File size: 2,289 Bytes
69f6fc2
6d8ff37
78ed83d
2f0087d
78ed83d
6d8ff37
69f6fc2
 
b6badad
b88c59f
 
 
69f6fc2
e990e13
 
69f6fc2
78ed83d
 
6d8ff37
9478dd2
e990e13
9478dd2
e990e13
6d8ff37
 
 
 
 
69f6fc2
a032108
6d8ff37
 
 
 
 
 
 
 
 
e990e13
6d8ff37
 
 
 
a032108
e990e13
 
9478dd2
a032108
e990e13
 
 
 
a032108
e990e13
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python3
from diffusers import StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler
import time
import os
from huggingface_hub import HfApi
# from compel import Compel
import torch
import sys
from pathlib import Path
import requests
from PIL import Image
from io import BytesIO

path = sys.argv[1]
# path = "ptx0/pseudo-journey-v2"

api = HfApi()
start_time = time.time()
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe.enable_xformers_memory_efficient_attention()

# pipe.unet = torch.compile(pipe.unet)

# pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16, safety_checker=None)

# compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)


pipe = pipe.to("cuda")

prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"

# rompts = ["a cat playing with a ball++ in the forest", "a cat playing with a ball++ in the forest", "a cat playing with a ball-- in the forest"]

# prompt_embeds = torch.cat([compel.build_conditioning_tensor(prompt) for prompt in prompts])

# generator = [torch.Generator(device="cuda").manual_seed(0) for _ in range(prompt_embeds.shape[0])]
#
# url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
 
# response = requests.get(url)
# image = Image.open(BytesIO(response.content)).convert("RGB")
# image.thumbnail((768, 768))


generator = torch.Generator(device="cpu").manual_seed(0)
# images = pipe(prompt=prompt, image=image, generator=generator, num_images_per_prompt=4, num_inference_steps=25).images
images = pipe(prompt=prompt, generator=generator, num_images_per_prompt=1, num_inference_steps=50).images

for i, image in enumerate(images):
    file_name = f"bb_1_{i}"
    path = os.path.join(Path.home(), "images", f"{file_name}.png")
    image.save(path)

    api.upload_file(
        path_or_fileobj=path,
        path_in_repo=path.split("/")[-1],
        repo_id="patrickvonplaten/images",
        repo_type="dataset",
    )
    print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")