Datasets:

ArXiv:
SiliconVandals's picture
Upload folder using huggingface_hub
f26fa93 verified
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass, field
from typing import Any, Optional
import draccus
from lerobot.common.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
from lerobot.common.robots import RobotConfig
from lerobot.common.teleoperators.config import TeleoperatorConfig
from lerobot.configs.types import FeatureType, PolicyFeature
@dataclass
class EnvConfig(draccus.ChoiceRegistry, abc.ABC):
task: str | None = None
fps: int = 30
features: dict[str, PolicyFeature] = field(default_factory=dict)
features_map: dict[str, str] = field(default_factory=dict)
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@property
@abc.abstractmethod
def gym_kwargs(self) -> dict:
raise NotImplementedError()
@EnvConfig.register_subclass("aloha")
@dataclass
class AlohaEnv(EnvConfig):
task: str = "AlohaInsertion-v0"
fps: int = 50
episode_length: int = 400
obs_type: str = "pixels_agent_pos"
render_mode: str = "rgb_array"
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(14,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_STATE,
"top": f"{OBS_IMAGE}.top",
"pixels/top": f"{OBS_IMAGES}.top",
}
)
def __post_init__(self):
if self.obs_type == "pixels":
self.features["top"] = PolicyFeature(type=FeatureType.VISUAL, shape=(480, 640, 3))
elif self.obs_type == "pixels_agent_pos":
self.features["agent_pos"] = PolicyFeature(type=FeatureType.STATE, shape=(14,))
self.features["pixels/top"] = PolicyFeature(type=FeatureType.VISUAL, shape=(480, 640, 3))
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"max_episode_steps": self.episode_length,
}
@EnvConfig.register_subclass("pusht")
@dataclass
class PushtEnv(EnvConfig):
task: str = "PushT-v0"
fps: int = 10
episode_length: int = 300
obs_type: str = "pixels_agent_pos"
render_mode: str = "rgb_array"
visualization_width: int = 384
visualization_height: int = 384
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
"agent_pos": PolicyFeature(type=FeatureType.STATE, shape=(2,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_STATE,
"environment_state": OBS_ENV_STATE,
"pixels": OBS_IMAGE,
}
)
def __post_init__(self):
if self.obs_type == "pixels_agent_pos":
self.features["pixels"] = PolicyFeature(type=FeatureType.VISUAL, shape=(384, 384, 3))
elif self.obs_type == "environment_state_agent_pos":
self.features["environment_state"] = PolicyFeature(type=FeatureType.ENV, shape=(16,))
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"visualization_width": self.visualization_width,
"visualization_height": self.visualization_height,
"max_episode_steps": self.episode_length,
}
@EnvConfig.register_subclass("xarm")
@dataclass
class XarmEnv(EnvConfig):
task: str = "XarmLift-v0"
fps: int = 15
episode_length: int = 200
obs_type: str = "pixels_agent_pos"
render_mode: str = "rgb_array"
visualization_width: int = 384
visualization_height: int = 384
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(4,)),
"pixels": PolicyFeature(type=FeatureType.VISUAL, shape=(84, 84, 3)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_STATE,
"pixels": OBS_IMAGE,
}
)
def __post_init__(self):
if self.obs_type == "pixels_agent_pos":
self.features["agent_pos"] = PolicyFeature(type=FeatureType.STATE, shape=(4,))
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"visualization_width": self.visualization_width,
"visualization_height": self.visualization_height,
"max_episode_steps": self.episode_length,
}
@dataclass
class VideoRecordConfig:
"""Configuration for video recording in ManiSkill environments."""
enabled: bool = False
record_dir: str = "videos"
trajectory_name: str = "trajectory"
@dataclass
class EnvTransformConfig:
"""Configuration for environment wrappers."""
# ee_action_space_params: EEActionSpaceConfig = field(default_factory=EEActionSpaceConfig)
control_mode: str = "gamepad"
display_cameras: bool = False
add_joint_velocity_to_observation: bool = False
add_current_to_observation: bool = False
add_ee_pose_to_observation: bool = False
crop_params_dict: Optional[dict[str, tuple[int, int, int, int]]] = None
resize_size: Optional[tuple[int, int]] = None
control_time_s: float = 20.0
fixed_reset_joint_positions: Optional[Any] = None
reset_time_s: float = 5.0
use_gripper: bool = True
gripper_quantization_threshold: float | None = 0.8
gripper_penalty: float = 0.0
gripper_penalty_in_reward: bool = False
@EnvConfig.register_subclass(name="gym_manipulator")
@dataclass
class HILSerlRobotEnvConfig(EnvConfig):
"""Configuration for the HILSerlRobotEnv environment."""
robot: Optional[RobotConfig] = None
teleop: Optional[TeleoperatorConfig] = None
wrapper: Optional[EnvTransformConfig] = None
fps: int = 10
name: str = "real_robot"
mode: str = None # Either "record", "replay", None
repo_id: Optional[str] = None
dataset_root: Optional[str] = None
task: str = ""
num_episodes: int = 10 # only for record mode
episode: int = 0
device: str = "cuda"
push_to_hub: bool = True
pretrained_policy_name_or_path: Optional[str] = None
reward_classifier_pretrained_path: Optional[str] = None
# For the reward classifier, to record more positive examples after a success
number_of_steps_after_success: int = 0
def gym_kwargs(self) -> dict:
return {}
@EnvConfig.register_subclass("hil")
@dataclass
class HILEnvConfig(EnvConfig):
"""Configuration for the HIL environment."""
type: str = "hil"
name: str = "PandaPickCube"
task: str = "PandaPickCubeKeyboard-v0"
use_viewer: bool = True
gripper_penalty: float = 0.0
use_gamepad: bool = True
state_dim: int = 18
action_dim: int = 4
fps: int = 100
episode_length: int = 100
video_record: VideoRecordConfig = field(default_factory=VideoRecordConfig)
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(4,)),
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
"observation.state": PolicyFeature(type=FeatureType.STATE, shape=(18,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"observation.image": OBS_IMAGE,
"observation.state": OBS_STATE,
}
)
################# args from hilserlrobotenv
reward_classifier_pretrained_path: Optional[str] = None
robot_config: Optional[RobotConfig] = None
teleop_config: Optional[TeleoperatorConfig] = None
wrapper: Optional[EnvTransformConfig] = None
mode: str = None # Either "record", "replay", None
repo_id: Optional[str] = None
dataset_root: Optional[str] = None
num_episodes: int = 10 # only for record mode
episode: int = 0
device: str = "cuda"
push_to_hub: bool = True
pretrained_policy_name_or_path: Optional[str] = None
# For the reward classifier, to record more positive examples after a success
number_of_steps_after_success: int = 0
############################
@property
def gym_kwargs(self) -> dict:
return {
"use_viewer": self.use_viewer,
"use_gamepad": self.use_gamepad,
"gripper_penalty": self.gripper_penalty,
}