np.ndarray,
organ: str | list[str],
crop_dims: int | list[int] = 0,
device: str | torch.device | None = None,
raw_hu: bool = False,
threshold: float = 0.5,
buffer: float | int = 0,
speed_up: str | None = None,
) -> (
np.ndarray
| tuple[np.ndarray, list[int]]
| tuple[np.ndarray, list[int], list[int]]
):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
assert isinstance(x, np.ndarray)
assert x.ndim in {
3,
4,
}, f"x should be a 3D or 4D array, but got {x.ndim} dimensions"
if raw_hu:
# if input is in Hounsfield units, apply soft tissue window
x = self.window(x, WL=50, WW=400)
x0 = x
if not isinstance(organ, list):
organ = [organ]
if not isinstance(crop_dims, list):
crop_dims = [crop_dims]
assert max(crop_dims) <= 2
assert min(crop_dims) >= 0
if isinstance(buffer, float):
# percentage of cropped axis dimension
assert buffer < 1
if 0 in crop_dims:
smin0, smax0 = self.crop_single_plane(
x0, device, organ, threshold, buffer, speed_up
)
else:
smin0, smax0 = 0, x0.shape[0]
if 1 in crop_dims:
# swap plane
x = x0.swapaxes(1, 0)
smin1, smax1 = self.crop_single_plane(
x, device, organ, threshold, buffer, speed_up
)
else:
smin1, smax1 = 0, x0.shape[1]
if 2 in crop_dims:
# swap plane
x = x0.swapaxes(2, 0)
smin2, smax2 = self.crop_single_plane(
x, device, organ, threshold, buffer, speed_up
)
else:
smin2, smax2 = 0, x0.shape[2]
return x0[smin0 : smax0 + 1, smin1 : smax1 + 1, smin2 : smax2 + 1]
|