Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,9 +1,140 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
-
-
|
| 4 |
-
-
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
tags:
|
| 5 |
+
- text-generation
|
| 6 |
+
- diffusion
|
| 7 |
+
- language-model
|
| 8 |
+
license: mit
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# hdlm-group/hdlm-base-gamma-0.05
|
| 12 |
+
|
| 13 |
+
This is a gamma_hybrid diffusion language model trained on text data.
|
| 14 |
+
|
| 15 |
+
## Model Details
|
| 16 |
+
|
| 17 |
+
- **Model Type**: gamma_hybrid
|
| 18 |
+
- **Architecture**: Diffusion-based language model
|
| 19 |
+
- **Training Method**: Gamma-hybrid diffusion training
|
| 20 |
+
|
| 21 |
+
## Configuration
|
| 22 |
+
|
| 23 |
+
```yaml
|
| 24 |
+
ngpus: 4
|
| 25 |
+
gradient_accumulation_steps: 8
|
| 26 |
+
pretrain_autoregressive_path: /home/toolkit/research-diffcodegen/exp_local/openwebtext/mdlm-autoregressive/org-DiTAR-absorb-v2/checkpoints-meta/checkpoint.pth
|
| 27 |
+
tokenizer:
|
| 28 |
+
tokens: 50257
|
| 29 |
+
model: gpt2
|
| 30 |
+
training:
|
| 31 |
+
batch_size: 512
|
| 32 |
+
accum: ${gradient_accumulation_steps}
|
| 33 |
+
n_iters: 1000000
|
| 34 |
+
snapshot_freq: 500
|
| 35 |
+
log_freq: 100
|
| 36 |
+
eval_freq: 500
|
| 37 |
+
snapshot_freq_for_preemption: 3000
|
| 38 |
+
weight: standard
|
| 39 |
+
snapshot_sampling: true
|
| 40 |
+
ema: 0.9999
|
| 41 |
+
warmup_iter: -1
|
| 42 |
+
data:
|
| 43 |
+
train: openwebtext-train
|
| 44 |
+
valid: wikitext103
|
| 45 |
+
cache_dir: /home/toolkit/research-diffcodegen/data
|
| 46 |
+
debug: false
|
| 47 |
+
graph:
|
| 48 |
+
type: QGamma
|
| 49 |
+
gamma: 0.05
|
| 50 |
+
file: /home/toolkit/research-diffcodegen/data
|
| 51 |
+
report_all: false
|
| 52 |
+
expanded_sigma: true
|
| 53 |
+
noise:
|
| 54 |
+
type: loglinear
|
| 55 |
+
sigma_min: 0.0001
|
| 56 |
+
sigma_max: 2.0
|
| 57 |
+
ar_diffusion: false
|
| 58 |
+
expanded_sigma: ${graph.expanded_sigma}
|
| 59 |
+
sampling:
|
| 60 |
+
predictor: analytic
|
| 61 |
+
steps_per_level: 1
|
| 62 |
+
noise_removal: true
|
| 63 |
+
strategy: direct
|
| 64 |
+
strategy_param: 0.9
|
| 65 |
+
annealing:
|
| 66 |
+
type: block
|
| 67 |
+
efficient: false
|
| 68 |
+
width: 1024
|
| 69 |
+
tau: 2048
|
| 70 |
+
eval_tau: 256
|
| 71 |
+
steps_per_level: ${sampling.steps_per_level}
|
| 72 |
+
sampling_method: SAR
|
| 73 |
+
diffusion_loss_weight: 1.0
|
| 74 |
+
ce_loss_weight: 4.0
|
| 75 |
+
sampling_eps: 0.0001
|
| 76 |
+
attention:
|
| 77 |
+
context_type: block_causal
|
| 78 |
+
block_type: full
|
| 79 |
+
match_inference: true
|
| 80 |
+
eval:
|
| 81 |
+
batch_size: 32
|
| 82 |
+
perplexity: true
|
| 83 |
+
perplexity_batch_size: 16
|
| 84 |
+
optim:
|
| 85 |
+
weight_decay: 0.0
|
| 86 |
+
optimizer: AdamW
|
| 87 |
+
lr: 0.0003
|
| 88 |
+
beta1: 0.9
|
| 89 |
+
beta2: 0.999
|
| 90 |
+
eps: 1.0e-08
|
| 91 |
+
warmup: 10000
|
| 92 |
+
grad_clip: 1.0
|
| 93 |
+
scheduler: lambda
|
| 94 |
+
experiment:
|
| 95 |
+
name: QGamma0.05-v2
|
| 96 |
+
wandb_project: debug-QGamma
|
| 97 |
+
model:
|
| 98 |
+
name: gamma_hdlm
|
| 99 |
+
type: ddit
|
| 100 |
+
hidden_size: 768
|
| 101 |
+
cond_dim: 128
|
| 102 |
+
length: 1024
|
| 103 |
+
n_blocks: 12
|
| 104 |
+
n_heads: 12
|
| 105 |
+
scale_by_sigma: false
|
| 106 |
+
dropout: 0.1
|
| 107 |
+
transformer_sigma_conditioning: true
|
| 108 |
+
hybrid_sigma_embedding: true
|
| 109 |
+
post_process_logits: true
|
| 110 |
+
use_timestep_embedding: true
|
| 111 |
+
model_type: gamma_hybrid
|
| 112 |
+
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
## Usage
|
| 116 |
+
|
| 117 |
+
```python
|
| 118 |
+
from our.hf_utils import smart_model_loader
|
| 119 |
+
|
| 120 |
+
# Load the model
|
| 121 |
+
model, config, device, accelerator, metaschedule = smart_model_loader(
|
| 122 |
+
"hdlm-group/hdlm-base-gamma-0.05",
|
| 123 |
+
model_type="gamma_hybrid"
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Use the model for text generation
|
| 127 |
+
# (Add specific usage examples based on your model's capabilities)
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
## Training Details
|
| 131 |
+
|
| 132 |
+
This model was trained using the research-diffcodegen framework.
|
| 133 |
+
|
| 134 |
+
## Citation
|
| 135 |
+
|
| 136 |
+
If you use this model in your research, please cite the original paper and this implementation.
|
| 137 |
+
|
| 138 |
+
## License
|
| 139 |
+
|
| 140 |
+
This model is released under the MIT License.
|