Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,110 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **
|
33 |
-
- **
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
- **
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- tokenizer
|
5 |
+
- code
|
6 |
+
- multilingual
|
7 |
+
- programming
|
8 |
+
license: apache-2.0
|
9 |
---
|
10 |
|
11 |
+
# CodeSearchNet Multilingual Tokenizer
|
|
|
|
|
|
|
12 |
|
13 |
+
A specialized tokenizer trained on code from 6 programming languages (Python, Java, JavaScript, PHP, Ruby, Go) using the CodeSearchNet dataset.
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
### Model Description
|
18 |
|
19 |
+
This tokenizer is based on GPT-2's tokenizer but retrained specifically for source code across multiple programming languages. It provides more efficient tokenization for code compared to general-purpose tokenizers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
- **Model type:** BPE Tokenizer
|
22 |
+
- **Languages:** Python, Java, JavaScript, PHP, Ruby, Go
|
23 |
+
- **Vocabulary size:** 64,000 tokens
|
24 |
+
- **Finetuned from:** GPT-2 tokenizer
|
|
|
25 |
|
26 |
## Uses
|
27 |
|
|
|
|
|
28 |
### Direct Use
|
29 |
|
30 |
+
This tokenizer is designed for preprocessing source code before training or inference with language models. It's particularly useful for:
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
- Code generation models
|
33 |
+
- Code completion systems
|
34 |
+
- Code analysis and understanding tasks
|
35 |
+
- Multi-language programming assistants
|
36 |
|
37 |
+
## Performance
|
38 |
|
39 |
+
Compared to the original GPT-2 tokenizer, this specialized tokenizer achieves:
|
40 |
|
41 |
+
- **Python**: 25% fewer tokens on average
|
42 |
+
- **Java**: 31% fewer tokens on average
|
43 |
+
- **JavaScript**: 21% fewer tokens on average
|
44 |
+
- **Go**: 14% fewer tokens on average
|
45 |
+
- **PHP**: 14% fewer tokens on average
|
46 |
+
- **Ruby**: 13% fewer tokens on average
|
47 |
|
48 |
+
## How to Get Started
|
49 |
|
50 |
+
```python
|
51 |
+
from transformers import AutoTokenizer
|
52 |
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("helmo/code-search-net-multilang-tokenizer")
|
54 |
|
55 |
+
# Example usage
|
56 |
+
code = '''public class Calculator {
|
57 |
+
public int add(int a, int b) {
|
58 |
+
return a + b;
|
59 |
+
}
|
60 |
+
}'''
|
61 |
|
62 |
+
tokens = tokenizer.tokenize(code)
|
63 |
+
token_ids = tokenizer.encode(code)
|
64 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
## Training Details
|
67 |
|
68 |
### Training Data
|
69 |
|
70 |
+
Trained on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) which contains:
|
71 |
+
- ~2M code functions across 6 programming languages
|
72 |
+
- Real-world code from GitHub repositories
|
73 |
+
- Functions with associated documentation
|
74 |
|
75 |
### Training Procedure
|
76 |
|
77 |
+
- **Base model:** GPT-2 tokenizer (50,257 vocab)
|
78 |
+
- **Training method:** BPE (Byte-Pair Encoding)
|
79 |
+
- **Final vocabulary:** 64,000 tokens
|
80 |
+
- **Training corpus:** Combined functions from all 6 languages in CodeSearchNet
|
81 |
+
|
82 |
+
## Technical Specifications
|
83 |
+
|
84 |
+
### Model Architecture
|
85 |
+
- **Algorithm:** Byte-Pair Encoding (BPE)
|
86 |
+
- **Vocabulary size:** 64,000
|
87 |
+
- **Special tokens:** Inherited from GPT-2 tokenizer
|
88 |
+
- **Subword handling:** Optimized for code syntax and patterns
|
89 |
+
|
90 |
+
## Citation
|
91 |
+
|
92 |
+
```bibtex
|
93 |
+
@misc{codesearchnet-multilang-tokenizer,
|
94 |
+
title={CodeSearchNet Multilingual Tokenizer},
|
95 |
+
author={Hélder Monteiro},
|
96 |
+
year={2025},
|
97 |
+
howpublished={Hugging Face Model Hub},
|
98 |
+
}
|
99 |
+
```
|
100 |
+
|
101 |
+
## Dataset Reference
|
102 |
+
|
103 |
+
```bibtex
|
104 |
+
@article{husain2019codesearchnet,
|
105 |
+
title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search},
|
106 |
+
author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
|
107 |
+
journal={arXiv preprint arXiv:1909.09436},
|
108 |
+
year={2019}
|
109 |
+
}
|
110 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|