dr-rakshith-truth-zeeker commited on
Commit
dd1a135
·
verified ·
1 Parent(s): c53c401

Add Truth-Zeeker AI Demo Colab notebook

Browse files
Files changed (1) hide show
  1. Download.ipynb +140 -0
Download.ipynb ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "nbformat": 4,
3
+ "nbformat_minor": 0,
4
+ "metadata": {
5
+ "colab": {
6
+ "provenance": []
7
+ },
8
+ "kernelspec": {
9
+ "name": "python3",
10
+ "display_name": "Python 3"
11
+ },
12
+ "language_info": {
13
+ "name": "python"
14
+ }
15
+ },
16
+ "cells": [
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": null,
20
+ "metadata": {
21
+ "id": "M8NNCivsv-38"
22
+ },
23
+ "outputs": [],
24
+ "source": [
25
+ "!pip install -q huggingface-hub joblib pandas scikit-learn matplotlib seaborn"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "source": [
31
+ "from huggingface_hub import hf_hub_download\n",
32
+ "import joblib, os, pandas as pd\n",
33
+ "\n",
34
+ "REPO_ID = \"dr-rakshith-truth-zeeker/truth-zeeker-ai-demo\"\n",
35
+ "FNAME = \"model.joblib\"\n",
36
+ "\n",
37
+ "path = hf_hub_download(repo_id=REPO_ID, filename=FNAME)\n",
38
+ "print(\"✅ Downloaded model from Hugging Face:\", path)\n",
39
+ "\n",
40
+ "model = joblib.load(path)\n",
41
+ "print(\"Model loaded successfully:\", type(model))"
42
+ ],
43
+ "metadata": {
44
+ "colab": {
45
+ "base_uri": "https://localhost:8080/"
46
+ },
47
+ "id": "4cRLizbOwmYH",
48
+ "outputId": "e8c03cc1-4573-4d17-95aa-73955dbafc76"
49
+ },
50
+ "execution_count": null,
51
+ "outputs": [
52
+ {
53
+ "output_type": "stream",
54
+ "name": "stdout",
55
+ "text": [
56
+ "✅ Downloaded model from Hugging Face: /root/.cache/huggingface/hub/models--dr-rakshith-truth-zeeker--truth-zeeker-ai-demo/snapshots/c53c401c56ba50cac5bb805104dfe5ecf380d022/model.joblib\n",
57
+ "Model loaded successfully: <class 'tuple'>\n"
58
+ ]
59
+ }
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "source": [
65
+ "csv_url = \"https://raw.githubusercontent.com/dr-rakshith-truth-zeeker/Truth-Zeeker-AI/refs/heads/release/demo_data/sample_features.csv?token=GHSAT0AAAAAADNHI2OE4ZDLAJ26R6E2CJZY2HP242Q\"\n",
66
+ "\n",
67
+ "df = pd.read_csv(csv_url)\n",
68
+ "print(\"Loaded demo data shape:\", df.shape)\n",
69
+ "print(\"\\nFirst 10 rows:\\n\")\n",
70
+ "print(df.head(10).to_string(index=False))\n",
71
+ "\n",
72
+ "# Run inference (handle tuple (scaler, model) or plain model)\n",
73
+ "if isinstance(model, tuple) and len(model) == 2:\n",
74
+ " scaler, clf = model\n",
75
+ " Xs = scaler.transform(df[['duration','orig_bytes','resp_bytes']])\n",
76
+ " preds = clf.predict(Xs)\n",
77
+ "else:\n",
78
+ " clf = model\n",
79
+ " preds = clf.predict(df[['duration','orig_bytes','resp_bytes']])\n",
80
+ "\n",
81
+ "df['anomaly_flag'] = preds\n",
82
+ "print(\"\\nResults with anomaly_flag:\\n\")\n",
83
+ "print(df.to_string(index=False))"
84
+ ],
85
+ "metadata": {
86
+ "colab": {
87
+ "base_uri": "https://localhost:8080/"
88
+ },
89
+ "id": "4NqEdftzx-dN",
90
+ "outputId": "dcff4174-28dc-4ea5-b900-18575399a712"
91
+ },
92
+ "execution_count": null,
93
+ "outputs": [
94
+ {
95
+ "output_type": "stream",
96
+ "name": "stdout",
97
+ "text": [
98
+ "Loaded demo data shape: (10, 3)\n",
99
+ "\n",
100
+ "First 10 rows:\n",
101
+ "\n",
102
+ " duration orig_bytes resp_bytes\n",
103
+ " 0.12 456 789\n",
104
+ " 0.08 123 80\n",
105
+ " 0.30 2000 150\n",
106
+ " 0.05 60 0\n",
107
+ " 0.90 4000 1200\n",
108
+ " 0.02 50 10\n",
109
+ " 0.20 300 400\n",
110
+ " 0.25 1500 1200\n",
111
+ " 0.15 800 200\n",
112
+ " 0.07 90 70\n",
113
+ "\n",
114
+ "Results with anomaly_flag:\n",
115
+ "\n",
116
+ " duration orig_bytes resp_bytes anomaly_flag\n",
117
+ " 0.12 456 789 1\n",
118
+ " 0.08 123 80 1\n",
119
+ " 0.30 2000 150 1\n",
120
+ " 0.05 60 0 1\n",
121
+ " 0.90 4000 1200 -1\n",
122
+ " 0.02 50 10 1\n",
123
+ " 0.20 300 400 1\n",
124
+ " 0.25 1500 1200 -1\n",
125
+ " 0.15 800 200 1\n",
126
+ " 0.07 90 70 1\n"
127
+ ]
128
+ },
129
+ {
130
+ "output_type": "stream",
131
+ "name": "stderr",
132
+ "text": [
133
+ "/usr/local/lib/python3.12/dist-packages/sklearn/utils/validation.py:2732: UserWarning: X has feature names, but StandardScaler was fitted without feature names\n",
134
+ " warnings.warn(\n"
135
+ ]
136
+ }
137
+ ]
138
+ }
139
+ ]
140
+ }