GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); if (!hparams.vocab_only) { // GPU backends for (auto * dev : model->devices) { ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev)); llama_free(ctx); return nullptr; } ctx->backends.emplace_back(backend); } // add ACCEL backends (such as BLAS) for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) { ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev)); llama_free(ctx); return nullptr; } ctx->backends.emplace_back(backend); } } // add CPU backend ctx->backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr); if (ctx->backend_cpu == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__); llama_free(ctx); return nullptr; } ctx->backends.emplace_back(ctx->backend_cpu); // create a list of the set_n_threads functions in the backends for (auto & backend : ctx->backends) { ggml_backend_dev_t dev = ggml_backend_get_device(backend.get()); ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr; if (reg) { auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads"); if (ggml_backend_set_n_threads_fn) { ctx->set_n_threads_fns.emplace_back(backend.get(), ggml_backend_set_n_threads_fn); } } } llama_set_abort_callback(ctx, params.abort_callback, params.abort_callback_data); if (!llama_kv_cache_init(ctx->kv_self, ctx->model, ctx->cparams, type_k, type_v, kv_size, cparams.offload_kqv)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { size_t memory_size_k = 0; size_t memory_size_v = 0; for (auto & k : ctx->kv_self.k_l) { memory_size_k += ggml_nbytes(k); } for (auto & v : ctx->kv_self.v_l) { memory_size_v += ggml_nbytes(v); } LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); } // graph outputs buffer { // resized during inference when a batch uses more outputs if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) { LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__); llama_free(ctx); return nullptr; } LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(ctx->buf_output.get()), ggml_backend_buffer_get_size(ctx->buf_output.get()) / 1024.0 / 1024.0); } // scheduler and compute buffers { // buffer types used for the compute buffer of each backend std::vector backend_buft; std::vector backend_ptrs; for (auto & backend : ctx->backends) { auto * buft = ggml_backend_get_default_buffer_type(backend.get()); auto backend_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); if (backend_type == GGML_BACKEND_DEVICE_TYPE_CPU && !model->devices.empty()) { // use the host buffer of the first device CPU for faster transfer of the intermediate state auto * dev = model->devices[0]; auto * host_buft = ggml_backend_dev_host_buffer_type(dev); if (host_buft) { buft = host_buft; } } backend_buft.push_back(buft); backend_ptrs.push_back(backend.get()); } const size_t max_nodes = model->max_nodes(); // buffer used to store the computation graph and the tensor meta data ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); // TODO: move these checks to ggml_backend_sched // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary bool pipeline_parallel = model->n_devices() > 1 && model->params.n_gpu_layers > (int)model->hparams.n_layer && model->params.split_mode == LLAMA_SPLIT_MODE_LAYER && params.offload_kqv; // pipeline parallelism requires support for async compute and events in all devices if (pipeline_parallel) { for (auto & backend : ctx->backends) { auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) { // ignore CPU backend continue; } auto * dev = ggml_backend_get_device(backend.get()); ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); if (!props.caps.async || !props.caps.events) { // device does not support async compute or events pipeline_parallel = false; break; } } } ctx->sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel)); if (pipeline_parallel) { LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched.get())); } // initialize scheduler with the worst-case graph uint32_t n_seqs = 1; // TODO: worst-case number of sequences uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); llama_token token = ctx->model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; ggml_cgraph * gf_pp = llama_build_graph(*ctx, ubatch_pp, true); // reserve pp graph first so that buffers are only allocated once ggml_backend_sched_reserve(ctx->sched.get(), gf_pp); int n_splits_pp = ggml_backend_sched_get_n_splits(ctx->sched.get()); int n_nodes_pp = ggml_graph_n_nodes(gf_pp); // reserve with tg graph to get the number of splits and nodes llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; ggml_cgraph * gf_tg = llama_build_graph(*ctx, ubatch_tg, true); ggml_backend_sched_reserve(ctx->sched.get(), gf_tg); int n_splits_tg = ggml_backend_sched_get_n_splits(ctx->sched.get()); int n_nodes_tg = ggml_graph_n_nodes(gf_tg); // reserve again with pp graph to avoid ggml-alloc reallocations during inference gf_pp = llama_build_graph(*ctx, ubatch_pp, true); if (!ggml_backend_sched_reserve(ctx->sched.get(), gf_pp)) { LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); llama_free(ctx); return nullptr; } for (size_t i = 0; i < backend_ptrs.size(); ++i) { ggml_backend_t backend = backend_ptrs[i]; ggml_backend_buffer_type_t buft = backend_buft[i]; size_t size = ggml_backend_sched_get_buffer_size(ctx->sched.get(), backend); if (size > 1) { LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, ggml_backend_buft_name(buft), size / 1024.0 / 1024.0); } } if (n_nodes_pp == n_nodes_tg) { LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, n_nodes_pp); } else { LLAMA_LOG_INFO("%s: graph nodes = %d (with bs=%d), %d (with bs=1)\n", __func__, n_nodes_pp, n_tokens, n_nodes_tg); } if (n_splits_pp == n_splits_tg) { LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits_pp); } else { LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg); } } }