{ "cells": [ { "cell_type": "markdown", "source": [ "### 🚀 For an interactive experience, head over to our [demo platform](https://var.vision/demo) and dive right in! 🌟" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "################## 1. Download checkpoints and build models\n", "import os\n", "import os.path as osp\n", "import torch, torchvision\n", "import random\n", "import numpy as np\n", "import PIL.Image as PImage, PIL.ImageDraw as PImageDraw\n", "setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed\n", "setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed\n", "from models import VQVAE, build_vae_var\n", "\n", "MODEL_DEPTH = 16 # TODO: =====> please specify MODEL_DEPTH <=====\n", "assert MODEL_DEPTH in {16, 20, 24, 30}\n", "\n", "\n", "# download checkpoint\n", "hf_home = 'https://huggingface.co/FoundationVision/var/resolve/main'\n", "vae_ckpt, var_ckpt = 'vae_ch160v4096z32.pth', f'var_d{MODEL_DEPTH}.pth'\n", "if not osp.exists(vae_ckpt): os.system(f'wget {hf_home}/{vae_ckpt}')\n", "if not osp.exists(var_ckpt): os.system(f'wget {hf_home}/{var_ckpt}')\n", "\n", "# build vae, var\n", "patch_nums = (1, 2, 3, 4, 5, 6, 8, 10, 13, 16)\n", "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n", "if 'vae' not in globals() or 'var' not in globals():\n", " vae, var = build_vae_var(\n", " V=4096, Cvae=32, ch=160, share_quant_resi=4, # hard-coded VQVAE hyperparameters\n", " device=device, patch_nums=patch_nums,\n", " num_classes=1000, depth=MODEL_DEPTH, shared_aln=False,\n", " )\n", "\n", "# load checkpoints\n", "vae.load_state_dict(torch.load(vae_ckpt, map_location='cpu'), strict=True)\n", "var.load_state_dict(torch.load(var_ckpt, map_location='cpu'), strict=True)\n", "vae.eval(), var.eval()\n", "for p in vae.parameters(): p.requires_grad_(False)\n", "for p in var.parameters(): p.requires_grad_(False)\n", "print(f'prepare finished.')" ], "metadata": { "collapsed": false, "is_executing": true } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [ "############################# 2. Sample with classifier-free guidance\n", "\n", "# set args\n", "seed = 0 #@param {type:\"number\"}\n", "torch.manual_seed(seed)\n", "num_sampling_steps = 250 #@param {type:\"slider\", min:0, max:1000, step:1}\n", "cfg = 4 #@param {type:\"slider\", min:1, max:10, step:0.1}\n", "class_labels = (980, 980, 437, 437, 22, 22, 562, 562) #@param {type:\"raw\"}\n", "more_smooth = False # True for more smooth output\n", "\n", "# seed\n", "torch.manual_seed(seed)\n", "random.seed(seed)\n", "np.random.seed(seed)\n", "torch.backends.cudnn.deterministic = True\n", "torch.backends.cudnn.benchmark = False\n", "\n", "# run faster\n", "tf32 = True\n", "torch.backends.cudnn.allow_tf32 = bool(tf32)\n", "torch.backends.cuda.matmul.allow_tf32 = bool(tf32)\n", "torch.set_float32_matmul_precision('high' if tf32 else 'highest')\n", "\n", "# sample\n", "B = len(class_labels)\n", "label_B: torch.LongTensor = torch.tensor(class_labels, device=device)\n", "with torch.inference_mode():\n", " with torch.autocast('cuda', enabled=True, dtype=torch.float16, cache_enabled=True): # using bfloat16 can be faster\n", " recon_B3HW = var.autoregressive_infer_cfg(B=B, label_B=label_B, cfg=cfg, top_k=900, top_p=0.95, g_seed=seed, more_smooth=more_smooth)\n", "\n", "chw = torchvision.utils.make_grid(recon_B3HW, nrow=8, padding=0, pad_value=1.0)\n", "chw = chw.permute(1, 2, 0).mul_(255).cpu().numpy()\n", "chw = PImage.fromarray(chw.astype(np.uint8))\n", "chw.show()\n" ], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }