Datasets:

Modalities:
Image
Size:
< 1K
Libraries:
Datasets
License:
echarlaix HF Staff commited on
Commit
d95f23c
·
verified ·
1 Parent(s): 3b3d04d
Files changed (1) hide show
  1. blog/openvino_vlm/openvino-vlm.md +27 -5
blog/openvino_vlm/openvino-vlm.md CHANGED
@@ -55,7 +55,7 @@ First, you will need to convert your model to the OpenVINO IR. There are multipl
55
  1. You can use the [Optimum CLI](https://huggingface.co/docs/optimum-intel/en/openvino/export#using-the-cli)
56
 
57
  ```bash
58
- optimum-cli export openvino -m HuggingFaceTB/SmolVLM-256M-Instruct smolvlm_ov/
59
  ```
60
 
61
  2. Or you can convert it [on the fly](https://huggingface.co/docs/optimum-intel/en/openvino/export#when-loading-your-model) when loading your model:
@@ -63,7 +63,8 @@ optimum-cli export openvino -m HuggingFaceTB/SmolVLM-256M-Instruct smolvlm_ov/
63
 
64
  ```python
65
  from optimum.intel import OVModelForVisualCausalLM
66
- model_id = "HuggingFaceTB/SmolVLM-256M-Instruct"
 
67
  model = OVModelForVisualCausalLM.from_pretrained(model_id)
68
  model.save_pretrained("smolvlm_ov")
69
  ```
@@ -91,7 +92,7 @@ Weight-only quantization means that only the weights are being quantized and lea
91
 
92
  However, the “interactions” during the trip, like drinking water, remain unchanged. This is similar to what happens to activations, which stay in high precision (FP32 or BF16) to preserve accuracy during computation.
93
 
94
- As a result, the model becomes smaller and more memory-efficient, improving loading times. But since activations are not quantized, inference speed gains are limited unless the workload is memory-bound (memory-bound is when its performance is limited mainly by the speed of reading from or writing to memory, rather than by the processor’s computing power).
95
 
96
  Weight-only quantization is a simple first step since it usually doesn’t result in significant accuracy degradation.
97
  In order to run it, you will need to create a quantization configuration using Optimum \`OVWeightQuantizationConfig\` as follows
@@ -99,23 +100,39 @@ In order to run it, you will need to create a quantization configuration using O
99
 
100
  ```python
101
  from optimum.intel import OVModelForVisualCausalLM, OVWeightQuantizationConfig
 
102
  q_config = OVWeightQuantizationConfig(bits=8)
103
  # Apply quantization and save the new model
104
  q_model = OVModelForVisualCausalLM.from_pretrained(model_id, quantization_config=q_config)
105
  q_model.save_pretrained("smolvlm_int8")
106
  ```
107
 
 
 
 
 
 
 
 
 
108
  ## Option 2: Static Quantization
109
 
110
  When applying static quantization, quantization is applied on both weights and activations. For this a calibration step is needed in which a dataset subset is used in order to estimate the activations ranges. In the following example we are using 50 samples of the [contextual dataset](https://huggingface.co/datasets/ucla-contextual/contextual_test) to perform this calibration step.
111
 
112
  ```python
113
  from optimum.intel import OVModelForVisualCausalLM, OVQuantizationConfig
 
114
  q_config = OVQuantizationConfig(bits=8, dataset="contextual", num_samples=50)
115
  q_model = OVModelForVisualCausalLM.from_pretrained(model_id, quantization_config=q_config)
116
  q_model.save_pretrained("smolvlm_static_int8")
117
  ```
118
 
 
 
 
 
 
 
119
  Quantizing activations adds small errors that can build up and affect accuracy, so careful testing afterward is important. More information and examples can be found in [our documentation](https://huggingface.co/docs/optimum-intel/en/openvino/optimization#pipeline-quantization).
120
 
121
  ### Step 3: Run inference
@@ -123,13 +140,18 @@ Quantizing activations adds small errors that can build up and affect accuracy,
123
  You can now run inference with your quantized model :
124
 
125
  ```python
126
- # Generate outputs with quantized model
127
  generated_ids = q_model.generate(**inputs, max_new_tokens=500)
128
  generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
129
  print(generated_texts[0])
130
  ```
131
- Try the complete notebook [here](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/vision_language_quantization.ipynb).
132
 
 
 
 
 
 
 
 
133
 
134
  ## Conclusion
135
 
 
55
  1. You can use the [Optimum CLI](https://huggingface.co/docs/optimum-intel/en/openvino/export#using-the-cli)
56
 
57
  ```bash
58
+ optimum-cli export openvino -m HuggingFaceTB/SmolVLM2-256M-Video-Instruct smolvlm_ov/
59
  ```
60
 
61
  2. Or you can convert it [on the fly](https://huggingface.co/docs/optimum-intel/en/openvino/export#when-loading-your-model) when loading your model:
 
63
 
64
  ```python
65
  from optimum.intel import OVModelForVisualCausalLM
66
+
67
+ model_id = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct"
68
  model = OVModelForVisualCausalLM.from_pretrained(model_id)
69
  model.save_pretrained("smolvlm_ov")
70
  ```
 
92
 
93
  However, the “interactions” during the trip, like drinking water, remain unchanged. This is similar to what happens to activations, which stay in high precision (FP32 or BF16) to preserve accuracy during computation.
94
 
95
+ As a result, the model becomes smaller and more memory-efficient, improving loading times. But since activations are not quantized, inference speed gains are limited. Since OpenVINO 2024.3, if the model's weight have been quantized, the corresponding activations will also be quantized at runtime, leading to additional speedup depending on the device.
96
 
97
  Weight-only quantization is a simple first step since it usually doesn’t result in significant accuracy degradation.
98
  In order to run it, you will need to create a quantization configuration using Optimum \`OVWeightQuantizationConfig\` as follows
 
100
 
101
  ```python
102
  from optimum.intel import OVModelForVisualCausalLM, OVWeightQuantizationConfig
103
+
104
  q_config = OVWeightQuantizationConfig(bits=8)
105
  # Apply quantization and save the new model
106
  q_model = OVModelForVisualCausalLM.from_pretrained(model_id, quantization_config=q_config)
107
  q_model.save_pretrained("smolvlm_int8")
108
  ```
109
 
110
+ or quivalently using the CLI:
111
+
112
+
113
+ ```bash
114
+ optimum-cli export openvino -m HuggingFaceTB/SmolVLM2-256M-Video-Instruct --weight-format int8 smolvlm_int8/
115
+
116
+ ```
117
+
118
  ## Option 2: Static Quantization
119
 
120
  When applying static quantization, quantization is applied on both weights and activations. For this a calibration step is needed in which a dataset subset is used in order to estimate the activations ranges. In the following example we are using 50 samples of the [contextual dataset](https://huggingface.co/datasets/ucla-contextual/contextual_test) to perform this calibration step.
121
 
122
  ```python
123
  from optimum.intel import OVModelForVisualCausalLM, OVQuantizationConfig
124
+
125
  q_config = OVQuantizationConfig(bits=8, dataset="contextual", num_samples=50)
126
  q_model = OVModelForVisualCausalLM.from_pretrained(model_id, quantization_config=q_config)
127
  q_model.save_pretrained("smolvlm_static_int8")
128
  ```
129
 
130
+ or quivalently using the CLI:
131
+
132
+ ```bash
133
+ optimum-cli export openvino -m HuggingFaceTB/SmolVLM2-256M-Video-Instruct --quant-mode int8 --dataset contextual --num-samples 50 smolvlm_static_int8/
134
+ ```
135
+
136
  Quantizing activations adds small errors that can build up and affect accuracy, so careful testing afterward is important. More information and examples can be found in [our documentation](https://huggingface.co/docs/optimum-intel/en/openvino/optimization#pipeline-quantization).
137
 
138
  ### Step 3: Run inference
 
140
  You can now run inference with your quantized model :
141
 
142
  ```python
 
143
  generated_ids = q_model.generate(**inputs, max_new_tokens=500)
144
  generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
145
  print(generated_texts[0])
146
  ```
 
147
 
148
+ If you have a recent Intel laptop, Intel AI PC, or Intel discrete GPU, you can load the model on GPU by adding `device="gpu"` when loading your model:
149
+
150
+ ```python
151
+ model = OVModelForVisualCausalLM.from_pretrained(model_id, device="gpu")
152
+ ```
153
+
154
+ Try the complete notebook [here](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/vision_language_quantization.ipynb).
155
 
156
  ## Conclusion
157