File size: 1,395 Bytes
a032108 269cbe7 a032108 6d8ff37 a032108 269cbe7 a032108 6d8ff37 a032108 269cbe7 6d8ff37 a032108 6421583 269cbe7 6d8ff37 a032108 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
#!/usr/bin/env python3
from diffusers import DiffusionPipeline, KandinskyPriorPipeline, DDPMScheduler, DDIMScheduler
import torch
import os
from huggingface_hub import HfApi
from pathlib import Path
api = HfApi()
pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16)
pipe_prior.to("cuda")
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
generator = torch.Generator(device="cuda").manual_seed(10)
image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, guidance_scale=1.0, generator=generator).to_tuple()
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.to("cuda")
print(t2i_pipe.scheduler.config)
images = t2i_pipe(prompt, num_images_per_prompt=4, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, negative_prompt=negative_prompt).images
for i, image in enumerate(images):
path = os.path.join(Path.home(), "images", f"aa_{i}.png")
image.save(path)
api.upload_file(
path_or_fileobj=path,
path_in_repo=path.split("/")[-1],
repo_id="patrickvonplaten/images",
repo_type="dataset",
)
print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa_{i}.png")
|