|
import logging |
|
|
|
import datasets |
|
import gzip |
|
import os |
|
import pandas as pd |
|
import re |
|
import shutil |
|
import urllib |
|
from abc import ABC, abstractmethod |
|
from datasets import DatasetInfo |
|
from pathlib import Path |
|
from pyfaidx import Fasta |
|
from tqdm import tqdm |
|
from typing import List |
|
|
|
""" |
|
-------------------------------------------------------------------------------------------- |
|
Reference Genome URLS: |
|
------------------------------------------------------------------------------------------- |
|
""" |
|
H38_REFERENCE_GENOME_URL = ( |
|
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz" |
|
) |
|
|
|
""" |
|
-------------------------------------------------------------------------------------------- |
|
Task Specific Handlers: |
|
------------------------------------------------------------------------------------------- |
|
""" |
|
|
|
logger = logging.getLogger("multi_omics_bulk_rna") |
|
logger.setLevel("INFO") |
|
|
|
|
|
class GenomicLRATaskHandler(ABC): |
|
""" |
|
Abstract method for the Genomic LRA task handlers. Each handler |
|
""" |
|
|
|
@abstractmethod |
|
def __init__(self, **kwargs): |
|
pass |
|
|
|
@abstractmethod |
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfo for the task |
|
""" |
|
pass |
|
|
|
def split_generators( |
|
self, dl_manager, cache_dir_root |
|
) -> List[datasets.SplitGenerator]: |
|
""" |
|
Downloads required files using dl_manager and separates them by split. |
|
""" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"handler": self, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"} |
|
), |
|
] |
|
|
|
@abstractmethod |
|
def generate_examples(self, split): |
|
""" |
|
A generator that yields examples for the specified split. |
|
""" |
|
pass |
|
|
|
@staticmethod |
|
def hook(t): |
|
last_b = [0] |
|
|
|
def inner(b=1, bsize=1, tsize=None): |
|
""" |
|
b : int, optional |
|
Number of blocks just transferred [default: 1]. |
|
bsize : int, optional |
|
Size of each block (in tqdm units) [default: 1]. |
|
tsize : int, optional |
|
Total size (in tqdm units). If [default: None] remains unchanged. |
|
""" |
|
if tsize is not None: |
|
t.total = tsize |
|
t.update((b - last_b[0]) * bsize) |
|
last_b[0] = b |
|
|
|
return inner |
|
|
|
def download_and_extract_gz(self, file_url, cache_dir_root): |
|
""" |
|
Downloads and extracts a gz file into the given cache directory. Returns the full file path |
|
of the extracted gz file. |
|
Args: |
|
file_url: url of the gz file to be downloaded and extracted. |
|
cache_dir_root: Directory to extract file into. |
|
""" |
|
file_fname = Path(file_url).stem |
|
file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname) |
|
|
|
if not os.path.exists(file_complete_path): |
|
if not os.path.exists(file_complete_path + ".gz"): |
|
with tqdm( |
|
unit="B", |
|
unit_scale=True, |
|
unit_divisor=1024, |
|
miniters=1, |
|
desc=file_url.split("/")[-1], |
|
) as t: |
|
urllib.request.urlretrieve( |
|
file_url, file_complete_path + ".gz", reporthook=self.hook(t) |
|
) |
|
with gzip.open(file_complete_path + ".gz", "rb") as file_in: |
|
with open(file_complete_path, "wb") as file_out: |
|
shutil.copyfileobj(file_in, file_out) |
|
return file_complete_path |
|
|
|
|
|
class TranscriptExpressionHandler(GenomicLRATaskHandler): |
|
""" |
|
Handler for the Bulk RNA Expression task. |
|
""" |
|
|
|
DEFAULT_LENGTH = 200000 |
|
DEFAULT_FILTER_OUT_LENGTH = 196608 |
|
|
|
def __init__( |
|
self, |
|
sequence_length: int = DEFAULT_LENGTH, |
|
filter_out_sequence_length: int = DEFAULT_FILTER_OUT_LENGTH, |
|
**kwargs, |
|
): |
|
""" |
|
Creates a new handler for the Bulk RNA Expression Prediction Task. |
|
Args: |
|
sequence_length: Length of the sequence around the TSS_CAGE start site |
|
Instance Vars: |
|
reference_genome: The Fasta extracted reference genome. |
|
coordinate_csv_file: The csv file that stores the coordinates and filename of the target |
|
labels_csv_file: The csv file that stores the labels with one sample per row. |
|
sequence_length: Sequence length for this handler. |
|
""" |
|
self.reference_genome = None |
|
self.coordinate_csv_file = None |
|
self.labels_csv_file = None |
|
self.sequence_length = sequence_length |
|
self.filter_out_sequence_length = filter_out_sequence_length |
|
|
|
if filter_out_sequence_length is not None: |
|
assert isinstance(filter_out_sequence_length, int) |
|
assert ( |
|
sequence_length <= filter_out_sequence_length |
|
), f"{sequence_length=} > {filter_out_sequence_length=}" |
|
assert isinstance(sequence_length, int) |
|
|
|
def get_info(self, description: str) -> DatasetInfo: |
|
""" |
|
Returns the DatasetInfor for the Bulk RNA Expression dataset. Each example |
|
includes a genomic sequence and a list of label values. |
|
""" |
|
features = datasets.Features( |
|
{ |
|
|
|
"DNA": datasets.Value("string"), |
|
|
|
"labels": datasets.Sequence(datasets.Value("float32")), |
|
"labels_name": datasets.Sequence(datasets.Value("string")), |
|
|
|
"chromosome": datasets.Value(dtype="string"), |
|
"RNA": datasets.Value("string"), |
|
"Protein": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=description, |
|
|
|
features=features, |
|
) |
|
|
|
def split_generators(self, dl_manager, cache_dir_root): |
|
""" |
|
Separates files by split and stores filenames in instance variables. |
|
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate |
|
csv file,and label csv file to be saved. |
|
""" |
|
|
|
reference_genome_file = self.download_and_extract_gz( |
|
H38_REFERENCE_GENOME_URL, cache_dir_root |
|
) |
|
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False) |
|
|
|
self.coordinate_csv_file = dl_manager.download_and_extract( |
|
"bulk_rna_expression/transcript_coordinates.csv" |
|
) |
|
|
|
self.labels_csv_file = dl_manager.download_and_extract( |
|
"bulk_rna_expression/rna_expression_values.csv" |
|
) |
|
|
|
return super().split_generators(dl_manager, cache_dir_root) |
|
|
|
def generate_examples(self, split): |
|
""" |
|
A generator which produces examples for the given split, each with a sequence |
|
and the corresponding labels. The sequences are padded to the correct sequence |
|
length and standardized before returning. |
|
""" |
|
coordinates_df = pd.read_csv(self.coordinate_csv_file) |
|
labels_name = coordinates_df.columns[2:] |
|
coordinates_split_df = coordinates_df[coordinates_df["split"] == split] |
|
|
|
key = 0 |
|
for idx, coordinates_row in coordinates_split_df.iterrows(): |
|
start = ( |
|
coordinates_row["position"] - 1 |
|
) |
|
|
|
chromosome = coordinates_row["chr"] |
|
labels_row = coordinates_row.loc[idx].values[2:] |
|
padded_sequence = pad_sequence( |
|
chromosome=self.reference_genome[chromosome], |
|
start=start, |
|
sequence_length=self.sequence_length, |
|
negative_strand=coordinates_row["strand"] == "-", |
|
filter_out_sequence_length=self.filter_out_sequence_length, |
|
) |
|
if padded_sequence: |
|
yield key, { |
|
"labels_name": labels_name, |
|
"labels": labels_row, |
|
"DNA": standardize_sequence(padded_sequence), |
|
"chromosome": re.sub("chr", "", chromosome), |
|
"RNA": coordinates_row["RNA"], |
|
"Protein": coordinates_row["Protein"], |
|
} |
|
key += 1 |
|
logger.info( |
|
f"filtering out {len(coordinates_split_df)-key} " |
|
f"elements from the dataset" |
|
) |
|
|
|
|
|
""" |
|
-------------------------------------------------------------------------------------------- |
|
Dataset loader: |
|
------------------------------------------------------------------------------------------- |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Dataset for benchmark of genomic deep learning models. |
|
""" |
|
|
|
|
|
|
|
|
|
class GenomicsLRAConfig(datasets.BuilderConfig): |
|
""" |
|
BuilderConfig. |
|
""" |
|
|
|
def __init__(self, *args, task_name: str, **kwargs): |
|
"""BuilderConfig for the location tasks dataset. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__() |
|
self.handler = TranscriptExpressionHandler(**kwargs) |
|
|
|
|
|
|
|
class GenomicsLRATasks(datasets.GeneratorBasedBuilder): |
|
""" |
|
Tasks to annotate human genome. |
|
""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIG_CLASS = GenomicsLRAConfig |
|
|
|
def _info(self) -> DatasetInfo: |
|
return self.config.handler.get_info(description=_DESCRIPTION) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
""" |
|
Downloads data files and organizes it into train/test/val splits |
|
""" |
|
return self.config.handler.split_generators(dl_manager, self._cache_dir_root) |
|
|
|
def _generate_examples(self, handler, split): |
|
""" |
|
Read data files and create examples(yield) |
|
Args: |
|
handler: The handler for the current task |
|
split: A string in ['train', 'test', 'valid'] |
|
""" |
|
yield from handler.generate_examples(split) |
|
|
|
|
|
""" |
|
-------------------------------------------------------------------------------------------- |
|
Global Utils: |
|
------------------------------------------------------------------------------------------- |
|
""" |
|
|
|
|
|
def standardize_sequence(sequence: str): |
|
""" |
|
Standardizes the sequence by replacing all unknown characters with N and |
|
converting to all uppercase. |
|
Args: |
|
sequence: genomic sequence to standardize |
|
""" |
|
pattern = "[^ATCG]" |
|
|
|
sequence = sequence.upper() |
|
|
|
sequence = re.sub(pattern, "N", sequence) |
|
return sequence |
|
|
|
|
|
def pad_sequence( |
|
chromosome, |
|
start, |
|
sequence_length, |
|
negative_strand=False, |
|
filter_out_sequence_length=None, |
|
): |
|
""" |
|
Extends a given sequence to length sequence_length. If |
|
padding to the given length is outside the gene, returns |
|
None. |
|
Args: |
|
chromosome: Chromosome from pyfaidx extracted Fasta. |
|
start: Start index of original sequence. |
|
sequence_length: Desired sequence length. If sequence length is odd, the |
|
remainder is added to the end of the sequence. |
|
end: End index of original sequence. If no end is specified, it creates a |
|
centered sequence around the start index. |
|
negative_strand: If negative_strand, returns the reverse compliment of the sequence |
|
""" |
|
|
|
pad = sequence_length // 2 |
|
end = start + pad + (sequence_length % 2) |
|
start = start - pad |
|
|
|
if filter_out_sequence_length is not None: |
|
filter_out_pad = filter_out_sequence_length // 2 |
|
filter_out_end = start + filter_out_pad + (filter_out_sequence_length % 2) |
|
filter_out_start = start - filter_out_pad |
|
|
|
if filter_out_start < 0 or filter_out_end >= len(chromosome): |
|
return |
|
|
|
if start < 0 or end >= len(chromosome): |
|
return |
|
|
|
if negative_strand: |
|
return chromosome[start:end].reverse.complement.seq |
|
return chromosome[start:end].seq |
|
|