| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import json | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						_CITATION = """\ | 
					
					
						
						| 
							 | 
						@article{darvishi2022pquad, | 
					
					
						
						| 
							 | 
						  title={PQuAD: A Persian Question Answering Dataset}, | 
					
					
						
						| 
							 | 
						  author={Darvishi, Kasra and Shahbodagh, Newsha and Abbasiantaeb, Zahra and Momtazi, Saeedeh}, | 
					
					
						
						| 
							 | 
						  journal={arXiv preprint arXiv:2202.06219}, | 
					
					
						
						| 
							 | 
						  year={2022} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						_DESCRIPTION = """\\\\ | 
					
					
						
						| 
							 | 
						PQuAD: PQuAD is a crowd-sourced reading comprehension dataset on Persian Language. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						_URL = "https://raw.githubusercontent.com/AUT-NLP/PQuAD/main/Dataset/" | 
					
					
						
						| 
							 | 
						_URLS = { | 
					
					
						
						| 
							 | 
						    "train": _URL + "Train.json", | 
					
					
						
						| 
							 | 
						    "validation":_URL + "Validation.json", | 
					
					
						
						| 
							 | 
						    "test": _URL + "Test.json", | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						class pquad_public_Config(datasets.BuilderConfig): | 
					
					
						
						| 
							 | 
						    """BuilderConfig for PQuAD.""" | 
					
					
						
						| 
							 | 
						    def __init__(self, **kwargs): | 
					
					
						
						| 
							 | 
						        """BuilderConfig for PQuAD. | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						          **kwargs: keyword arguments forwarded to super. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        super(pquad_public_Config, self).__init__(**kwargs) | 
					
					
						
						| 
							 | 
						class pquad_public(datasets.GeneratorBasedBuilder): | 
					
					
						
						| 
							 | 
						    BUILDER_CONFIGS = [ | 
					
					
						
						| 
							 | 
						        pquad_public_Config(name="pquad", version=datasets.Version("1.0.0"), description="PQuAD"), | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						    def _info(self): | 
					
					
						
						| 
							 | 
						        return datasets.DatasetInfo( | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            description=_DESCRIPTION, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            features=datasets.Features( | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("float64"), | 
					
					
						
						| 
							 | 
						                    "title": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "context": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "question": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "answers": datasets.features.Sequence( | 
					
					
						
						| 
							 | 
						                        { | 
					
					
						
						| 
							 | 
						                            "text": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                            "answer_start": datasets.Value("int32"), | 
					
					
						
						| 
							 | 
						                        } | 
					
					
						
						| 
							 | 
						                    ), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            supervised_keys=None, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            homepage="https://github.com/AUT-NLP/PQuAD", | 
					
					
						
						| 
							 | 
						            citation=_CITATION, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    def _split_generators(self, dl_manager): | 
					
					
						
						| 
							 | 
						        """Returns SplitGenerators.""" | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        urls_to_download = _URLS | 
					
					
						
						| 
							 | 
						        downloaded_files = dl_manager.download_and_extract(urls_to_download) | 
					
					
						
						| 
							 | 
						        return [ | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]}), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						    def _generate_examples(self, filepath): | 
					
					
						
						| 
							 | 
						        """Yields examples.""" | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with open(filepath, encoding="utf-8") as f: | 
					
					
						
						| 
							 | 
						            print(filepath) | 
					
					
						
						| 
							 | 
						            squad = json.load(f) | 
					
					
						
						| 
							 | 
						            for example in squad["data"]: | 
					
					
						
						| 
							 | 
						                title = example.get("title", "").strip() | 
					
					
						
						| 
							 | 
						                for paragraph in example["paragraphs"]: | 
					
					
						
						| 
							 | 
						                    context = paragraph["context"].strip() | 
					
					
						
						| 
							 | 
						                    for qa in paragraph["qas"]: | 
					
					
						
						| 
							 | 
						                        question = qa["question"].strip() | 
					
					
						
						| 
							 | 
						                        id_ = qa["id"] | 
					
					
						
						| 
							 | 
						                        answer_starts = [answer["answer_start"] for answer in qa["answers"]] | 
					
					
						
						| 
							 | 
						                        answers = [answer["text"].strip() for answer in qa["answers"]] | 
					
					
						
						| 
							 | 
						                         | 
					
					
						
						| 
							 | 
						                         | 
					
					
						
						| 
							 | 
						                        yield id_, { | 
					
					
						
						| 
							 | 
						                            "title": title, | 
					
					
						
						| 
							 | 
						                            "context": context, | 
					
					
						
						| 
							 | 
						                            "question": question, | 
					
					
						
						| 
							 | 
						                            "id": id_, | 
					
					
						
						| 
							 | 
						                            "answers": { | 
					
					
						
						| 
							 | 
						                                "answer_start": answer_starts, | 
					
					
						
						| 
							 | 
						                                "text": answers, | 
					
					
						
						| 
							 | 
						                            }, | 
					
					
						
						| 
							 | 
						                        } | 
					
					
						
						| 
							 | 
						
 |