Datasets:
update readme
Browse files
README.md
CHANGED
@@ -70,18 +70,18 @@ We utilize the MiniCPM-1.2B model architecture with the MiniCPM3-4B tokenizer. E
|
|
70 |
Detailed evaluation results are reported below:
|
71 |
|
72 |
- **Individual data experiments.** We perform isolated training runs using single datasets, facilitating direct comparisons between differently processed data from identical sources.
|
73 |
-
<img src="assets/individual-english-table.png" alt="
|
74 |
-
<img src="assets/individual-chinese-table.png" alt="
|
75 |
-
<img src="assets/individual-plot.png" alt="
|
76 |
|
77 |
- **Mixed Data Experiments.** We use a mix of 60% English data, 30% Chinese data, and 10% code data (StarCoder-v2).
|
78 |
-
<img src="assets/mix-table.png" alt="
|
79 |
-
<img src="assets/mix-plot.png" alt="
|
80 |
|
81 |
- **Loss and Performance Estimation Results.** We use the performance estimation methods proposed in [Densing Law](https://arxiv.org/abs/2412.04315) for further analysis and verification of the effectiveness of Ultra-FineWeb.
|
82 |
|
83 |
-
<img src="assets/densing-law-table.png" alt="
|
84 |
-
<img src="assets/densing-law-plot.png" alt="
|
85 |
|
86 |
## ❤️ Acknowledgements
|
87 |
|
|
|
70 |
Detailed evaluation results are reported below:
|
71 |
|
72 |
- **Individual data experiments.** We perform isolated training runs using single datasets, facilitating direct comparisons between differently processed data from identical sources.
|
73 |
+
<img src="assets/individual-english-table.png" alt="Individual English Table" width="75%">
|
74 |
+
<img src="assets/individual-chinese-table.png" alt="Individual Chinese Table" width="75%">
|
75 |
+
<img src="assets/individual-plot.png" alt="Individual Plot" width="100%">
|
76 |
|
77 |
- **Mixed Data Experiments.** We use a mix of 60% English data, 30% Chinese data, and 10% code data (StarCoder-v2).
|
78 |
+
<img src="assets/mix-table.png" alt="Mix Table" width="75%">
|
79 |
+
<img src="assets/mix-plot.png" alt="Mix Plot" width="100%">
|
80 |
|
81 |
- **Loss and Performance Estimation Results.** We use the performance estimation methods proposed in [Densing Law](https://arxiv.org/abs/2412.04315) for further analysis and verification of the effectiveness of Ultra-FineWeb.
|
82 |
|
83 |
+
<img src="assets/densing-law-table.png" alt="Densing Law Table" width="75%">
|
84 |
+
<img src="assets/densing-law-plot.png" alt="Densing Law Plot" width="100%">
|
85 |
|
86 |
## ❤️ Acknowledgements
|
87 |
|