#!/usr/bin/env python3 from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler import time import os from huggingface_hub import HfApi # from compel import Compel import torch import sys from pathlib import Path import requests from PIL import Image from io import BytesIO path = sys.argv[1] api = HfApi() start_time = time.time() pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) # pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16, safety_checker=None # compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder) pipe = pipe.to("cuda") prompt = "Elon Musk riding a green horse on Mars" # pipe.unet.to(memory_format=torch.channels_last) # pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # pipe(prompt=prompt, num_inference_steps=2).images[0] image = pipe(prompt=prompt, num_images_per_prompt=1, num_inference_steps=40, output_type="latent").images pipe.to("cpu") pipe = DiffusionPipeline.from_pretrained("/home/patrick/diffusers-sd-xl/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16) pipe.to("cuda") image = pipe(prompt=prompt, image=image, strength=0.5).images[0] file_name = f"aaa" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")