text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
motion_module.transformer_blocks[i] = FreeNoiseTransformerBlock( dim=basic_transfomer_block.dim, num_attention_heads=basic_transfomer_block.num_attention_heads, attention_head_dim=basic_transfomer_block.attention_head_dim, dropout=basic_transfomer_block.dropout, cross_attention_dim=basic_transfomer_block.cross_attention_dim, activation_fn=basic_transfomer_block.activation_fn, attention_bias=basic_transfomer_block.attention_bias, only_cross_attention=basic_transfomer_block.only_cross_attention, double_self_attention=basic_transfomer_block.double_self_attention, positional_embeddings=basic_transfomer_block.positional_embeddings, num_positional_embeddings=basic_transfomer_block.num_positional_embeddings,
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
context_length=self._free_noise_context_length, context_stride=self._free_noise_context_stride, weighting_scheme=self._free_noise_weighting_scheme, ).to(device=self.device, dtype=self.dtype)
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
motion_module.transformer_blocks[i].load_state_dict( basic_transfomer_block.state_dict(), strict=True ) motion_module.transformer_blocks[i].set_chunk_feed_forward( basic_transfomer_block._chunk_size, basic_transfomer_block._chunk_dim ) def _disable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]): r"""Helper function to disable FreeNoise in transformer blocks.""" for motion_module in block.motion_modules: num_transformer_blocks = len(motion_module.transformer_blocks) for i in range(num_transformer_blocks): if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock): free_noise_transfomer_block = motion_module.transformer_blocks[i]
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
motion_module.transformer_blocks[i] = BasicTransformerBlock( dim=free_noise_transfomer_block.dim, num_attention_heads=free_noise_transfomer_block.num_attention_heads, attention_head_dim=free_noise_transfomer_block.attention_head_dim, dropout=free_noise_transfomer_block.dropout, cross_attention_dim=free_noise_transfomer_block.cross_attention_dim, activation_fn=free_noise_transfomer_block.activation_fn, attention_bias=free_noise_transfomer_block.attention_bias, only_cross_attention=free_noise_transfomer_block.only_cross_attention, double_self_attention=free_noise_transfomer_block.double_self_attention, positional_embeddings=free_noise_transfomer_block.positional_embeddings,
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
num_positional_embeddings=free_noise_transfomer_block.num_positional_embeddings, ).to(device=self.device, dtype=self.dtype)
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
motion_module.transformer_blocks[i].load_state_dict( free_noise_transfomer_block.state_dict(), strict=True ) motion_module.transformer_blocks[i].set_chunk_feed_forward( free_noise_transfomer_block._chunk_size, free_noise_transfomer_block._chunk_dim ) def _check_inputs_free_noise( self, prompt, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames, ) -> None: if not isinstance(prompt, (str, dict)): raise ValueError(f"Expected `prompt` to have type `str` or `dict` but found {type(prompt)=}") if negative_prompt is not None: if not isinstance(negative_prompt, (str, dict)): raise ValueError( f"Expected `negative_prompt` to have type `str` or `dict` but found {type(negative_prompt)=}" )
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
if prompt_embeds is not None or negative_prompt_embeds is not None: raise ValueError("`prompt_embeds` and `negative_prompt_embeds` is not supported in FreeNoise yet.") frame_indices = [isinstance(x, int) for x in prompt.keys()] frame_prompts = [isinstance(x, str) for x in prompt.values()] min_frame = min(list(prompt.keys())) max_frame = max(list(prompt.keys())) if not all(frame_indices): raise ValueError("Expected integer keys in `prompt` dict for FreeNoise.") if not all(frame_prompts): raise ValueError("Expected str values in `prompt` dict for FreeNoise.") if min_frame != 0: raise ValueError("The minimum frame index in `prompt` dict must be 0 as a starting prompt is necessary.") if max_frame >= num_frames: raise ValueError( f"The maximum frame index in `prompt` dict must be lesser than {num_frames=} and follow 0-based indexing." )
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
def _encode_prompt_free_noise( self, prompt: Union[str, Dict[int, str]], num_frames: int, device: torch.device, num_videos_per_prompt: int, do_classifier_free_guidance: bool, negative_prompt: Optional[Union[str, Dict[int, str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ) -> torch.Tensor: if negative_prompt is None: negative_prompt = "" # Ensure that we have a dictionary of prompts if isinstance(prompt, str): prompt = {0: prompt} if isinstance(negative_prompt, str): negative_prompt = {0: negative_prompt} self._check_inputs_free_noise(prompt, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames)
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
# Sort the prompts based on frame indices prompt = dict(sorted(prompt.items())) negative_prompt = dict(sorted(negative_prompt.items())) # Ensure that we have a prompt for the last frame index prompt[num_frames - 1] = prompt[list(prompt.keys())[-1]] negative_prompt[num_frames - 1] = negative_prompt[list(negative_prompt.keys())[-1]] frame_indices = list(prompt.keys()) frame_prompts = list(prompt.values()) frame_negative_indices = list(negative_prompt.keys()) frame_negative_prompts = list(negative_prompt.values())
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
# Generate and interpolate positive prompts prompt_embeds, _ = self.encode_prompt( prompt=frame_prompts, device=device, num_images_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=False, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=lora_scale, clip_skip=clip_skip, ) shape = (num_frames, *prompt_embeds.shape[1:]) prompt_interpolation_embeds = prompt_embeds.new_zeros(shape) for i in range(len(frame_indices) - 1): start_frame = frame_indices[i] end_frame = frame_indices[i + 1] start_tensor = prompt_embeds[i].unsqueeze(0) end_tensor = prompt_embeds[i + 1].unsqueeze(0)
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
prompt_interpolation_embeds[start_frame : end_frame + 1] = self._free_noise_prompt_interpolation_callback( start_frame, end_frame, start_tensor, end_tensor ) # Generate and interpolate negative prompts negative_prompt_embeds = None negative_prompt_interpolation_embeds = None if do_classifier_free_guidance: _, negative_prompt_embeds = self.encode_prompt( prompt=[""] * len(frame_negative_prompts), device=device, num_images_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=True, negative_prompt=frame_negative_prompts, prompt_embeds=None, negative_prompt_embeds=None, lora_scale=lora_scale, clip_skip=clip_skip, ) negative_prompt_interpolation_embeds = negative_prompt_embeds.new_zeros(shape)
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
for i in range(len(frame_negative_indices) - 1): start_frame = frame_negative_indices[i] end_frame = frame_negative_indices[i + 1] start_tensor = negative_prompt_embeds[i].unsqueeze(0) end_tensor = negative_prompt_embeds[i + 1].unsqueeze(0) negative_prompt_interpolation_embeds[ start_frame : end_frame + 1 ] = self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor) prompt_embeds = prompt_interpolation_embeds negative_prompt_embeds = negative_prompt_interpolation_embeds if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds, negative_prompt_embeds
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
def _prepare_latents_free_noise( self, batch_size: int, num_channels_latents: int, num_frames: int, height: int, width: int, dtype: torch.dtype, device: torch.device, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, ): if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) context_num_frames = ( self._free_noise_context_length if self._free_noise_context_length == "repeat_context" else num_frames )
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
shape = ( batch_size, num_channels_latents, context_num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) if self._free_noise_noise_type == "random": return latents else: if latents.size(2) == num_frames: return latents elif latents.size(2) != self._free_noise_context_length: raise ValueError( f"You have passed `latents` as a parameter to FreeNoise. The expected number of frames is either {num_frames} or {self._free_noise_context_length}, but found {latents.size(2)}" ) latents = latents.to(device)
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
if self._free_noise_noise_type == "shuffle_context": for i in range(self._free_noise_context_length, num_frames, self._free_noise_context_stride): # ensure window is within bounds window_start = max(0, i - self._free_noise_context_length) window_end = min(num_frames, window_start + self._free_noise_context_stride) window_length = window_end - window_start if window_length == 0: break indices = torch.LongTensor(list(range(window_start, window_end))) shuffled_indices = indices[torch.randperm(window_length, generator=generator)]
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
current_start = i current_end = min(num_frames, current_start + window_length) if current_end == current_start + window_length: # batch of frames perfectly fits the window latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices] else: # handle the case where the last batch of frames does not fit perfectly with the window prefix_length = current_end - current_start shuffled_indices = shuffled_indices[:prefix_length] latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices] elif self._free_noise_noise_type == "repeat_context": num_repeats = (num_frames + self._free_noise_context_length - 1) // self._free_noise_context_length latents = torch.cat([latents] * num_repeats, dim=2) latents = latents[:, :, :num_frames] return latents
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
def _lerp( self, start_index: int, end_index: int, start_tensor: torch.Tensor, end_tensor: torch.Tensor ) -> torch.Tensor: num_indices = end_index - start_index + 1 interpolated_tensors = [] for i in range(num_indices): alpha = i / (num_indices - 1) interpolated_tensor = (1 - alpha) * start_tensor + alpha * end_tensor interpolated_tensors.append(interpolated_tensor) interpolated_tensors = torch.cat(interpolated_tensors) return interpolated_tensors def enable_free_noise( self, context_length: Optional[int] = 16, context_stride: int = 4, weighting_scheme: str = "pyramid", noise_type: str = "shuffle_context", prompt_interpolation_callback: Optional[ Callable[[DiffusionPipeline, int, int, torch.Tensor, torch.Tensor], torch.Tensor] ] = None, ) -> None: r""" Enable long video generation using FreeNoise.
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
Args: context_length (`int`, defaults to `16`, *optional*): The number of video frames to process at once. It's recommended to set this to the maximum frames the Motion Adapter was trained with (usually 16/24/32). If `None`, the default value from the motion adapter config is used. context_stride (`int`, *optional*): Long videos are generated by processing many frames. FreeNoise processes these frames in sliding windows of size `context_length`. Context stride allows you to specify how many frames to skip between each window. For example, a context length of 16 and context stride of 4 would process 24 frames as: [0, 15], [4, 19], [8, 23] (0-based indexing) weighting_scheme (`str`, defaults to `pyramid`): Weighting scheme for averaging latents after accumulation in FreeNoise blocks. The following weighting
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
schemes are supported currently: - "flat" Performs weighting averaging with a flat weight pattern: [1, 1, 1, 1, 1]. - "pyramid" Performs weighted averaging with a pyramid like weight pattern: [1, 2, 3, 2, 1]. - "delayed_reverse_sawtooth" Performs weighted averaging with low weights for earlier frames and high-to-low weights for later frames: [0.01, 0.01, 3, 2, 1]. noise_type (`str`, defaults to "shuffle_context"): Must be one of ["shuffle_context", "repeat_context", "random"]. - "shuffle_context" Shuffles a fixed batch of `context_length` latents to create a final latent of size `num_frames`. This is usually the best setting for most generation scenarious. However, there
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
might be visible repetition noticeable in the kinds of motion/animation generated. - "repeated_context" Repeats a fixed batch of `context_length` latents to create a final latent of size `num_frames`. - "random" The final latents are random without any repetition. """
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
allowed_weighting_scheme = ["flat", "pyramid", "delayed_reverse_sawtooth"] allowed_noise_type = ["shuffle_context", "repeat_context", "random"] if context_length > self.motion_adapter.config.motion_max_seq_length: logger.warning( f"You have set {context_length=} which is greater than {self.motion_adapter.config.motion_max_seq_length=}. This can lead to bad generation results." ) if weighting_scheme not in allowed_weighting_scheme: raise ValueError( f"The parameter `weighting_scheme` must be one of {allowed_weighting_scheme}, but got {weighting_scheme=}" ) if noise_type not in allowed_noise_type: raise ValueError(f"The parameter `noise_type` must be one of {allowed_noise_type}, but got {noise_type=}")
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
self._free_noise_context_length = context_length or self.motion_adapter.config.motion_max_seq_length self._free_noise_context_stride = context_stride self._free_noise_weighting_scheme = weighting_scheme self._free_noise_noise_type = noise_type self._free_noise_prompt_interpolation_callback = prompt_interpolation_callback or self._lerp if hasattr(self.unet.mid_block, "motion_modules"): blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks] else: blocks = [*self.unet.down_blocks, *self.unet.up_blocks] for block in blocks: self._enable_free_noise_in_block(block) def disable_free_noise(self) -> None: r"""Disable the FreeNoise sampling mechanism.""" self._free_noise_context_length = None
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
if hasattr(self.unet.mid_block, "motion_modules"): blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks] else: blocks = [*self.unet.down_blocks, *self.unet.up_blocks] blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks] for block in blocks: self._disable_free_noise_in_block(block) def _enable_split_inference_motion_modules_( self, motion_modules: List[AnimateDiffTransformer3D], spatial_split_size: int ) -> None: for motion_module in motion_modules: motion_module.proj_in = SplitInferenceModule(motion_module.proj_in, spatial_split_size, 0, ["input"])
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
for i in range(len(motion_module.transformer_blocks)): motion_module.transformer_blocks[i] = SplitInferenceModule( motion_module.transformer_blocks[i], spatial_split_size, 0, ["hidden_states", "encoder_hidden_states"], ) motion_module.proj_out = SplitInferenceModule(motion_module.proj_out, spatial_split_size, 0, ["input"]) def _enable_split_inference_attentions_( self, attentions: List[Transformer2DModel], temporal_split_size: int ) -> None: for i in range(len(attentions)): attentions[i] = SplitInferenceModule( attentions[i], temporal_split_size, 0, ["hidden_states", "encoder_hidden_states"] )
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
def _enable_split_inference_resnets_(self, resnets: List[ResnetBlock2D], temporal_split_size: int) -> None: for i in range(len(resnets)): resnets[i] = SplitInferenceModule(resnets[i], temporal_split_size, 0, ["input_tensor", "temb"]) def _enable_split_inference_samplers_( self, samplers: Union[List[Downsample2D], List[Upsample2D]], temporal_split_size: int ) -> None: for i in range(len(samplers)): samplers[i] = SplitInferenceModule(samplers[i], temporal_split_size, 0, ["hidden_states"]) def enable_free_noise_split_inference(self, spatial_split_size: int = 256, temporal_split_size: int = 16) -> None: r""" Enable FreeNoise memory optimizations by utilizing [`~diffusers.pipelines.free_noise_utils.SplitInferenceModule`] across different intermediate modeling blocks.
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
Args: spatial_split_size (`int`, defaults to `256`): The split size across spatial dimensions for internal blocks. This is used in facilitating split inference across the effective batch dimension (`[B x H x W, F, C]`) of intermediate tensors in motion modeling blocks. temporal_split_size (`int`, defaults to `16`): The split size across temporal dimensions for internal blocks. This is used in facilitating split inference across the effective batch dimension (`[B x F, H x W, C]`) of intermediate tensors in spatial attention, resnets, downsampling and upsampling blocks. """ # TODO(aryan): Discuss on what's the best way to provide more control to users blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks] for block in blocks: if getattr(block, "motion_modules", None) is not None:
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
self._enable_split_inference_motion_modules_(block.motion_modules, spatial_split_size) if getattr(block, "attentions", None) is not None: self._enable_split_inference_attentions_(block.attentions, temporal_split_size) if getattr(block, "resnets", None) is not None: self._enable_split_inference_resnets_(block.resnets, temporal_split_size) if getattr(block, "downsamplers", None) is not None: self._enable_split_inference_samplers_(block.downsamplers, temporal_split_size) if getattr(block, "upsamplers", None) is not None: self._enable_split_inference_samplers_(block.upsamplers, temporal_split_size)
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
@property def free_noise_enabled(self): return hasattr(self, "_free_noise_context_length") and self._free_noise_context_length is not None
42
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/free_noise_utils.py
class StableDiffusionGLIGENPipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text-to-image generation using Stable Diffusion with Grounded-Language-to-Image Generation (GLIGEN). This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.).
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful.
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
_optional_components = ["safety_checker", "feature_extractor"] model_cpu_offload_seq = "text_encoder->unet->vae" _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__()
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) self.register_to_config(requires_safety_checker=requires_safety_checker)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
def check_inputs( self, prompt, height, width, callback_steps, gligen_phrases, gligen_boxes, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if len(gligen_phrases) != len(gligen_boxes): raise ValueError( "length of `gligen_phrases` and `gligen_boxes` has to be same, but" f" got: `gligen_phrases` {len(gligen_phrases)} != `gligen_boxes` {len(gligen_boxes)}" )
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def enable_fuser(self, enabled=True): for module in self.unet.modules(): if type(module) is GatedSelfAttentionDense: module.enabled = enabled def draw_inpaint_mask_from_boxes(self, boxes, size): inpaint_mask = torch.ones(size[0], size[1]) for box in boxes: x0, x1 = box[0] * size[0], box[2] * size[0] y0, y1 = box[1] * size[1], box[3] * size[1] inpaint_mask[int(y0) : int(y1), int(x0) : int(x1)] = 0 return inpaint_mask def crop(self, im, new_width, new_height): width, height = im.size left = (width - new_width) / 2 top = (height - new_height) / 2 right = (width + new_width) / 2 bottom = (height + new_height) / 2 return im.crop((left, top, right, bottom))
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
def target_size_center_crop(self, im, new_hw): width, height = im.size if width != height: im = self.crop(im, min(height, width), min(height, width)) return im.resize((new_hw, new_hw), PIL.Image.LANCZOS)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, gligen_scheduled_sampling_beta: float = 0.3, gligen_phrases: List[str] = None, gligen_boxes: List[List[float]] = None, gligen_inpaint_image: Optional[PIL.Image.Image] = None, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True,
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, ): r""" The call function to the pipeline for generation.
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. gligen_phrases (`List[str]`): The phrases to guide what to include in each of the regions defined by the corresponding `gligen_boxes`. There should only be one phrase per bounding box. gligen_boxes (`List[List[float]]`): The bounding boxes that identify rectangular regions of the image that are going to be filled with the content described by the corresponding `gligen_phrases`. Each rectangular box is defined as a `List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1]. gligen_inpaint_image (`PIL.Image.Image`, *optional*): The input image, if provided, is inpainted with objects described by the `gligen_boxes` and `gligen_phrases`. Otherwise, it is treated as a generation task on a blank input image.
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
gligen_scheduled_sampling_beta (`float`, defaults to 0.3): Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for scheduled sampling during inference for improved quality and controllability. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*):
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1):
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
the output of the pre-final layer will be used for computing the prompt embeddings. Examples:
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, gligen_phrases, gligen_boxes, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, )
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# 5.1 Prepare GLIGEN variables max_objs = 30 if len(gligen_boxes) > max_objs: warnings.warn( f"More that {max_objs} objects found. Only first {max_objs} objects will be processed.", FutureWarning, ) gligen_phrases = gligen_phrases[:max_objs] gligen_boxes = gligen_boxes[:max_objs] # prepare batched input to the GLIGENTextBoundingboxProjection (boxes, phrases, mask) # Get tokens for phrases from pre-trained CLIPTokenizer tokenizer_inputs = self.tokenizer(gligen_phrases, padding=True, return_tensors="pt").to(device) # For the token, we use the same pre-trained text encoder # to obtain its text feature _text_embeddings = self.text_encoder(**tokenizer_inputs).pooler_output n_objs = len(gligen_boxes) # For each entity, described in phrases, is denoted with a bounding box, # we represent the location information as (xmin,ymin,xmax,ymax)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype) boxes[:n_objs] = torch.tensor(gligen_boxes) text_embeddings = torch.zeros( max_objs, self.unet.config.cross_attention_dim, device=device, dtype=self.text_encoder.dtype ) text_embeddings[:n_objs] = _text_embeddings # Generate a mask for each object that is entity described by phrases masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) masks[:n_objs] = 1
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
repeat_batch = batch_size * num_images_per_prompt boxes = boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone() text_embeddings = text_embeddings.unsqueeze(0).expand(repeat_batch, -1, -1).clone() masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone() if do_classifier_free_guidance: repeat_batch = repeat_batch * 2 boxes = torch.cat([boxes] * 2) text_embeddings = torch.cat([text_embeddings] * 2) masks = torch.cat([masks] * 2) masks[: repeat_batch // 2] = 0 if cross_attention_kwargs is None: cross_attention_kwargs = {} cross_attention_kwargs["gligen"] = {"boxes": boxes, "positive_embeddings": text_embeddings, "masks": masks}
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# Prepare latent variables for GLIGEN inpainting if gligen_inpaint_image is not None: # if the given input image is not of the same size as expected by VAE # center crop and resize the input image to expected shape if gligen_inpaint_image.size != (self.vae.sample_size, self.vae.sample_size): gligen_inpaint_image = self.target_size_center_crop(gligen_inpaint_image, self.vae.sample_size) # Convert a single image into a batch of images with a batch size of 1 # The resulting shape becomes (1, C, H, W), where C is the number of channels, # and H and W are the height and width of the image. # scales the pixel values to a range [-1, 1] gligen_inpaint_image = self.image_processor.preprocess(gligen_inpaint_image) gligen_inpaint_image = gligen_inpaint_image.to(dtype=self.vae.dtype, device=self.vae.device) # Run AutoEncoder to get corresponding latents
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
gligen_inpaint_latent = self.vae.encode(gligen_inpaint_image).latent_dist.sample() gligen_inpaint_latent = self.vae.config.scaling_factor * gligen_inpaint_latent # Generate an inpainting mask # pixel value = 0, where the object is present (defined by bounding boxes above) # 1, everywhere else gligen_inpaint_mask = self.draw_inpaint_mask_from_boxes(gligen_boxes, gligen_inpaint_latent.shape[2:]) gligen_inpaint_mask = gligen_inpaint_mask.to( dtype=gligen_inpaint_latent.dtype, device=gligen_inpaint_latent.device ) gligen_inpaint_mask = gligen_inpaint_mask[None, None] gligen_inpaint_mask_addition = torch.cat( (gligen_inpaint_latent * gligen_inpaint_mask, gligen_inpaint_mask), dim=1 ) # Convert a single mask into a batch of masks with a batch size of 1
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
gligen_inpaint_mask_addition = gligen_inpaint_mask_addition.expand(repeat_batch, -1, -1, -1).clone()
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps)) self.enable_fuser(True) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Scheduled sampling if i == num_grounding_steps: self.enable_fuser(False) if latents.shape[1] != 4: latents = torch.randn_like(latents[:, :4])
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if gligen_inpaint_image is not None: gligen_inpaint_latent_with_noise = ( self.scheduler.add_noise( gligen_inpaint_latent, torch.randn_like(gligen_inpaint_latent), torch.tensor([t]) ) .expand(latents.shape[0], -1, -1, -1) .clone() ) latents = gligen_inpaint_latent_with_noise * gligen_inpaint_mask + latents * ( 1 - gligen_inpaint_mask ) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
if gligen_inpaint_image is not None: latent_model_input = torch.cat((latent_model_input, gligen_inpaint_mask_addition), dim=1) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
43
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py
class StableDiffusionGLIGENTextImagePipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text-to-image generation using Stable Diffusion with Grounded-Language-to-Image Generation (GLIGEN). This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.).
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. processor ([`~transformers.CLIPProcessor`]): A `CLIPProcessor` to procces reference image. image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): Frozen image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). image_project ([`CLIPImageProjection`]): A `CLIPImageProjection` to project image embedding into phrases embedding space. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents.
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, processor: CLIPProcessor, image_encoder: CLIPVisionModelWithProjection, image_project: CLIPImageProjection, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__()
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." )
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, image_encoder=image_encoder, processor=processor, image_project=image_project, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) self.register_to_config(requires_safety_checker=requires_safety_checker)
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
44
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py