Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
100K - 1M
ArXiv:
License:
Commit
·
05d5c34
1
Parent(s):
e37ee6f
Delete loading script
Browse files
race.py
DELETED
|
@@ -1,111 +0,0 @@
|
|
| 1 |
-
"""TODO(race): Add a description here."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
|
| 6 |
-
import datasets
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
_CITATION = """\
|
| 10 |
-
@article{lai2017large,
|
| 11 |
-
title={RACE: Large-scale ReAding Comprehension Dataset From Examinations},
|
| 12 |
-
author={Lai, Guokun and Xie, Qizhe and Liu, Hanxiao and Yang, Yiming and Hovy, Eduard},
|
| 13 |
-
journal={arXiv preprint arXiv:1704.04683},
|
| 14 |
-
year={2017}
|
| 15 |
-
}
|
| 16 |
-
"""
|
| 17 |
-
|
| 18 |
-
_DESCRIPTION = """\
|
| 19 |
-
Race is a large-scale reading comprehension dataset with more than 28,000 passages and nearly 100,000 questions. The
|
| 20 |
-
dataset is collected from English examinations in China, which are designed for middle school and high school students.
|
| 21 |
-
The dataset can be served as the training and test sets for machine comprehension.
|
| 22 |
-
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
_URL = "http://www.cs.cmu.edu/~glai1/data/race/RACE.tar.gz"
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class Race(datasets.GeneratorBasedBuilder):
|
| 29 |
-
"""ReAding Comprehension Dataset From Examination dataset from CMU"""
|
| 30 |
-
|
| 31 |
-
VERSION = datasets.Version("0.1.0")
|
| 32 |
-
|
| 33 |
-
BUILDER_CONFIGS = [
|
| 34 |
-
datasets.BuilderConfig(name="high", description="Exams designed for high school students", version=VERSION),
|
| 35 |
-
datasets.BuilderConfig(
|
| 36 |
-
name="middle", description="Exams designed for middle school students", version=VERSION
|
| 37 |
-
),
|
| 38 |
-
datasets.BuilderConfig(
|
| 39 |
-
name="all", description="Exams designed for both high school and middle school students", version=VERSION
|
| 40 |
-
),
|
| 41 |
-
]
|
| 42 |
-
|
| 43 |
-
def _info(self):
|
| 44 |
-
return datasets.DatasetInfo(
|
| 45 |
-
# This is the description that will appear on the datasets page.
|
| 46 |
-
description=_DESCRIPTION,
|
| 47 |
-
# datasets.features.FeatureConnectors
|
| 48 |
-
features=datasets.Features(
|
| 49 |
-
{
|
| 50 |
-
"example_id": datasets.Value("string"),
|
| 51 |
-
"article": datasets.Value("string"),
|
| 52 |
-
"answer": datasets.Value("string"),
|
| 53 |
-
"question": datasets.Value("string"),
|
| 54 |
-
"options": datasets.features.Sequence(datasets.Value("string"))
|
| 55 |
-
# These are the features of your dataset like images, labels ...
|
| 56 |
-
}
|
| 57 |
-
),
|
| 58 |
-
# If there's a common (input, target) tuple from the features,
|
| 59 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 60 |
-
# builder.as_dataset.
|
| 61 |
-
supervised_keys=None,
|
| 62 |
-
# Homepage of the dataset for documentation
|
| 63 |
-
homepage="http://www.cs.cmu.edu/~glai1/data/race/",
|
| 64 |
-
citation=_CITATION,
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
def _split_generators(self, dl_manager):
|
| 68 |
-
"""Returns SplitGenerators."""
|
| 69 |
-
# Downloads the data and defines the splits
|
| 70 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 71 |
-
archive = dl_manager.download(_URL)
|
| 72 |
-
case = str(self.config.name)
|
| 73 |
-
if case == "all":
|
| 74 |
-
case = ""
|
| 75 |
-
return [
|
| 76 |
-
datasets.SplitGenerator(
|
| 77 |
-
name=datasets.Split.TEST,
|
| 78 |
-
# These kwargs will be passed to _generate_examples
|
| 79 |
-
gen_kwargs={"train_test_or_eval": f"RACE/test/{case}", "files": dl_manager.iter_archive(archive)},
|
| 80 |
-
),
|
| 81 |
-
datasets.SplitGenerator(
|
| 82 |
-
name=datasets.Split.TRAIN,
|
| 83 |
-
# These kwargs will be passed to _generate_examples
|
| 84 |
-
gen_kwargs={"train_test_or_eval": f"RACE/train/{case}", "files": dl_manager.iter_archive(archive)},
|
| 85 |
-
),
|
| 86 |
-
datasets.SplitGenerator(
|
| 87 |
-
name=datasets.Split.VALIDATION,
|
| 88 |
-
# These kwargs will be passed to _generate_examples
|
| 89 |
-
gen_kwargs={"train_test_or_eval": f"RACE/dev/{case}", "files": dl_manager.iter_archive(archive)},
|
| 90 |
-
),
|
| 91 |
-
]
|
| 92 |
-
|
| 93 |
-
def _generate_examples(self, train_test_or_eval, files):
|
| 94 |
-
"""Yields examples."""
|
| 95 |
-
for file_idx, (path, f) in enumerate(files):
|
| 96 |
-
if path.startswith(train_test_or_eval) and path.endswith(".txt"):
|
| 97 |
-
data = json.loads(f.read().decode("utf-8"))
|
| 98 |
-
questions = data["questions"]
|
| 99 |
-
answers = data["answers"]
|
| 100 |
-
options = data["options"]
|
| 101 |
-
for i in range(len(questions)):
|
| 102 |
-
question = questions[i]
|
| 103 |
-
answer = answers[i]
|
| 104 |
-
option = options[i]
|
| 105 |
-
yield f"{file_idx}_{i}", {
|
| 106 |
-
"example_id": data["id"],
|
| 107 |
-
"article": data["article"],
|
| 108 |
-
"question": question,
|
| 109 |
-
"answer": answer,
|
| 110 |
-
"options": option,
|
| 111 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|