--- library_name: diffusers license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md base_model: - black-forest-labs/FLUX.1-Kontext-dev pipeline_tag: image-to-image --- The Flux Kontext model with **FP4** transformer and T5 encoder. # Usage ``` pip install bitsandbytes ``` ```python from diffusers import FluxKontextPipeline import torch pipeline = FluxKontextPipeline.from_pretrained("eramth/flux-kentext-4bit-fp4",torch_dtype=torch.float16).to("cuda") # This allows you to generate higher resolution images without much extra VRAM usage. pipeline.vae.enable_tiling() ``` # You can create this quantization model yourself by ```python from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig from diffusers import FluxKontextPipeline,FluxTransformer2DModel from transformers import T5EncoderModel import torch token = "" repo_id = "" quant_config = TransformersBitsAndBytesConfig(load_in_4bit=True,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_quant_type="fp4") text_encoder_2_4bit = T5EncoderModel.from_pretrained( "black-forest-labs/FLUX.1-Kontext-dev", subfolder="text_encoder_2", quantization_config=quant_config, torch_dtype=torch.float16, token=token ) quant_config = DiffusersBitsAndBytesConfig(load_in_4bit=True,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_quant_type="fp4") transformer_4bit = FluxTransformer2DModel.from_pretrained( "black-forest-labs/FLUX.1-Kontext-dev", subfolder="transformer", quantization_config=quant_config, torch_dtype=torch.float16, token=token ) pipe = FluxKontextPipeline.from_pretrained( "black-forest-labs/FLUX.1-Kontext-dev", transformer=transformer_4bit, text_encoder_2=text_encoder_2_4bit, torch_dtype=torch.float16, token=token ) pipe.push_to_hub(repo_id,token=token) ```