--- annotations_creators: - expert-annotated language: - eng license: cc-by-nc-sa-4.0 multilinguality: monolingual task_categories: - text-ranking task_ids: - conversational - utterance-retrieval dataset_info: - config_name: corpus features: - name: _id dtype: string - name: text dtype: string - name: title dtype: string splits: - name: validation num_bytes: 115334059 num_examples: 316508 - name: test num_bytes: 145478865 num_examples: 405972 - name: test_iid num_bytes: 147102753 num_examples: 405972 - name: test_geo num_bytes: 414044181 num_examples: 1150781 - name: test_vis num_bytes: 597769653 num_examples: 1606858 - name: test_web num_bytes: 309445145 num_examples: 834175 - name: test_cat num_bytes: 451206151 num_examples: 1258191 download_size: 368435122 dataset_size: 2180380807 - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: validation num_bytes: 21945765 num_examples: 316508 - name: test num_bytes: 23275328 num_examples: 405972 - name: test_iid num_bytes: 26523104 num_examples: 405972 - name: test_geo num_bytes: 76517975 num_examples: 1150781 - name: test_vis num_bytes: 106957051 num_examples: 1606858 - name: test_web num_bytes: 55262380 num_examples: 834175 - name: test_cat num_bytes: 83397445 num_examples: 1258191 download_size: 39110732 dataset_size: 393879048 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: validation num_bytes: 2183028 num_examples: 1301 - name: test num_bytes: 2510614 num_examples: 1438 - name: test_iid num_bytes: 2516366 num_examples: 1438 - name: test_geo num_bytes: 8709463 num_examples: 4916 - name: test_vis num_bytes: 9363511 num_examples: 5298 - name: test_web num_bytes: 5846915 num_examples: 3144 - name: test_cat num_bytes: 7783266 num_examples: 3560 download_size: 4113384 dataset_size: 38913163 - config_name: top_ranked features: - name: query-id dtype: string - name: corpus-ids sequence: string splits: - name: validation num_bytes: 12116636 num_examples: 1301 - name: test num_bytes: 13089849 num_examples: 1438 - name: test_iid num_bytes: 14719489 num_examples: 1438 - name: test_geo num_bytes: 42415891 num_examples: 4916 - name: test_vis num_bytes: 59241856 num_examples: 5298 - name: test_web num_bytes: 30633101 num_examples: 3144 - name: test_cat num_bytes: 46195624 num_examples: 3560 download_size: 27777115 dataset_size: 218412446 configs: - config_name: corpus data_files: - split: validation path: corpus/validation-* - split: test path: corpus/test-* - split: test_iid path: corpus/test_iid-* - split: test_geo path: corpus/test_geo-* - split: test_vis path: corpus/test_vis-* - split: test_web path: corpus/test_web-* - split: test_cat path: corpus/test_cat-* - config_name: default data_files: - split: validation path: data/validation-* - split: test path: data/test-* - split: test_iid path: data/test_iid-* - split: test_geo path: data/test_geo-* - split: test_vis path: data/test_vis-* - split: test_web path: data/test_web-* - split: test_cat path: data/test_cat-* - config_name: queries data_files: - split: validation path: queries/validation-* - split: test path: queries/test-* - split: test_iid path: queries/test_iid-* - split: test_geo path: queries/test_geo-* - split: test_vis path: queries/test_vis-* - split: test_web path: queries/test_web-* - split: test_cat path: queries/test_cat-* - config_name: top_ranked data_files: - split: validation path: top_ranked/validation-* - split: test path: top_ranked/test-* - split: test_iid path: top_ranked/test_iid-* - split: test_geo path: top_ranked/test_geo-* - split: test_vis path: top_ranked/test_vis-* - split: test_web path: top_ranked/test_web-* - split: test_cat path: top_ranked/test_cat-* tags: - mteb - text ---

WebLINXCandidatesReranking

An MTEB dataset
Massive Text Embedding Benchmark
WebLINX is a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. The reranking task focuses on finding relevant elements at every given step in the trajectory. | | | |---------------|---------------------------------------------| | Task category | t2t | | Domains | Academic, Web, Written | | Reference | https://mcgill-nlp.github.io/weblinx | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["WebLINXCandidatesReranking"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{lù2024weblinx, archiveprefix = {arXiv}, author = {Xing Han Lù and Zdeněk Kasner and Siva Reddy}, eprint = {2402.05930}, primaryclass = {cs.CL}, title = {WebLINX: Real-World Website Navigation with Multi-Turn Dialogue}, year = {2024}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics
Dataset Statistics The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("WebLINXCandidatesReranking") desc_stats = task.metadata.descriptive_stats ``` ```json { "validation": { "num_samples": 317809, "number_of_characters": 102848781, "num_documents": 316508, "min_document_length": 152, "average_document_length": 318.17634941296905, "max_document_length": 1605, "unique_documents": 316508, "num_queries": 1301, "min_query_length": 142, "average_query_length": 1647.5180630284397, "max_query_length": 9356, "unique_queries": 1301, "none_queries": 0, "num_relevant_docs": 316508, "min_relevant_docs_per_query": 21, "average_relevant_docs_per_query": 1.01076095311299, "max_relevant_docs_per_query": 945, "unique_relevant_docs": 316508, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": 1301, "min_top_ranked_per_query": 21, "average_top_ranked_per_query": 243.2805534204458, "max_top_ranked_per_query": 945 }, "test_iid": { "num_samples": 407410, "number_of_characters": 131631330, "num_documents": 405972, "min_document_length": 153, "average_document_length": 318.135696550501, "max_document_length": 1471, "unique_documents": 405972, "num_queries": 1438, "min_query_length": 173, "average_query_length": 1722.6321279554938, "max_query_length": 10467, "unique_queries": 1438, "none_queries": 0, "num_relevant_docs": 405972, "min_relevant_docs_per_query": 15, "average_relevant_docs_per_query": 1.0528511821974966, "max_relevant_docs_per_query": 1149, "unique_relevant_docs": 405972, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": 1438, "min_top_ranked_per_query": 15, "average_top_ranked_per_query": 282.317107093185, "max_top_ranked_per_query": 1149 }, "test_cat": { "num_samples": 1261751, "number_of_characters": 402615943, "num_documents": 1258191, "min_document_length": 156, "average_document_length": 313.91351392594606, "max_document_length": 1590, "unique_documents": 1258191, "num_queries": 3560, "min_query_length": 161, "average_query_length": 2149.6587078651687, "max_query_length": 8502, "unique_queries": 3560, "none_queries": 0, "num_relevant_docs": 1258191, "min_relevant_docs_per_query": 14, "average_relevant_docs_per_query": 1.0016853932584269, "max_relevant_docs_per_query": 1245, "unique_relevant_docs": 1258191, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": 3560, "min_top_ranked_per_query": 14, "average_top_ranked_per_query": 353.4244382022472, "max_top_ranked_per_query": 1245 }, "test_geo": { "num_samples": 1155697, "number_of_characters": 371063547, "num_documents": 1150781, "min_document_length": 154, "average_document_length": 315.00053963351843, "max_document_length": 1289, "unique_documents": 1150781, "num_queries": 4916, "min_query_length": 146, "average_query_length": 1742.6588689991863, "max_query_length": 19082, "unique_queries": 4916, "none_queries": 0, "num_relevant_docs": 1150781, "min_relevant_docs_per_query": 3, "average_relevant_docs_per_query": 1.0024410089503661, "max_relevant_docs_per_query": 1274, "unique_relevant_docs": 1150781, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": 4916, "min_top_ranked_per_query": 3, "average_top_ranked_per_query": 234.08889340927584, "max_top_ranked_per_query": 1274 }, "test_vis": { "num_samples": 1612156, "number_of_characters": 534911902, "num_documents": 1606858, "min_document_length": 154, "average_document_length": 327.165126601106, "max_document_length": 1796, "unique_documents": 1606858, "num_queries": 5298, "min_query_length": 176, "average_query_length": 1737.2595318988297, "max_query_length": 28468, "unique_queries": 5298, "none_queries": 0, "num_relevant_docs": 1606858, "min_relevant_docs_per_query": 11, "average_relevant_docs_per_query": 1.0152887882219706, "max_relevant_docs_per_query": 1819, "unique_relevant_docs": 1606858, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": 5298, "min_top_ranked_per_query": 11, "average_top_ranked_per_query": 303.2952057380143, "max_top_ranked_per_query": 1819 }, "test_web": { "num_samples": 837319, "number_of_characters": 277932894, "num_documents": 834175, "min_document_length": 157, "average_document_length": 326.280188209908, "max_document_length": 1542, "unique_documents": 834175, "num_queries": 3144, "min_query_length": 146, "average_query_length": 1831.4624681933842, "max_query_length": 15329, "unique_queries": 3144, "none_queries": 0, "num_relevant_docs": 834175, "min_relevant_docs_per_query": 2, "average_relevant_docs_per_query": 1.0588422391857506, "max_relevant_docs_per_query": 1064, "unique_relevant_docs": 834175, "num_instructions": null, "min_instruction_length": null, "average_instruction_length": null, "max_instruction_length": null, "unique_instructions": null, "num_top_ranked": 3144, "min_top_ranked_per_query": 2, "average_top_ranked_per_query": 265.3228371501272, "max_top_ranked_per_query": 1064 } } ```
--- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*