|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""This script demonstrates how to train Diffusion Policy on the PushT environment.
|
|
|
|
Once you have trained a model with this script, you can try to evaluate it on
|
|
examples/2_evaluate_pretrained_policy.py
|
|
"""
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
|
|
from lerobot.common.datasets.utils import dataset_to_policy_features
|
|
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
|
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
|
from lerobot.configs.types import FeatureType
|
|
|
|
|
|
def main():
|
|
|
|
output_directory = Path("outputs/train/example_pusht_diffusion")
|
|
output_directory.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
device = torch.device("cuda")
|
|
|
|
|
|
|
|
training_steps = 5000
|
|
log_freq = 1
|
|
|
|
|
|
|
|
|
|
|
|
dataset_metadata = LeRobotDatasetMetadata("lerobot/pusht")
|
|
features = dataset_to_policy_features(dataset_metadata.features)
|
|
output_features = {key: ft for key, ft in features.items() if ft.type is FeatureType.ACTION}
|
|
input_features = {key: ft for key, ft in features.items() if key not in output_features}
|
|
|
|
|
|
|
|
cfg = DiffusionConfig(input_features=input_features, output_features=output_features)
|
|
|
|
|
|
policy = DiffusionPolicy(cfg, dataset_stats=dataset_metadata.stats)
|
|
policy.train()
|
|
policy.to(device)
|
|
|
|
|
|
|
|
delta_timestamps = {
|
|
"observation.image": [i / dataset_metadata.fps for i in cfg.observation_delta_indices],
|
|
"observation.state": [i / dataset_metadata.fps for i in cfg.observation_delta_indices],
|
|
"action": [i / dataset_metadata.fps for i in cfg.action_delta_indices],
|
|
}
|
|
|
|
|
|
delta_timestamps = {
|
|
|
|
|
|
"observation.image": [-0.1, 0.0],
|
|
"observation.state": [-0.1, 0.0],
|
|
|
|
|
|
|
|
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
|
|
}
|
|
|
|
|
|
dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
|
|
|
|
|
|
optimizer = torch.optim.Adam(policy.parameters(), lr=1e-4)
|
|
dataloader = torch.utils.data.DataLoader(
|
|
dataset,
|
|
num_workers=4,
|
|
batch_size=64,
|
|
shuffle=True,
|
|
pin_memory=device.type != "cpu",
|
|
drop_last=True,
|
|
)
|
|
|
|
|
|
step = 0
|
|
done = False
|
|
while not done:
|
|
for batch in dataloader:
|
|
batch = {k: (v.to(device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
|
|
loss, _ = policy.forward(batch)
|
|
loss.backward()
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
if step % log_freq == 0:
|
|
print(f"step: {step} loss: {loss.item():.3f}")
|
|
step += 1
|
|
if step >= training_steps:
|
|
done = True
|
|
break
|
|
|
|
|
|
policy.save_pretrained(output_directory)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|