--- license: mit task_categories: - text-to-image - image-to-image - mask-generation - image-segmentation language: - en size_categories: - 100K EarthSynth-180K

**EarthSynth-180K** is a **multi-task, conditional, diffusion-based generative dataset** designed for remote sensing image synthesis and understanding. It was introduced in the paper *"EarthSynth: Generating Informative Earth Observation with Diffusion Models"* (arXiv 2025). This dataset supports **text-to-image generation**, **mask-conditioned synthesis**, and **multi-category augmentation** for Earth observation research. --- ## Dataset Details ### Dataset Description - **Curated by:** Jiancheng Pan, Shiye Lei, Yuqian Fu, Jiahao Li, Yanxing Liu, Yuze Sun, Xiao He, Long Peng, Xiaomeng Huang, Bo Zhao - **Funded by:** [Not specified] - **Shared by:** EarthSynth Team - **Language(s):** English (for prompts) - **License:** MIT License ### Dataset Sources - **Repository:** [GitHub - EarthSynth](https://github.com/jaychempan/EarthSynth) - **Paper:** [ArXiv 2505.12108](https://arxiv.org/abs/2505.12108) - **Project Page:** [EarthSynth Website](https://jianchengpan.space/EarthSynth-website/index.html) - **Dataset Download:** [HuggingFace](https://huggingface.co/datasets/jaychempan/EarthSynth-180K) --- ## Dataset Structure | Subset | # Images | Annotations | Format | Condition Types | |-------------|-----------|--------------------|------------------|---------------------------| | Train | 180,000 | Masks, Prompts | PNG + JSONL | Mask + Text | | Validation | 10,000 | Masks, Prompts | PNG + JSONL | Mask + Text | | Augmented | 180,000 | Single-Category | PNG + JSONL | Category + Mask + Text | - **Masks:** Binary/instance masks for each object category. - **Prompts:** Text prompts for conditional generation. - **Augmentation:** Single-category augmentation for CF-Comp training strategy. --- ## Quick Start ```python from datasets import load_dataset # Load dataset dataset = load_dataset("jaychempan/EarthSynth-180K", split="train") # Access one example example = dataset[0] print(example.keys()) # ['image', 'mask', 'prompt'] # Display image from PIL import Image import io img = Image.open(io.BytesIO(example["image"])) img.show()