File size: 1,395 Bytes
a032108
269cbe7
a032108
 
 
 
 
 
6d8ff37
a032108
269cbe7
a032108
6d8ff37
 
 
a032108
269cbe7
6d8ff37
a032108
6421583
269cbe7
 
 
6d8ff37
a032108
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#!/usr/bin/env python3
from diffusers import DiffusionPipeline, KandinskyPriorPipeline, DDPMScheduler, DDIMScheduler
import torch

import os
from huggingface_hub import HfApi
from pathlib import Path

api = HfApi()

pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16)
pipe_prior.to("cuda")

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"

generator = torch.Generator(device="cuda").manual_seed(10)
image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, guidance_scale=1.0, generator=generator).to_tuple()

t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.to("cuda")
print(t2i_pipe.scheduler.config)

images = t2i_pipe(prompt, num_images_per_prompt=4, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, negative_prompt=negative_prompt).images

for i, image in enumerate(images):
    path = os.path.join(Path.home(), "images", f"aa_{i}.png")
    image.save(path)

    api.upload_file(
        path_or_fileobj=path,
        path_in_repo=path.split("/")[-1],
        repo_id="patrickvonplaten/images",
        repo_type="dataset",
    )
    print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa_{i}.png")