from diffusers import DiffusionPipeline import os class FluxPipeline(DiffusionPipeline): def __init__( self, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, transformer, scheduler, **kwargs ): super().__init__() self.vae = vae self.text_encoder = text_encoder self.text_encoder_2 = text_encoder_2 self.tokenizer = tokenizer self.tokenizer_2 = tokenizer_2 self.transformer = transformer self.scheduler = scheduler # сюда можно добавить доп. обработку kwargs for k, v in kwargs.items(): setattr(self, k, v) def load_attn_procs(self, path: str): if not os.path.exists(path): raise FileNotFoundError(f"LoRA file not found: {path}") print(f"[FluxPipeline] Loading LoRA from {path}") self.load_lora_weights(path)