Datasets:
Modalities:
Geospatial
Languages:
English
Size:
100K<n<1M
ArXiv:
Tags:
diffusion-models
remote-sensing
image-synthesis
controlnet
earth-observation
generative-models
License:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,92 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-to-image
|
| 5 |
+
- image-to-image
|
| 6 |
+
- mask-generation
|
| 7 |
+
- image-segmentation
|
| 8 |
+
language:
|
| 9 |
+
- en
|
| 10 |
+
size_categories:
|
| 11 |
+
- 100K<n<1M
|
| 12 |
+
source_datasets:
|
| 13 |
+
- OpenEarthMap
|
| 14 |
+
- LoveDA
|
| 15 |
+
- DeepGlobe
|
| 16 |
+
- SAMRS
|
| 17 |
+
- LAE-1M
|
| 18 |
+
tags:
|
| 19 |
+
- diffusion-models
|
| 20 |
+
- remote-sensing
|
| 21 |
+
- image-synthesis
|
| 22 |
+
- controlnet
|
| 23 |
+
- earth-observation
|
| 24 |
+
- generative-models
|
| 25 |
+
pretty_name: EarthSynth-180K
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# EarthSynth-180K Dataset
|
| 30 |
+
|
| 31 |
+
<p align="center">
|
| 32 |
+
<img src="https://jianchengpan.space/EarthSynth-website/assets/EarthSynth-180K.png" alt="EarthSynth-180K" width="600"/>
|
| 33 |
+
</p>
|
| 34 |
+
|
| 35 |
+
**EarthSynth-180K** is a **multi-task, conditional, diffusion-based generative dataset** designed for remote sensing image synthesis and understanding.
|
| 36 |
+
It was introduced in the paper *"EarthSynth: Generating Informative Earth Observation with Diffusion Models"* (arXiv 2025).
|
| 37 |
+
|
| 38 |
+
This dataset supports **text-to-image generation**, **mask-conditioned synthesis**, and **multi-category augmentation** for Earth observation research.
|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## Dataset Details
|
| 43 |
+
|
| 44 |
+
### Dataset Description
|
| 45 |
+
|
| 46 |
+
- **Curated by:** Jiancheng Pan, Shiye Lei, Yuqian Fu, Jiahao Li, Yanxing Liu, Yuze Sun, Xiao He, Long Peng, Xiaomeng Huang, Bo Zhao
|
| 47 |
+
- **Funded by:** [Not specified]
|
| 48 |
+
- **Shared by:** EarthSynth Team
|
| 49 |
+
- **Language(s):** English (for prompts)
|
| 50 |
+
- **License:** MIT License
|
| 51 |
+
|
| 52 |
+
### Dataset Sources
|
| 53 |
+
|
| 54 |
+
- **Repository:** [GitHub - EarthSynth](https://github.com/jaychempan/EarthSynth)
|
| 55 |
+
- **Paper:** [ArXiv 2505.12108](https://arxiv.org/abs/2505.12108)
|
| 56 |
+
- **Project Page:** [EarthSynth Website](https://jianchengpan.space/EarthSynth-website/index.html)
|
| 57 |
+
- **Dataset Download:** [HuggingFace](https://huggingface.co/datasets/jaychempan/EarthSynth-180K)
|
| 58 |
+
|
| 59 |
+
---
|
| 60 |
+
|
| 61 |
+
## Dataset Structure
|
| 62 |
+
|
| 63 |
+
| Subset | # Images | Annotations | Format | Condition Types |
|
| 64 |
+
|-------------|-----------|--------------------|------------------|---------------------------|
|
| 65 |
+
| Train | 180,000 | Masks, Prompts | PNG + JSONL | Mask + Text |
|
| 66 |
+
| Validation | 10,000 | Masks, Prompts | PNG + JSONL | Mask + Text |
|
| 67 |
+
| Augmented | 180,000 | Single-Category | PNG + JSONL | Category + Mask + Text |
|
| 68 |
+
|
| 69 |
+
- **Masks:** Binary/instance masks for each object category.
|
| 70 |
+
- **Prompts:** Text prompts for conditional generation.
|
| 71 |
+
- **Augmentation:** Single-category augmentation for CF-Comp training strategy.
|
| 72 |
+
|
| 73 |
+
---
|
| 74 |
+
|
| 75 |
+
## Quick Start
|
| 76 |
+
|
| 77 |
+
```python
|
| 78 |
+
from datasets import load_dataset
|
| 79 |
+
|
| 80 |
+
# Load dataset
|
| 81 |
+
dataset = load_dataset("jaychempan/EarthSynth-180K", split="train")
|
| 82 |
+
|
| 83 |
+
# Access one example
|
| 84 |
+
example = dataset[0]
|
| 85 |
+
print(example.keys()) # ['image', 'mask', 'prompt']
|
| 86 |
+
|
| 87 |
+
# Display image
|
| 88 |
+
from PIL import Image
|
| 89 |
+
import io
|
| 90 |
+
|
| 91 |
+
img = Image.open(io.BytesIO(example["image"]))
|
| 92 |
+
img.show()
|