Update README.md
Browse files
README.md
CHANGED
|
@@ -1,16 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
datasets:
|
| 3 |
-
- samzirbo/europarl.en-es.gendered
|
| 4 |
-
- czyzi0/luna-speech-dataset
|
| 5 |
-
- czyzi0/pwr-azon-speech-dataset
|
| 6 |
-
- sagteam/author_profiling
|
| 7 |
-
- kaushalgawri/nptel-en-tags-and-gender-v0
|
| 8 |
metrics:
|
| 9 |
-
- f1
|
| 10 |
-
- accuracy
|
| 11 |
-
- precision
|
| 12 |
-
- recall
|
| 13 |
base_model:
|
| 14 |
-
- microsoft/deberta-v3-large
|
| 15 |
pipeline_tag: text-classification
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Gender Prediction from Text βοΈ β π©βπ¦°π¨
|
| 2 |
+
|
| 3 |
+
This model predicts the **gender of the author** based on a given English or non-English text. It is built upon [DeBERTa-v3-large](https://huggingface.co/microsoft/deberta-v3-large) and fine-tuned on a diverse, multilingual, and multi-domain dataset with both formal and informal texts.
|
| 4 |
+
|
| 5 |
+
π **Space link**: [π Try it out on Hugging Face Spaces](https://huggingface.co/spaces/fc63/Gender_Prediction)
|
| 6 |
+
π **Model repo**: [π View on Hugging Face Hub](https://huggingface.co/fc63/gender_prediction_model_from_text)
|
| 7 |
+
π§ **Source code**: [GitHub](https://github.com/fc63/gender-classification)
|
| 8 |
+
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
## π Model Summary
|
| 12 |
+
|
| 13 |
+
- **Base model**: `microsoft/deberta-v3-large`
|
| 14 |
+
- **Fine-tuned on**: binary gender classification task (`female` vs `male`)
|
| 15 |
+
- **Best F1 Score**: `0.69` on a balanced multi-domain test set
|
| 16 |
+
- **Max token length**: 128
|
| 17 |
+
- **Evaluation Metrics**:
|
| 18 |
+
- F1: 0.69
|
| 19 |
+
- Accuracy: 0.69
|
| 20 |
+
- Precision: 0.69
|
| 21 |
+
- Recall: 0.69
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## π§Ύ Datasets Used
|
| 26 |
+
|
| 27 |
+
| Dataset | Domain | Type |
|
| 28 |
+
|--------|--------|------|
|
| 29 |
+
| [samzirbo/europarl.en-es.gendered](https://huggingface.co/datasets/samzirbo/europarl.en-es.gendered) | Formal speech (Parliament) | English |
|
| 30 |
+
| [czyzi0/luna-speech-dataset](https://huggingface.co/datasets/czyzi0/luna-speech-dataset) | Phone conversations | Polish β Translated |
|
| 31 |
+
| [czyzi0/pwr-azon-speech-dataset](https://huggingface.co/datasets/czyzi0/pwr-azon-speech-dataset) | Phone conversations | Polish β Translated |
|
| 32 |
+
| [sagteam/author_profiling](https://huggingface.co/datasets/sagteam/author_profiling) | Social posts | Russian β Translated |
|
| 33 |
+
| [kaushalgawri/nptel-en-tags-and-gender-v0](https://huggingface.co/datasets/kaushalgawri/nptel-en-tags-and-gender-v0) | Spoken transcripts | English |
|
| 34 |
+
| [Blog Authorship Corpus](https://u.cs.biu.ac.il/~koppel/BlogCorpus.htm) | Blog posts | English |
|
| 35 |
+
|
| 36 |
+
All datasets were normalized, translated if necessary, deduplicated, and **balanced via random undersampling** to ensure equal representation of both genders.
|
| 37 |
+
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
## π οΈ Preprocessing & Training
|
| 41 |
+
|
| 42 |
+
- **Normalization**: Cleaned quotes, dashes, placeholders, noise, and HTML/code from all datasets.
|
| 43 |
+
- **Translation**: Used `Helsinki-NLP/opus-mt-*` models for Polish and Russian data.
|
| 44 |
+
- **Undersampling**: Random undersampling to balance male and female samples.
|
| 45 |
+
- **Training Strategy**:
|
| 46 |
+
- LR Finder used to optimize learning rate (`2.66e-6`)
|
| 47 |
+
- Fine-tuned using early stopping on both F1 and loss
|
| 48 |
+
- Step-based evaluation every 250 steps
|
| 49 |
+
- Best checkpoint at step 24,750 saved and evaluated
|
| 50 |
+
- **Second Phase Fine-tuning**:
|
| 51 |
+
- Performed on full merged dataset for 2 epochs
|
| 52 |
+
- Used cosine learning rate scheduler and warm-up steps
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## π Performance (on full merged test set)
|
| 57 |
+
|
| 58 |
+
| Class | Precision | Recall | F1-Score | Accuracy | Support |
|
| 59 |
+
|-----|-----|--------|----------|---------|---------|
|
| 60 |
+
| Female | 0.70 | 0.65 | 0.68 | | 591,027 |
|
| 61 |
+
| Male | 0.68 | 0.72 | 0.70 | | 591,027 |
|
| 62 |
+
| **Macro Avg** | 0.69 | 0.69 | 0.69 | | 1,182,054 |
|
| 63 |
+
| **Accuracy** | | | | **0.69** | 1,182,054 |
|
| 64 |
+
|
| 65 |
+
---
|
| 66 |
+
|
| 67 |
+
## π¦ Usage Example
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 71 |
+
import torch
|
| 72 |
+
import torch.nn.functional as F
|
| 73 |
+
|
| 74 |
+
model_name = "fc63/gender_prediction_model_from_text"
|
| 75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
| 76 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name).eval().to("cuda")
|
| 77 |
+
|
| 78 |
+
def predict(text):
|
| 79 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128).to("cuda")
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
outputs = model(**inputs)
|
| 82 |
+
probs = F.softmax(outputs.logits, dim=1)
|
| 83 |
+
pred = torch.argmax(probs, dim=1).item()
|
| 84 |
+
confidence = round(probs[0][pred].item() * 100, 1)
|
| 85 |
+
gender = "Female" if pred == 0 else "Male"
|
| 86 |
+
return f"{gender} (Confidence: {confidence}%)"
|
| 87 |
+
```
|
| 88 |
+
```
|
| 89 |
+
sample_text = "I love writing in my journal every night. It helps me reflect on the day and plan for tomorrow."
|
| 90 |
+
print(predict(sample_text))
|
| 91 |
+
```
|
| 92 |
+
The Output Of This Sample:
|
| 93 |
+
```
|
| 94 |
+
Female (Confidence: 84.1%)
|
| 95 |
+
```
|
| 96 |
+
---
|
| 97 |
+
|
| 98 |
+
## π οΈ Model Card Metadata
|
| 99 |
+
|
| 100 |
+
```yaml
|
| 101 |
datasets:
|
| 102 |
+
- samzirbo/europarl.en-es.gendered
|
| 103 |
+
- czyzi0/luna-speech-dataset
|
| 104 |
+
- czyzi0/pwr-azon-speech-dataset
|
| 105 |
+
- sagteam/author_profiling
|
| 106 |
+
- kaushalgawri/nptel-en-tags-and-gender-v0
|
| 107 |
metrics:
|
| 108 |
+
- f1
|
| 109 |
+
- accuracy
|
| 110 |
+
- precision
|
| 111 |
+
- recall
|
| 112 |
base_model:
|
| 113 |
+
- microsoft/deberta-v3-large
|
| 114 |
pipeline_tag: text-classification
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## π¨βπ¬ Author & License
|
| 120 |
+
|
| 121 |
+
**Author**: Furkan Γoban
|
| 122 |
+
**Project**: CENG-481 Gender Prediction Model
|
| 123 |
+
**License**: MIT
|