lhoestq HF Staff commited on
Commit
cbc0a64
·
verified ·
1 Parent(s): 217773e

Delete loading script

Browse files
Files changed (1) hide show
  1. superb_dummy.py +0 -273
superb_dummy.py DELETED
@@ -1,273 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """SUPERB: Speech processing Universal PERformance Benchmark."""
18
-
19
-
20
- import base64
21
- import json
22
- import textwrap
23
-
24
- import datasets
25
- import numpy as np
26
-
27
- _CITATION = """\
28
- @article{DBLP:journals/corr/abs-2105-01051,
29
- author = {Shu{-}Wen Yang and
30
- Po{-}Han Chi and
31
- Yung{-}Sung Chuang and
32
- Cheng{-}I Jeff Lai and
33
- Kushal Lakhotia and
34
- Yist Y. Lin and
35
- Andy T. Liu and
36
- Jiatong Shi and
37
- Xuankai Chang and
38
- Guan{-}Ting Lin and
39
- Tzu{-}Hsien Huang and
40
- Wei{-}Cheng Tseng and
41
- Ko{-}tik Lee and
42
- Da{-}Rong Liu and
43
- Zili Huang and
44
- Shuyan Dong and
45
- Shang{-}Wen Li and
46
- Shinji Watanabe and
47
- Abdelrahman Mohamed and
48
- Hung{-}yi Lee},
49
- title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
50
- journal = {CoRR},
51
- volume = {abs/2105.01051},
52
- year = {2021},
53
- url = {https://arxiv.org/abs/2105.01051},
54
- archivePrefix = {arXiv},
55
- eprint = {2105.01051},
56
- timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
57
- biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
58
- bibsource = {dblp computer science bibliography, https://dblp.org}
59
- }
60
- """
61
-
62
- _DESCRIPTION = """\
63
- Self-supervised learning (SSL) has proven vital for advancing research in
64
- natural language processing (NLP) and computer vision (CV). The paradigm
65
- pretrains a shared model on large volumes of unlabeled data and achieves
66
- state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
67
- speech processing community lacks a similar setup to systematically explore the
68
- paradigm. To bridge this gap, we introduce Speech processing Universal
69
- PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
70
- performance of a shared model across a wide range of speech processing tasks
71
- with minimal architecture changes and labeled data. Among multiple usages of the
72
- shared model, we especially focus on extracting the representation learned from
73
- SSL due to its preferable re-usability. We present a simple framework to solve
74
- SUPERB tasks by learning task-specialized lightweight prediction heads on top of
75
- the frozen shared model. Our results demonstrate that the framework is promising
76
- as SSL representations show competitive generalizability and accessibility
77
- across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
78
- benchmark toolkit to fuel the research in representation learning and general
79
- speech processing.
80
- """
81
-
82
-
83
- class SuperbConfig(datasets.BuilderConfig):
84
- """BuilderConfig for Superb."""
85
-
86
- def __init__(
87
- self,
88
- features,
89
- url,
90
- data_url=None,
91
- supervised_keys=None,
92
- **kwargs,
93
- ):
94
- super().__init__(version=datasets.Version("1.9.0", ""), **kwargs)
95
- self.features = features
96
- self.data_url = data_url
97
- self.url = url
98
- self.supervised_keys = supervised_keys
99
-
100
-
101
- class Superb(datasets.GeneratorBasedBuilder):
102
- """Superb dataset."""
103
-
104
- BUILDER_CONFIGS = [
105
- SuperbConfig(
106
- name="ks",
107
- description=textwrap.dedent(
108
- """\
109
- Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
110
- words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
111
- inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0] for the task.
112
- The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
113
- false positive. The evaluation metric is accuracy (ACC)"""
114
- ),
115
- features=datasets.Features(
116
- {
117
- "file": datasets.Value("string"),
118
- "label": datasets.ClassLabel(
119
- names=[
120
- "yes",
121
- "no",
122
- "up",
123
- "down",
124
- "left",
125
- "right",
126
- "on",
127
- "off",
128
- "stop",
129
- "go",
130
- "_silence_",
131
- "_unknown_",
132
- ]
133
- ),
134
- "speech": datasets.Sequence(datasets.Value("float32")),
135
- }
136
- ),
137
- url="https://www.tensorflow.org/datasets/catalog/speech_commands",
138
- data_url="ks.json",
139
- ),
140
- SuperbConfig(
141
- name="ic",
142
- description=textwrap.dedent(
143
- """\
144
- Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
145
- speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent
146
- labels: action, object, and location. The evaluation metric is accuracy (ACC)."""
147
- ),
148
- features=datasets.Features(
149
- {
150
- "file": datasets.Value("string"),
151
- "speaker_id": datasets.Value("string"),
152
- "text": datasets.Value("string"),
153
- "action": datasets.ClassLabel(
154
- names=["activate", "bring", "change language", "deactivate", "decrease", "increase"]
155
- ),
156
- "object": datasets.ClassLabel(
157
- names=[
158
- "Chinese",
159
- "English",
160
- "German",
161
- "Korean",
162
- "heat",
163
- "juice",
164
- "lamp",
165
- "lights",
166
- "music",
167
- "newspaper",
168
- "none",
169
- "shoes",
170
- "socks",
171
- "volume",
172
- ]
173
- ),
174
- "location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]),
175
- "speech": datasets.Sequence(datasets.Value("float32")),
176
- }
177
- ),
178
- url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/",
179
- data_url="ic.json",
180
- ),
181
- SuperbConfig(
182
- name="si",
183
- description=textwrap.dedent(
184
- """\
185
- Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
186
- classification, where speakers are in the same predefined set for both training and testing. The widely
187
- used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC)."""
188
- ),
189
- features=datasets.Features(
190
- {
191
- "file": datasets.Value("string"),
192
- "label": datasets.ClassLabel(names=[f"id{i+10001}" for i in range(1251)]),
193
- "speech": datasets.Sequence(datasets.Value("float32")),
194
- }
195
- ),
196
- url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html",
197
- data_url="si.json",
198
- ),
199
- SuperbConfig(
200
- name="er",
201
- description=textwrap.dedent(
202
- """\
203
- Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
204
- IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion
205
- classes to leave the final four classes with a similar amount of data points and cross-validates on five
206
- folds of the standard splits. The evaluation metric is accuracy (ACC)."""
207
- ),
208
- features=datasets.Features(
209
- {
210
- "file": datasets.Value("string"),
211
- "label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
212
- "speech": datasets.Sequence(datasets.Value("float32")),
213
- }
214
- ),
215
- url="https://sail.usc.edu/iemocap/",
216
- data_url="er.json",
217
- ),
218
- SuperbConfig(
219
- name="sd",
220
- description=textwrap.dedent(
221
- """\
222
- Speaker Diarization (SD) predicts `who is speaking when` for each timestamp, and multiple speakers can
223
- speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be
224
- able to represent mixtures of signals. [LibriMix] is adopted where LibriSpeech
225
- train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing.
226
- We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using
227
- alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER)."""
228
- ),
229
- features=datasets.Features(
230
- {
231
- "file": datasets.Value("string"),
232
- "speech": datasets.Sequence(datasets.Value("float32")),
233
- "speakers": [
234
- {
235
- "speaker_id": datasets.Value("string"),
236
- "start": datasets.Value("int64"),
237
- "end": datasets.Value("int64"),
238
- }
239
- ],
240
- }
241
- ),
242
- url="https://github.com/ftshijt/LibriMix",
243
- data_url="sd.json",
244
- ),
245
- ]
246
-
247
- def _info(self):
248
- return datasets.DatasetInfo(
249
- description=_DESCRIPTION,
250
- features=self.config.features,
251
- supervised_keys=self.config.supervised_keys,
252
- homepage=self.config.url,
253
- citation=_CITATION,
254
- )
255
-
256
- def _split_generators(self, dl_manager):
257
- data_path = dl_manager.download_and_extract(self.config.data_url)
258
-
259
- return [
260
- datasets.SplitGenerator(
261
- name=datasets.Split.TEST,
262
- gen_kwargs={"data_path": data_path},
263
- )
264
- ]
265
-
266
- def _generate_examples(self, data_path):
267
- """Generate examples."""
268
- with open(data_path, "r", encoding="utf-8") as f:
269
- for key, line in enumerate(f):
270
- example = json.loads(line)
271
- example["speech"] = np.frombuffer(base64.b64decode(example["speech"]), dtype=np.float32)
272
-
273
- yield key, example