--- license: cc-by-nc-4.0 task_categories: - text-to-video - text-to-image language: - en pretty_name: VideoGrain-dataset source_datasets: - original tags: - video editing - Multi grained Video Editing - text-to-video - Pika - video generation - Video Generative Model Evaluation - Text-to-Video Diffusion Model Development - Text-to-Video Prompt Engineering - Efficient Video Generation ---

# Summary This is the dataset proposed in our paper [**VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing **](https://arxiv.org/abs/2502.17258) (ICLR 2025). VideoGrain is a zero-shot method for class-level, instance-level, and part-level video editing. # Directory ``` ``` # Download ### Automatical Install the [datasets](https://huggingface.co/docs/datasets/v1.15.1/installation.html) library first, by: ``` pip install datasets ``` Then it can be downloaded automatically with ```python import numpy as np from datasets import load_dataset dataset = load_dataset("XiangpengYang/VideoGrain-dataset") ``` # License This dataset are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en). # Citation ``` @article{yang2025videograin, title={VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing}, author={Yang, Xiangpeng and Zhu, Linchao and Fan, Hehe and Yang, Yi}, journal={arXiv preprint arXiv:2502.17258}, year={2025} } ``` # Contact If you have any questions, feel free to contact Xiangpeng Yang (knightyxp@gmail.com).