Let t(n) = n**3 + 24*n**2 + 21*n - 61. Is t(-13) a multiple of 4? False Let y(g) = g**2 - g. Let w be y(-3). Let a be (w/(-18))/(16/18 - 1). Does 8 divide 286/a - (20/12 + -2)? True Let f(k) be the second derivative of 0 - k - 1/2*k**2 - 1/6*k**3 + 4/3*k**4. Does 10 divide f(-2)? False Is 2*10/(-4)*16939/(-65) a multiple of 11? False Let w(a) = a**3 - 6*a**2 - 24*a - 27. Does 2 divide w(13)? True Suppose -s = -5*y + 120, -5*s - 5*y - 988 = -298. Let z = 240 + s. Does 38 divide z? False Let s(b) = -b**3 + 23*b**2 + 10*b - 29. Let r be s(18). Suppose 2*n + 3*m - 506 = 0, 5*n + 532 = -m + r. Is n a multiple of 10? False Let k be 11/(3 - 35/10). Let c = -19 - k. Suppose 0 = -c*z + 5*i + 33 + 29, -22 = -z + i. Is 6 a factor of z? True Suppose 3*r - 12 = -0. Suppose r*s - 2640 = -7*s. Does 20 divide s? True Let p(k) = k**3 + 9*k**2 - k + 15. Let c be p(-9). Suppose -3*t - 9 + c = 0. Suppose 5*r + t*v = 35, 4*r - 4 = 5*v + 51. Is r even? True Does 154 divide (-41 - -6888) + 3 + -4 + -3? False Does 6 divide (1 - 154)*(232 - 235)? False Let d be (-67)/(-201)*((-2)/(-2) - 7). Does 13 divide (12/(-18))/(d/(2 - -784))? False Let t be 3/18 + 773*2/12. Let x = 165 - t. Is 4 a factor of x? True Let u(y) = 9*y**2 - 108*y + 2355. Is u(25) a multiple of 40? True Let f(b) = 40*b**2 + 3*b - 54. Is 41 a factor of f(14)? False Is 23 a factor of 8 + (-8 - 0) + 5796? True Let a(j) = -13*j - 28. Let p be a(-17). Let t = -183 + p. Does 5 divide t? True Suppose -j = 4*m - 96, 3*j - 3 = -15. Let q = -35 + m. Is q/(0 + (-2)/26) a multiple of 29? False Let s = 8 - 8. Let v(f) be the third derivative of -f**5/60 + f**3 - 57*f**2. Is v(s) a multiple of 5? False Let m = 4174 - -5148. Does 59 divide m? True Does 84 divide (244/(-12) - 3)/((153/(-1944))/17)? True Suppose 4*m + 4*s + 0*s - 44 = 0, -3*m - 5*s = -43. Let o be (-74)/(-10) - (m/15 + 0). Suppose o*w - 27 = 22. Is 7 a factor of w? True Let a(w) = -77*w + 22. Does 74 divide a(-54)? False Let q = 3240 - 2296. Is q a multiple of 6? False Let k(s) = s**3 + 5*s**2. Let x be k(-5). Let a = x - -35. Let p = a - 30. Is p even? False Suppose -5*k = -5*d + 1559 - 194, 4*d - 1072 = -k. Let c = d + -160. Does 23 divide c? False Let u be (-456)/(-60) - (-2)/5. Let p(g) = 41*g + 50. Does 12 divide p(u)? False Let a be 1*(-1 - (-1 - -2)). Let j be ((-468)/24)/(a/(-4)). Let o = 49 + j. Is o a multiple of 5? True Suppose 10349 = 3*a + 4*a - 8971. Is a a multiple of 46? True Suppose -z + 25 = 4*z. Does 36 divide (-10)/(250/(-4485)) - (-3)/z? True Let s = 24 - 22. Suppose -3*g - 2*g = s*n - 270, -n = -5. Suppose b - g = -2*j, 0*b - 3*b - 5*j + 152 = 0. Does 22 divide b? True Let w = -63 - -66. Suppose 0 = 5*t - v - 48, -t + 24 = w*v - 8*v. Is t a multiple of 6? False Let y(v) = 59*v**2 - 114*v - 903. Does 90 divide y(-8)? False Let t(i) = i**2 + 13*i - 24. Let a = 140 + -164. Is 40 a factor of t(a)? True Suppose -4*f = -z - 4075, -4*f - 17*z + 4100 = -13*z. Is 16 a factor of f? False Let r = 9624 - 4430. Does 14 divide r? True Let s(t) = -t**3 + 12*t**2 - 31*t + 25. Let y be s(9). Let j(i) = -3*i**2 - 7*i - 3. Let q(a) = a**2 + 1. Let c(n) = -j(n) - 2*q(n). Does 5 divide c(y)? True Suppose -4*f + 2004 = -2*t, -2*t + 221 = -3*f + 1724. Is 3 a factor of f? True Let h = -38 + 43. Suppose -4*i + 18 = -5*g, 0*i - 33 = -h*i + g. Is 9 a factor of 5*(i + -3 + 4)? False Suppose 5*q = -2*k + 15 - 0, -5*q - 3*k + 15 = 0. Suppose -d = -q*t + 1179, -2*t + 2*d + 616 + 174 = 0. Is 23 a factor of t? False Suppose 29*f - 199*f + 364820 = 0. Is f a multiple of 27? False Does 18 divide ((-133)/76 - 31/(-4)) + 5610? True Suppose 0 = 2*i + 2*i - 2*t - 3610, 0 = -i - t + 895. Suppose 4*b - i = 5*o, 4*o + b = -486 - 255. Let c = -88 - o. Is 16 a factor of c? True Suppose -4*b + 22635 = 8*v - 5*v, 3*v - 22638 = -5*b. Is v a multiple of 92? False Let t = 23 - 20. Suppose -8*c + 723 = t. Does 4 divide c? False Suppose 0 = -25*g + 32580 + 50645. Is 10 a factor of g? False Let w(b) = -b**3 - 10*b**2 + 5. Let u be w(-10). Suppose 42 = u*t - t + 3*k, 24 = 2*t + 3*k. Suppose 10 = r - t. Does 8 divide r? False Suppose 4 = 2*i - 3*i, 3*p - 3*i - 21 = 0. Suppose 4*d - 60 = p*d. Let b = 156 - d. Does 16 divide b? True Let v be (-2)/10 + 231/105. Does 5 divide 349/9 + v + 64/(-36)? False Let g = 95 - 91. Suppose -5 + 43 = t + 5*k, 0 = -5*t + g*k + 248. Is t a multiple of 16? True Suppose -30 - 42 = -12*b. Let k = 6 - 12. Is 6 a factor of k*((-28)/b - 0)? False Let x(r) = -r**2 - 49*r + 34. Let y(f) = 2*f**2 + 99*f - 69. Let p(a) = 9*x(a) + 4*y(a). Does 14 divide p(-26)? False Let n = 8 - 4. Let c(w) = 21*w - 11 + 4*w**2 - 22*w + 5. Is 27 a factor of c(n)? True Let x = 7571 + -4300. Is x a multiple of 9? False Let q(z) = -z**3 - 9*z**2 - 50*z + 12. Is 69 a factor of q(-17)? True Let r = -356 + 663. Is 16 a factor of r? False Suppose 0*k - 3792 = -6*k. Let n(g) = -g**2 - 16*g - 37. Let p be n(-13). Suppose -3*y = 3*l - p*l - 132, 5*l = -y + k. Is l a multiple of 18? True Let b(k) = k**2 + 22*k - 26. Suppose -20 = -5*a, -p = -5*a + 4*a + 23. Let d be b(p). Let n = 216 + d. Does 19 divide n? True Suppose 105 = -5*d + b, 2*d + 2*d + 4*b + 60 = 0. Let l be (d/(-12))/((-2)/(-6)). Suppose -104 = 3*i - l*i. Is 22 a factor of i? False Let b be -3*1/(-3)*131*2. Let s = b + -218. Is s a multiple of 27? False Let t = 2356 - 362. Is 25 a factor of t? False Let t(j) = j**3 + 7*j**2 + 6*j - 7. Let g be t(-5). Suppose 5*l + 33 - g = 0. Let p(o) = o**3 + 6*o**2 - 4*o + 4. Does 23 divide p(l)? False Suppose -2*i + 939 = 3*m, -i = -3*m - 5*i + 933. Let n = m + -147. Does 6 divide n? True Is (-159012)/(-52) - (-20)/260 a multiple of 14? False Suppose -r + 282 = v + 70, -820 = -4*v + 3*r. Suppose 562 = 5*a - 0*l + 3*l, v = 2*a - 3*l. Suppose 8*j - 342 = -a. Does 7 divide j? False Suppose 2*a + 4640 = 3*h, 30*h - 26*h - 6182 = 5*a. Is 6 a factor of h? True Suppose 2*b - 1866 = 97*k - 99*k, 20 = 5*k. Does 49 divide b? False Suppose -4*s - 19 = -0*s + 5*u, 0 = -4*u + 20. Let l(q) = -12*q - 43. Does 6 divide l(s)? False Suppose 2 - 58 = -2*y + 2*t, 4*y + 4*t - 80 = 0. Let q = 9 + y. Is q a multiple of 3? True Is 5 a factor of 723 - ((12 - 8) + 8)? False Let z(t) = t**2 - 15*t + 34. Let w be z(12). Is -27*((-14)/(-28) + 13/w) a multiple of 9? True Suppose -3*t - 3508 = -7*u + 6*u, 7*t = -u + 3548. Is 32 a factor of u? True Let q(r) = 3*r + 217. Let m be q(0). Let k = m + -7. Is 35 a factor of k? True Let u(c) = -c**3 + 14*c**2 - 35*c + 57. Is 7 a factor of u(8)? True Suppose -31*z = -27*z + 252. Let f(v) = -10*v - 17. Let c be f(-12). Let j = z + c. Is j a multiple of 5? True Let v = 4819 + -2859. Is 36 a factor of v? False Suppose 556*j = 583*j - 239949. Is j a multiple of 19? False Let u(n) = -2*n + 27. Let v be u(7). Suppose -23 = -2*j + v. Let b(m) = m**2 - 15*m - 37. Does 4 divide b(j)? False Let y = 13 - -88. Suppose 3*q + y = 8. Is 6 a factor of (1 - -1)*-1*q? False Suppose -2*v = 11*v + 13. Let u = v - -205. Does 38 divide u? False Let k = -18 + 22. Let w = -56 - -59. Suppose a = -3*j + 466 - 169, 0 = w*j + k*a - 306. Is j a multiple of 32? False Suppose 9*x = 2*a + 5*x - 1024, 5*x + 1026 = 2*a. Is 30 a factor of a? False Let m(h) = h**3 - 9*h**2 + 24*h - 10. Let c be m(5). Is 7 a factor of ((-148)/(-8) - 1)*16/c? True Let a(f) = 4*f**3 + 3*f**2 - f - 1. Suppose -5*r = -l + 2*l - 26, -5*r + 22 = -3*l. Is 4 a factor of a(l)? False Let d(l) = -7*l + 56. Let o = 205 - 221. Is 12 a factor of d(o)? True Is 25 a factor of 4 + 6100 + (1 - 5)? True Let b(q) = 252*q**2 - 68*q - 286. Is b(-4) a multiple of 7? True Suppose -3*q = -3*m - 3667 - 17342, -3*q + m + 21013 = 0. Is q a multiple of 15? True Suppose -2179 = 44*z - 18503. Does 4 divide z? False Let p(c) = 63*c**2 - 5*c - 2. Let l be p(-2). Let q = l - -70. Is q a multiple of 15? True Is 45 a factor of (-165)/(-6)*(-264)/(-165) - -7? False Suppose 14*k = -872 + 1754. Is 8 a factor of k? False Suppose 5*f = -3*c - 562, -5*c - 555 - 315 = -5*f. Let h = c + 185. Is 6 a factor of h? True Let d = -4924 - -5832. Is d a multiple of 3? False Suppose -4*f - 6 = x - 3, 6 = x - 5*f. Is 1527/6 + x + 9/6 a multiple of 8? False Let y = -3275 - -4811. Is y a multiple of 16? True Does 2 divide (164/(-8))/(55/(-2530))? False Suppose -137711 = -154*m + 458885. Does 13 divide m? True Let z(a) be the second derivative of -a**3 - 85*a**2/2 - 7*a. Does 17 divide z(-17)? True Suppose 0 = 51*t + 67*t - 16*t - 103326. Is t even? False Let g(q) = -q**2 - 16*q + 83. Let a be g(-20). Does 6 divide (-8 + a)*1344/(-60)? False Suppose 0 = -5*o - 43*o + 147840. Is 20 a factor of o? True Let k(y) = -y**2 + 7*y + 2. Let x be k(7). Let z(h) = -500 + 4*h**2 + 501 + h**3 + 0*h**3 - 3*h. Is 19 a factor of z(x)? True Let l be 1/((-5)/30*-3). Suppose -l*w - 305 = -7*w. Suppose -28 - w = -q. Is q a multiple of 34? False Suppose 5*s + 60 = -190. Let v = -35 - s. Is (-64)/(-5)*v/2 a multiple of 32? True Let x(o) = 6*o - 109. Let p be x(20). Suppose -5118 = -p*t - 157. Is t a multiple of 11? True Let i(j) = 9*j**3 - 4*j**2 + 8*j + 7. Let v(g) = g**3 + g + 1. Let n(d) = i(d) - 4*v(d). Let t be n(3). Does 14 divide 9/14*t - 2/7? False Let l(q) = 2*q**2 - 71*q + 420. Is l(69) a multiple of 127? False Let g(q) = -2*q - 23. Let c be g(-13). Suppose -3*d = -0*d - 3*r - 6, -5*r = c*d + 34. Is (5/(-2) - -2)/(d/240) a multiple of 24? False Let y be (-1 + 2)*(92 + 1). Suppose -y = -5*s - 2*n, -2*s + 4*n + 18 = -0. Suppose 75 = -14*m + s*m. Is m a multiple of 5? True Let c(m) = -710*m + 78. Does 46 divide c(-3)? True Let f(k) = 3*k**2 + 46*k + 11. Let s be f(-15). Does 9 divide (-34)/((-6 - s)*1)? False Let h be (6/(-4) + 0)/(1/(-2)). Suppose t - h = 33. Is 11 a factor of t? False Suppose 0 = -2*f + 4 + 6. Is (-1 - -3 - f) + (6 - -42) a multiple of 5? True Let p = 49 - 47. Suppose 2*n + 5*f - 11 = 7, 4*f = -p*n + 16. Does 28 divide 129 - 3 - (-3 + n)? False Let x(a) = -217*a**3 - a**2 - 4*a - 3. Let p be (-6)/42 - 6/7. Is x(p) a multiple of 31? True Suppose 0 = 5*r - 4042 - 2113. Is r a multiple of 2? False Is 3 a factor of (639/18 + -10)*82? True Let c(p) = 5*p**2 - p + 7. Let t(x) be the second derivative of 2*x**4 - 2*x**3/3 + 18*x**2 + 8*x. Let z(s) = -14*c(s) + 3*t(s). Is z(5) a multiple of 10? True Let y = -192 + 222. Does 25 divide (24/y)/(2254/750 - 3)? True Suppose -6*i - 2 = -14. Suppose -3*y + 2*g + 39 = -248, -i*g - 2 = 0. Is 4 a factor of y? False Let k be 10/(-6) + 160/24. Let f be ((-3)/(-2))/((-9)/(-264)). Suppose -k*d + 36 = -f. Is 4 a factor of d? True Let m(z) = 13*z + 45 - 82 - 2*z + 46. Is m(9) a multiple of 34? False Suppose 2*f = -c + 1442, 3*c + 2898 = 5*c - 3*f. Is 19 a factor of c? False Let h(y) = 9*y + 74. Let s(t) = 19*t + 151. Let i(p) = 7*h(p) - 4*s(p). Does 7 divide i(-12)? True Let j(c) = 0*c - c**2 - c + 2*c**2 - c**3 - 2*c + 6. Let b be j(0). Does 5 divide (-2)/(-12)*3 - (-45)/b? False Let q be (-1 - -1) + (-34)/(-17). Let a(l) = l**2 + 5*l - l**q + 23 - 22 + l**2. Is a(-7) a multiple of 15? True Let g be 3/6 + 6/(-12). Suppose g*n + n - 2*f = 10, -10 = -n + 4*f. Suppose 0 = 9*c - n*c + 28. Does 5 divide c? False Suppose n - 1483 = -q, -n - 2*q + 695 = -783. Is 48 a factor of n? True Suppose -14*q + 188 = -11*q + t, 5*t = 25. Let m = 87 - q. Is 26 a factor of m? True Suppose 0 = -14*p + 18*p - 36. Let u = 11 - p. Suppose 103 + 6 = 5*j + y, 0 = -4*j - u*y + 92. Is 12 a factor of j? False Suppose -2*u - 160 = -2*y, -y + 5*u = 2*y - 248. Suppose 4*j = -r + 147, 0 = -3*r + r - 3*j + 284. Let l = r - y. Is 29 a factor of l? False Let n(y) be the third derivative of 3*y**6/10 + y**4/24 - y**3/3 + 12*y**2. Let q be n(1). Suppose -m + 3*m = -3*h + 72, -m - h = -q. Does 11 divide m? True Let s = -28 + 30. Suppose -3*o - s*i + 264 = 0, 3*i = 3*o + 2*o - 440. Suppose 9*r = 290 + o. Does 42 divide r? True Suppose -4*b + 71 = 451. Suppose 0 = 31*z + 342 + 867. Let n = z - b. Is n a multiple of 34? False Let a = 4980 + -4701. Does 31 divide a? True Suppose -2*g + 3781 = 3*l, 9400 = -3*g + 8*g - 3*l. Does 34 divide g? False Let c = 24257 + -14506. Is c a multiple of 82? False Let q(o) = 173*o + 16. Let v(h) = h**3 + 8*h**2 + 14*h - 2. Let p be v(-5). Is 68 a factor of q(p)? False Let n(u) = u**2 + 9*u + 13. Let w be n(-7). Let o = 11 - w. Suppose -a = -4*a - o, 2*a = 4*m - 260. Does 16 divide m? False Is 24/(-2 + 14) - -2455 a multiple of 27? True Let w(x) = -436*x + 228. Is w(-6) a multiple of 18? True Let a(q) = -q**3 + 27*q**2 - 70*q - 45. Is a(22) a multiple of 5? True Let j(q) = 10*q**2 - 2*q - 3. Let n be j(-1). Let k = -5 + 8. Let m = n - k. Is m even? True Suppose 5*z - 3*j - 6275 = 0, z + 2*j = 3*j + 1253. Is 74 a factor of z? True Let v = 8858 + -3727. Does 55 divide v? False Let f = 45 - 43. Suppose 9 = f*b + 2*c + 3*c, -2*b = -3*c - 33. Suppose 0 = -b*w + 7*w + 445. Does 19 divide w? False Let x = -173 - -175. Is ((-6)/x - -5) + 12 + 2 even? True Suppose 3*w = 3*d - 9862 - 2756, 5*d - 3*w = 21030. Does 21 divide d? False Let t(f) = f**3 + 4*f**2 - 2*f - 5. Let p be t(-4). Suppose 0 = 2*w - 3*c - 432, -p*w + c + 1080 = 2*w. Is 12 a factor of w? True Let l(s) = -s**2 - 25*s - 74. Let c be l(-35). Let h = c + 656. Is h a multiple of 8? True Let a(q) = q**2 - 5*q + 15. Let z be a(8). Let s = z + 57. Suppose -4*h = -s - 324. Is 35 a factor of h? True Let s(l) = -14*l - 54. Let a be s(-25). Let q = 698 - a. Is q a multiple of 19? False Let q = -4 + -168. Let n = q + 95. Let l = 28 - n. Does 21 divide l? True Let c(n) = n**3 + n**2 - 6*n + 3. Let v be c(2). Does 2 divide 14/(-3)*((-18)/2)/v? True Let t(m) be the second derivative of -m**5/10 - m**4/6 + m**3/3 - 3*m**2 + m. Let s be 3 + ((-12)/(-132) - 134/22). Is 4 a factor of t(s)? True Suppose 12*p - 14136 = -0*p + 16968. Is p a multiple of 6? True Let c be 115/(-23)*(-6)/10. Let q(a) = -a**2 + 5*a - 3. Let u be q(c). Suppose 0 = -u*w - 2*b + 46, 0 = -4*w + 2*b + 2*b + 28. Is w a multiple of 4? True Suppose -48*c - 254205 + 247018 = -447635. Is c a multiple of 17? False Let w(i) be the first derivative of -2*i + 5/2*i**2 + 17. Does 3 divide w(1)? True Let f(v) = -3*v**3 - 10*v**2 - 5*v + 14. Is 24 a factor of f(-10)? True Let j = -375 - -2867. Is 14 a factor of j? True Let f(i) = -5*i**2 + 28*i + 79. Let m(b) = b**2 - 2. Let k(n) = f(n) + 6*m(n). Is 8 a factor of k(-27)? True Suppose 18*l - 64*l = -183770. Is 5 a factor of l? True Does 35 divide (-9)/54 + (-2)/((-12)/14911)? True Let d = -3752 - -7177. Does 21 divide d? False Let p(d) = -23*d**2 - 6*d - 26. Let b be p(-3). Let l = b + 283. Is l a multiple of 17? True Is 46 a factor of 7347 - 0 - (136 - 149)? True Let p(o) = o**2 + o + 8. Suppose 0 = -t + 5*s + 12, 5*s + 12 = 2*t + s. Suppose -2*x - 6 = -3*d - 32, 3*d + t*x + 34 = 0. Is p(d) a multiple of 18? False Let g be (-15)/(-20) - ((-5075)/20)/7. Let d = 396 - g. Does 11 divide d? False Suppose 5*q = -3*w, -q + 3*w = 5*w + 7. Suppose 2*p - 757 = 5*s, q*p - 1123 = 5*s - 0*s. Is p a multiple of 61? True Suppose r + 8 = -2*j, r + 2*j = -2*r - 16. Let o(x) = 3*x**3 + 3*x**2 - 9*x - 14. Let l be o(-2). Is 14 a factor of r*(2 + 156/l)? True Let r(s) = s**3 + 5*s**2 + 4*s + 2. Let k be r(-2). Suppose 0 = -4*y - 5*i + 65, 0 = -k*y + 3*y + i + 63. Is y a multiple of 20? True Suppose -72651 = -35*g - 27542 + 45541. Does 10 divide g? True Let c(n) = -2803*n + 87. Is 5 a factor of c(-1)? True Suppose 3*t = -46 + 1. Let q = t - -75. Is 15 a factor of (-3 - -21)/(-2*(-9)/q)? True Let m = 309 + -148. Suppose 7*f - m = -0*f. Suppose -f*j = -27*j + 224. Is j a multiple of 14? True Let t(g) = -39*g + 3. Let r(n) = -7*n + 111. Let k be r(17). Is 21 a factor of t(k)? True Let b(v) be the second derivative of v**4/4 + 8*v**3/3 + 19*v**2/2 - 78*v. Is 6 a factor of b(-7)? True Let p(h) = 2*h**2 + 23*h - 9. Let t be p(-12). Suppose 2*c - 230 = -c + 2*z, 0 = t*z - 15. Is c a multiple of 4? True Suppose -2*n + 2 = -4. Suppose 0 = -2*c - 5*i + 3*i - 6, 1 = 3*c + i. Suppose 0 = r + 2*g - 4, -n*g = -c*r + r + 14. Is r a multiple of 5? False Let y be 132/30 - 3/((-60)/(-8)). Suppose -y*d + 346 = 3*t, -4*t = -2*d + 50 + 134. Is d a multiple of 27? False Suppose x - 5*v - 1841 - 3597 = 0, 27152 = 5*x - 6*v. Does 59 divide x? True Suppose 0 = 5*f + 5*b + 195, -3*b + 12 = -3*f - 81. Let s = f + 40. Suppose -s*q + 74 = -231. Is q a multiple of 12? False Suppose -31*l = -25*l + 42. Is (-800)/l*1 + 18/(-63) a multiple of 5? False Let o be -1*(0 + 2)/((-2)/5). Suppose 4*s = 2*h + 9*s - 185, 380 = o*h - 4*s. Is h a multiple of 8? True Let s be 15/(-3)*-1*1. Suppose 0 = -3*b + s*z + 22, 4*b - z + 2*z = 14. Is (0 + 16)*(b + -3) a multiple of 3? False Let o(a) = 59*a + 1084. Is 21 a factor of o(40)? True Let m = 97 + -85. Let x(s) be the first derivative of 5*s**2/2 - s - 1. Does 24 divide x(m)? False Suppose 3*n = -862 + 1028 + 1160. Does 10 divide n? False Let y(z) = 5*z**3 + 106*z**2 - 15*z - 6. Is y(-17) a multiple of 19? False Let q(d) = d**2 + 3*d - 35. Let p be q(5). Let g(v) = 41*v + 15. Is 55 a factor of g(p)? True Suppose -18*d + 61972 = -23474. Is 184 a factor of d? False Let w(j) = 11*j - 3. Suppose -3*l - l + 24 = 0. Suppose -5*a + 2*b + 15 = -0*b, -2*a + l = -5*b. Is w(a) a multiple of 6? True Suppose 0 = 15*v - 13*v - 162. Suppose -d = -v + 11. Does 44 divide d? False Let o be (-4)/(-36) - 2154/(-54). Does 9 divide o/260 + 646/26? False Let j be 33/44 + 26/8*1. Suppose j*a - 3*a = -2*c + 77, -3*c = -5*a - 83. Is c a multiple of 3? True Let o = -173 - -966. Let q = o + -442. Is 27 a factor of q? True Let y = -357 + 579. Let i = y + -213. Is 2 a factor of i? False Let u = 11730 + -6816. Does 26 divide u? True Let i(p) = 227*p**2 + p + 8. Let h be i(4). Suppose h - 124 = 10*w. Is 11 a factor of w? True Suppose -27*b + 7100 = -589 - 4056. Is 4 a factor of b? False Let c = 72 + 134. Let n = c + -360. Let i = 292 + n. Does 23 divide i? True Let x be 5/((-20)/(-608)) - (-5 - -3). Let s = -76 + x. Is 5 a factor of s? False Let r(j) = 2*j**3 - 7*j**2 - 3*j**3 - 5 + 1 - 2. Let i be r(-7). Let o(h) = -h**3 - 5*h**2 + 3*h + 4. Is o(i) a multiple of 9? False Suppose -405*s + 426*s - 80955 = 0. Is 91 a factor of s? False Suppose 200*w = 212*w - 28608. Does 16 divide w? True Let c(r) = -5*r - 9. Let p be c(-2). Let l(u) = -p + u**2 - 1 - 12*u**3 + 5*u - 4*u. Does 12 divide l(-2)? True Suppose n = 2*v + 13, 6*n - 3*n - 30 = 3*v. Suppose -3*c - a + 1476 = 0, -2*a + n = 1. Is 44 a factor of c? False Let w(x) = 11*x**2 - x - 5. Let v be w(-6). Suppose -321 = 396*y - v*y. Is 40 a factor of y? False Let a = -13 + 15. Suppose a*f = -7 - 11. Is (21/f + 2)*-9 + 66 a multiple of 16? False Suppose 22 = 2*k - 2*j, 2*j - 8 = -2*j. Let v(r) = -3 + 0 + 8*r + 2 - 2 + 7. Does 20 divide v(k)? False Suppose 48 = -8*y - 0*y. Let g(c) = -c**3 - 7*c**2 + 8*c + 10. Let z be g(y). Let x = z + 174. Is x a multiple of 12? False Let o(l) = l**3 + 2*l**2 - 4*l - 1. Let w be o(-3). Suppose s + r = -0*s + 7, w*s - 14 = -5*r. Suppose -2*d - s*d = -702. Is 13 a factor of d? True Let v(p) = -12*p + 10. Let h be v(4). Let a = h + 40. Does 27 divide 660/24 - (5/a - 2)? True Let b(f) = 2*f**3 - 7*f**2 + 4*f + 1. Let x be b(3). Suppose x*g - 121 = -21. Is 6 a factor of g? False Suppose -2*n - n - 5*a + 99 = 0, -4*a + 40 = n. Is ((-90)/(-21) - 4) + 4836/n a multiple of 7? False Suppose 4670 = 10*g - 1910. Let o = g + -292. Is o a multiple of 25? False Let a(h) = -2*h + 1038. Let q be a(0). Suppose 12*z + q = 14*z. Is z/11 - ((-13)/(-11) + -1) a multiple of 11? False Suppose 14*c - 209883 = -17*c - 12*c. Does 22 divide c? False Let j(a) = -a**3 + 18*a**2 - 9*a - 34. Is j(12) a multiple of 9? False Let w be 2/12 + 0 + 138/36. Suppose h - 7*v - 155 = -8*v, -w*v + 170 = h. Is 25 a factor of h? True Let s(x) = x**3 - 22*x**2 + 26*x - 56. Let w be s(22). Suppose -2*u + 331 = 2*y - 5*y, 3*u + 2*y = w. Is u a multiple of 34? True Let s be (66/44)/((-1)/(-970)). Let z = s + -1035. Is 52 a factor of z? False Let t(c) be the second derivative of c**5/20 + 2*c**4/3 - 5*c**3/3 - 3*c**2 - 2*c. Let v = -83 + 75. Is 30 a factor of t(v)? False Let n(y) = 63*y**2 + 63*y - 110. Is 22 a factor of n(-12)? True Let j(c) = -4*c**2 + 83*c - 14. Is j(12) a multiple of 28? False Suppose 347 + 41 = 4*a. Suppose -a + 17 = -8*q. Does 2 divide q? True Let k = 8921 - 3552. Is 13 a factor of k? True Suppose -24*t + 11412 = -15*t - 2268. Is t a multiple of 25? False Does 73 divide -6*(-13 - 206/1)? True Suppose 4*n = 4*u + 23116, 0 = -27*n + 31*n + u - 23091. Is 43 a factor of n? False Let k(a) = 304*a**2 - 2*a - 2. Let s be k(-1). Let q = -204 + s. Suppose y = -4*y + q. Does 15 divide y? False Suppose 5*d = -16*d + 5*d + 87008. Is 13 a factor of d? False Let o = -30 - -62. Let i(q) = 3*q - 90. Does 6 divide i(o)? True Suppose 23*q + 31*q = 8*q + 34408. Is q a multiple of 4? True Let j be (-432)/(-14) + (-12 - (-425)/35). Let x(z) = z**3 - z**2 - 2*z + 1. Let k be x(2). Suppose f - k = j. Is f a multiple of 4? True Let a = -7556 + 13670. Is a a multiple of 155? False Let u = -1100 - -11011. Does 24 divide u? False Let o(l) = l**3 - 5*l**2 + 2*l + 1. Let j be o(5). Let q(u) = 1 - 3 - 12 - 6 + 10*u. Is q(j) a multiple of 12? False Let j(w) = -14 + 43 + 10 + 5 - 15*w. Does 9 divide j(-10)? False Let p be 188/32 + (7/(-8) - -1). Suppose 2*l = -n + 122, 5*n + p*l = 3*l + 603. Does 12 divide n? True Let x = -339 - -143. Let g = -105 - x. Does 20 divide g? False Let v(r) = -r + 1. Let n be v(-2). Let h(i) = -13*i**2 + 15*i. Let k(s) = -7*s**2 + 9*s. Let a(g) = -3*h(g) + 5*k(g). Is a(n) a multiple of 25? False Let p(g) = -g**2 + g + 364. Let c be (-2)/6 - (-31)/93. Is p(c) a multiple of 52? True Let d(z) be the first derivative of z**3/3 + 3*z**2/2 + 95*z + 17. Let j be d(0). Suppose -2*p - j = -7*p. Does 13 divide p? False Let h = 419 - -293. Is h a multiple of 6? False Let q(b) = -2*b**3 - 3*b**2 + 4*b + 37. Is q(-5) a multiple of 12? True Let y be (8/6)/(-3*(-1)/9). Suppose m - y*v + 55 = 0, -3*m + 4*m + 79 = -2*v. Let w = 121 + m. Does 10 divide w? True Suppose 0 = -5*n + 21 - 11. Suppose -2*t - 12 = 2*g + n*t, -5*t - 15 = 3*g. Suppose v + i - 109 = 0, 0 = 4*i - g + 4. Is 23 a factor of v? False Suppose 24 = -5*b + 11*b. Suppose 0 = 2*n + b, -4*o + 3*n + 706 = -2*o. Is 35 a factor of o? True Let v = 123 - 61. Let b = -30 + v. Let j = 7 + b. Is j a multiple of 13? True Let h(f) = -f**3 + 10*f**2 + 7*f + 5. Let t(n) = -2*n**3 + 20*n**2 + 13*n + 9. Let u(r) = -5*h(r) + 3*t(r). Let o = 7 - -2. Does 23 divide u(o)? False Suppose 58 = 5*j - 57. Let z = 32 - j. Let b(x) = -x**2 + 10*x + 14. Is b(z) a multiple of 8? False Let k(d) = -d**2 - 8*d + 7. Let j be k(-8). Let g = j - 5. Suppose 0 = r + 4*c - 89 + 30, 0 = -3*r - g*c + 227. Is r a multiple of 16? False Is 96 a factor of 5 - 1 - 11 - (1 - 1455)? False Suppose 14*x - 65485 - 19117 = 0. Is x a multiple of 54? False Let v(s) be the second derivative of -18*s + 0 - 23/6*s**3 + 6*s**2. Is v(-6) a multiple of 25? True Suppose -i + 369 + 125 = 0. Let m = -344 + i. Suppose 2*k + 148 = 3*w, -5*w - 5*k = -380 + m. Does 16 divide w? True Let w = 324 - 742. Let x = -288 - w. Is 13 a factor of x? True Suppose 22*h - 53 - 145 = 0. Is 7 a factor of (-3)/h + (-386)/(-6)? False Is ((-1)/1)/(-8 + (-445880)/(-55736)) a multiple of 158? False Suppose 5*z + 69 = 2*m, -2*m + z - 3*z + 90 = 0. Let v = m + 88. Does 9 divide v? False Suppose 0 = 5*p - 6*p + 75. Let y = p - -24. Is 9 a factor of y? True Let b(m) = m**3 - 2*m**2 - 14*m - 6. Let y be b(5). Is (-3 + y - 36)*(-21)/2 a multiple of 60? True Let f(s) = 2*s**2 + 3*s - 3. Let b be ((-4)/6)/((-4)/6). Let r be f(b). Suppose 0*a - 5*w = -r*a - 1, -w + 29 = 2*a. Does 3 divide a? True Suppose -6696 = -4*f - 4*u, -2*u + 8382 = 5*f + 6*u. Is 3 a factor of f? False Suppose u = -u - 108. Let j = u + 390. Is 48 a factor of j? True Let h(n) be the second derivative of 13*n**4/4 - 2*n**3/3 - 4*n**2 + 2*n - 11. Is h(-2) a multiple of 26? True Let g(t) = 27*t - 9. Let f be 2 - -5 - (-2)/(-2). Suppose f*b - 10 = b. Is g(b) a multiple of 15? True Suppose 3*y - 6 - 6 = 0. Suppose r - y = -2*d, -3*r = 3*d - 2*r - 6. Suppose d*h - 30 - 86 = 0. Is h a multiple of 35? False Suppose -g = 1, 6*g - 77 = -5*j + 3*g. Suppose -j*f + 1815 = -1705. Does 27 divide f? False Let o(t) = 12*t**2 + 57*t - 10. Suppose 4*z = 11 - 39. Is o(z) a multiple of 29? False Let b(z) be the third derivative of 91*z**6/120 + z**5/20 - z**4/12 - z**3/6 + 43*z**2. Is 10 a factor of b(1)? False Let h(v) = -v**2 - 11*v - 2. Let n(r) = -r**3 - r**2 - 11. Let m be n(0). Let c be h(m). Is 1 - -17 - (-8)/c a multiple of 4? False Is 2443 - 30/(-40)*-4 a multiple of 32? False Let c(a) = a**3 - a + 1. Let x(i) = 6*i**3 + 10*i**2 - 19*i - 4. Let b(p) = -5*c(p) + x(p). Suppose 13*h = 2106 - 2249. Is 4 a factor of b(h)? True Let o(z) = z**3 - 4*z**2 - 5*z. Let j be o(5). Suppose 13*m - 99 = 590. Is -6 + j/(-1) + 3 + m a multiple of 10? True Let c(h) = 7*h - 20. Let t be c(8). Let u be (1 - 169)*t/(-21). Let q = u - 203. Is q a multiple of 17? True Let q(t) = 7*t**2 + 32*t + 379. Is q(35) a multiple of 73? True Let n(d) = d**3 - 6*d**2 + 2*d - 9. Let a be n(6). Suppose 4*u + z - 401 = 0, 4*z = -a*u + 7*z + 282. Is u a multiple of 9? True Let a(b) be the third derivative of b**5/60 + 7*b**4/12 - 2*b**3 + 16*b**2. Let w be a(-15). Suppose f - w*f = -194. Does 15 divide f? False Suppose k = 5*f - 521, 1792 = -3*k - 5*f + 269. Let g = -360 - k. Is g a multiple of 22? False Suppose 18*d + 59*d = 607453. Is 23 a factor of d? True Suppose 0 = 4*s - 0*p + 5*p - 15667, -4*p - 19635 = -5*s. Is 8 a factor of s? False Let a(h) = 3*h**2 + 29*h - 6. Let l(c) = -5*c**2 - 59*c + 12. Let w(v) = -7*a(v) - 4*l(v). Is w(15) a multiple of 14? False Let b be 21/6 - 3 - 150/(-4). Suppose b = 4*v + 2*j, -3*v = 2*v - 4*j - 80. Suppose h - v = 3*n, -4*n = 2*h - 7*n - 33. Does 9 divide h? False Let x(b) = 40*b - 14. Let k(l) = -39*l + 16. Let r(f) = -3*k(f) - 4*x(f). Is r(-3) a multiple of 13? False Let w be 7 - -1 - (-5 - (-6 - 1)). Suppose -w = -z - 4. Is z/(-16)*4 + 79/2 a multiple of 39? True Suppose 368*k - 364*k - 8 = 0. Suppose -5*t - 1244 = -4*x, 9*t - 4*t = k*x - 612. Does 14 divide x? False Suppose 3*i + 3*l + 4 = 22, -3*i - l + 16 = 0. Let p(o) = -2*o + 12. Let s be p(i). Suppose -s*u = -7*u - b + 93, u - 13 = -3*b. Does 4 divide u? False Suppose 0 = -8*l - 297 + 873. Let f = l - -12. Is 7 a factor of f? True Suppose 21*k + 10013 + 10042 = 0. Let p = -427 - k. Does 66 divide p? True Let b(a) = 6*a**2 - 60*a - 20. Is b(-14) a multiple of 20? False Let h(n) = n**3 + 58*n**2 - 146*n - 180. Is 13 a factor of h(-59)? True Suppose 16*o = 13667 - 851. Suppose -n - 5*q = -383, -9*q + o = 2*n - 6*q. Is 51 a factor of n? True Suppose 29*l + 22*l = 9057 + 232581. Is 23 a factor of l? True Suppose -8*t + 7*t = -24. Let y be (-8)/(1 + -6 - -3). Does 15 divide (-3)/y + 1818/t? True Let g be 0 - (-4)/7 - 9254/(-98). Suppose 94*b - g*b = -111. Is 12 a factor of b? False Let n(i) = -506*i + 363. Does 48 divide n(-11)? False Let o = 789 + -784. Suppose 3*i + 4*s = -51 + 168, 0 = -4*i + 5*s + 156. Suppose -z + o*j = -i, -5*z + 0*z + 4*j = -195. Does 4 divide z? False Let y(n) = -13*n**2 + 4*n - 32 - 13*n**2 + 3 + 35*n**2. Does 48 divide y(-7)? True Let p(s) = s**2 + 2*s + 4. Let r(u) = -u**2 - 8*u - 12. Let o be r(-7). Let n be p(o). Suppose k - 15 = -2*d, 0 = -d - 3*k + n + 1. Is 2 a factor of d? False Suppose 4*s - 3*m - 2*m = -15, -5*m = -5*s - 15. Does 36 divide (0 - (-292 + s)) + 28/(-7)? True Suppose 15*p - 1635 = -0*p. Suppose -s + 4*m = 22 - p, 2*s = m + 195. Does 11 divide s? True Suppose -10*r + 18*r - 5*r - 2184 = 0. Is 14 a factor of r? True Let b = -3830 + 6601. Is b a multiple of 49? False Let f(a) = 3*a**2 + 24*a - 17. Let d be f(-9). Let s(g) = 3*g - 7. Does 23 divide s(d)? True Let t(n) = 337 + 6*n**2 - 2*n + 3*n + n - 7*n**2. Is 9 a factor of t(0)? False Let d(r) be the third derivative of r**6/120 - r**5/5 + r**4/3 - 5*r**3 + 6*r**2 + 7*r. Is d(14) a multiple of 21? False Let o = -401 - -1124. Suppose 285 = 14*d - o. Does 18 divide d? True Suppose -3*u - 324 + 78 = 3*k, u - 2*k = -82. Does 40 divide (1/(-4)*u)/((-1)/(-6))? False Let f = -5 + -40. Let b = 53 + f. Is (-15 - 1)*(-28)/b a multiple of 7? True Let i(g) = -5*g + 93. Let b(n) = 12*n - 185. Let z(o) = 3*b(o) + 7*i(o). Is 14 a factor of z(-13)? False Let v be (4/(-6))/(1/(-75)). Let u = v - 48. Suppose u*z + 2 = -2*t, -4*t = -5*z + 2*z + 18. Does 2 divide z? True Suppose m - 2629 - 1956 = 0. Is 9 a factor of m? False Suppose -61 + 166 = 7*j. Let b(i) = -i**2 + 16*i - 9. Let o be b(j). Is 10 a factor of ((-40)/o)/((-4)/24)? True Suppose y + 285 + 877 = 0. Let c = -811 - y. Is 13 a factor of c? True Suppose 2*v - 13 = 101. Let u = -151 + 118. Let d = u + v. Does 24 divide d? True Does 4 divide 2662528/3416 + (1 - 3/7)? True Let x(b) = 4583*b - 296. Does 40 divide x(1)? False Let r be ((-176)/(-4))/((-6)/(-120)). Suppose 3*n - 4*v = -n + r, -v - 1100 = -5*n. Is 11 a factor of n? True Suppose -5*z - 7 = -22. Suppose o + 10 = 3*j, 3 = -z*o - 0. Suppose 4*h - j*h - 31 = 0. Does 7 divide h? False Let r(v) = 3*v**3 - 3*v**2 + 98*v - 12. Is r(12) a multiple of 146? False Let u = 46 + -41. Suppose -88 = -5*w + 4*d, 5*w - 3*d - u - 81 = 0. Does 14 divide w*1*(-7 - -11)? False Let p = -16 - -30. Let v = p + -12. Is 7 a factor of 162/12*(v - 0/1)? False Suppose 4*b = 16, -352 = -17*n + 13*n + 4*b. Does 4 divide n? True Suppose 0 = -5*m + 83 + 197. Is 20 a factor of (8/6)/(m/16548)? False Suppose 4*s - 72 = 4*p, -2*s + 6*s - 5*p = 68. Let b = s + -33. Let a = b + 65. Is 8 a factor of a? False Suppose -117*m + 114*m + 1521 = 0. Suppose -4*x + 7*x = -g + m, 0 = -x - 5. Is 43 a factor of g? False Let j be 3*2*(6 + 11/(-2)). Suppose i - 192 = 5*b, j*i = -4*b + 6*b + 563. Does 18 divide i? False Let t(p) be the second derivative of p**5/20 + 25*p**4/12 + 11*p**3/3 + 7*p**2/2 - 39*p. Is t(-24) a multiple of 2? False Let o(g) = -g**3 - 3*g**2 + 6*g + 20. Let z be 2/6*72/(-4). Is o(z) a multiple of 20? False Let x(h) = -7*h**3 - 13*h**2 - 15*h - 8. Let i(z) = -8*z**3 - 13*z**2 - 15*z - 7. Let s(w) = -6*i(w) + 7*x(w). Is s(-14) a multiple of 39? False Suppose 5*n + 1208 = w, 0 = 6*w + 5*n - 3*n - 7120. Is w a multiple of 19? False Does 16 divide (-4)/(-2) - (-3839 + -79)? True Suppose -4*k + 5*w = 17, -4*w = -3*k - 0*w - 14. Let o be -1*(-2 + 0 + k). Suppose m = -o*m + 22. Does 5 divide m? False Suppose -9*d + 38*d = 40339. Is d a multiple of 66? False Let j = -608 - -8000. Does 44 divide j? True Let u(o) be the second derivative of o**5/30 - 5*o**4/12 - 13*o**2/2 - 14*o. Let q(r) be the first derivative of u(r). Is q(10) a multiple of 20? True Suppose -s = -8 + 5. Let j(w) = -9 - 7*w + 13*w + 2*w - w**2. Is j(s) a multiple of 3? True Suppose n - 26 - 30 = 5*h, 2*n = -8. Let g = -25 - h. Let k = g - -41. Is 14 a factor of k? True Suppose 723 = -8*x - 197. Let l = -31 - x. Suppose 0 = -16*q + 14*q + l. Is q a multiple of 14? True Suppose -6*n + 9*n + 4*c - 989 = 0, 4*n + 5*c = 1319. Let l = n - 214. Is l a multiple of 3? True Let c be (-9)/((-21)/6 - -2). Let u = -144 - c. Let p = u + 262. Is p a multiple of 18? False Let u(p) = p**2 + 3*p - 27. Let c be u(21). Suppose -l = -4*o + 953, -2*o + l = -0*o - c. Is o a multiple of 17? True Let c(u) be the third derivative of -u**5/60 + 5*u**4/6 - 7*u**3/2 + u**2. Suppose -w - 3*w = -2*s + 26, 0 = -s + 5*w + 7. Is c(s) a multiple of 6? True Suppose -8*r + 9 + 7 = 0. Suppose -1 = -c + r. Suppose 4*t = t + c*j + 129, -4*t - j + 162 = 0. Does 9 divide t? False Suppose 69 - 223 = 4*w + 5*l, -110 = 3*w + l. Suppose -z - 247 = 5*y, 6*y + 418 = -2*z + 124. Let f = w - y. Is f even? True Let w(t) = 1049*t**2 + 16*t + 16. Is w(-2) a multiple of 76? True Let k = 25 + -16. Suppose 8*l - 7 = k. Suppose -l*p = 2*c - 98, -p + 3*c = -0*c - 33. Is p a multiple of 15? True Let q = -9 + 19. Let u(o) = 44*o + 23. Let b be u(q). Let t = -322 + b. Does 13 divide t? False Let s(m) = -m**2 - 5*m + 4. Let j be s(-5). Suppose h = 2*a + j*h + 2, a - 4*h = 21. Suppose -93 = -8*p + a*p. Is 15 a factor of p? False Let x = -98 - -104. Suppose -x*p - 675 = -11*p. Does 15 divide p? True Suppose 57 = p + 21. Let b = 35 - p. Is 16 a factor of (b - -38) + 2 + 0? False Does 6 divide ((-35577)/(-354))/(6/4)? False Suppose 8*f = -0*f - 264. Let m = f + 61. Let a = 43 - m. Does 6 divide a? False Suppose 0 = 2*f + 2*f - 340. Let y = f - -169. Suppose 3*g + 4*u - 78 = 178, -3*g - 2*u + y = 0. Is g a multiple of 21? True Let k(l) = 20*l - 9. Let t be 2/(-16) - 243/(-24). Suppose t*b = b + 36. Does 12 divide k(b)? False Let p(o) be the second derivative of o**5/4 - o**4/4 - o**3 + 3*o**2 - o. Let i(m) = m**2 - 33. Let y be i(6). Is p(y) a multiple of 16? True Let h(s) = s**2 + 5*s - 2. Let b be h(-5). Let m be (0 - (5 + b))*-2. Does 39 divide ((-2)/m)/(7/(-2919))? False Let x(w) = w**3 - 4*w**2 - 13*w - 5. Let p be x(6). Let z = -7 - p. Suppose -3*i - 1 = -4, -z*i - 68 = -2*u. Is u a multiple of 6? True Let i = 365 - -5665. Does 67 divide i? True Suppose -4*z + 8 = i - 0*z, -15 = -5*i + 5*z. Suppose -6*j + 7*j + i = 0. Let m(r) = 2*r**2 - 5*r + 2. Is m(j) a multiple of 18? True Let c be (((-168)/10)/(-3))/(20/600). Suppose 2*d = -0*d + c. Is d a multiple of 23? False Suppose -3*y - 1461*j = -1459*j - 2917, 3*j + 954 = y. Is 17 a factor of y? True Let j be (-4)/8*(-30)/3. Let s(q) = -28*q + 10. Let m be s(j). Let p = -84 - m. Is p a multiple of 10? False Suppose -4*j = -2*j - 5*f - 1863, -5*j - f + 4725 = 0. Does 16 divide j? True Let d = -85 + 42. Let y = -38 - d. Suppose 4*l = -l - 2*n + 368, -236 = -3*l - y*n. Is l a multiple of 12? True Suppose 5*i - 50*y + 47*y - 1317 = 0, -3*i = -5*y - 803. Is i a multiple of 6? False Let f = 2840 + 6104. Is f a multiple of 172? True Let b = -68 - -201. Let d = 342 - b. Suppose 4*w - x = -4*x + 411, 2*w - d = -5*x. Is w a multiple of 23? False Does 20 divide (-2 - -8)*(-2057)/(-22)? False Let h be (-310)/5*1/(-2). Suppose -2*y + 5*p = -h, 3*y + p - 2*p = 14. Does 25 divide 0 - (y - 0 - 53)? True Let h = 93 - 79. Is -4 + 63/h - (-1077)/6 a multiple of 15? True Let g be (5 - 2) + (3 - 3). Suppose 7*q - g*q = 676. Is 5 a factor of q? False Let o(w) = 11*w + 25. Suppose -5*h = -5*b - 30, 0 = 5*h + 5*b - 58 - 22. Is o(h) a multiple of 21? False Suppose -2709 = -m - d, -2691 = 144*m - 145*m + 5*d. Does 40 divide m? False Suppose -4*s - 1293 = -12*q + 7*q, 5*q = 2*s + 639. Let n = s - -786. Does 51 divide n? True Let c = 150 + -145. Suppose -c*i + 10*i = 230. Does 2 divide i? True Suppose 0*i = 5*v + 2*i - 506, -v + 4*i = -110. Suppose 18 = j + 8*j. Suppose 5*a - v = j*a. Does 4 divide a? False Let k(l) = l**3 + 5*l**2 + 4*l + 3. Let g be (-2)/(-15) - 186/45. Let q be k(g). Is 15 a factor of 34/10 - q - (-133)/5? False Let s = -2964 + 3287. Is s a multiple of 96? False Let i(p) = -8*p + 0*p + 6*p + 96 + p**2. Does 48 divide i(0)? True Let g be 13 - (-3 - -4) - 4. Suppose g*f - 59 = -11. Suppose -f*a = -123 + 39. Does 2 divide a? True Let i(f) = 270*f**2 + 3*f + 2. Let l be i(-1). Let m(v) = 2*v**3 + 5*v**2 + 6*v - 1. Let n be m(5). Let a = n - l. Does 20 divide a? False Let x be (133/7)/(0 - 1/19). Let d = 243 - x. Suppose 0 = 5*c + m - d, -m + 3*m = -c + 128. Is c a multiple of 12? True Suppose -2*x = -8*x + 30. Let w = x + 82. Does 12 divide w? False Let m(x) be the first derivative of -4*x**2 + 23*x + 69. Is m(0) a multiple of 23? True Let a(x) = 2309*x**2 - 14*x + 13. Is 43 a factor of a(1)? False Let r(o) = 7*o**2 + 7*o - 18. Suppose 0 = -5*a - 5*v - 25, 0*v = -2*a + 4*v - 22. Does 12 divide r(a)? True Let d(q) = -q**3 + 23*q**2 - 16*q - 35. Let g be (-447)/(-21) + 185/(-35) + 5. Does 56 divide d(g)? False Let z be (21/(-6))/(1/76). Let t = -189 - z. Is t a multiple of 26? False Suppose -134*c = -139*c + 5*x + 8475, -10 = 5*x. Is c a multiple of 12? False Suppose -5*p + 4480 = 5*k, -81*k + 4488 = 5*p - 84*k. Is p a multiple of 13? True Let w be (2/4)/(5/30). Suppose 0 = 3*d + d - w*d. Suppose d = b + 2*b - 60. Is b a multiple of 4? True Suppose i + 8*i + 21276 = 0. Is 35 a factor of 1/3 + i/(-36)? False Suppose -4*r + 2*c = -3 - 9, 4*r + 3*c - 22 = 0. Let d be (1/5 - 19/(-5)) + -1. Suppose r*p = g - 91, 2*p + d*p - 505 = -5*g. Is 38 a factor of g? False Suppose -12*t - 2*t + 6300 = 0. Suppose 224 = 4*w + 4*d, 0 = -9*w + 4*w + 5*d + 300. Suppose -7*s - w = -t. Is s a multiple of 16? False Let l = -33 - -36. Suppose a = -l*c + 24, 0 = -a - 2*c - 3 + 28. Suppose 0 = -6*u + 351 - a. Is 27 a factor of u? True Suppose 17*a - 486910 = -88*a + 32*a. Is 115 a factor of a? True Let h = -36 - 65. Let s = -40 - h. Is s a multiple of 6? False Let a be (0/(3 + -2 + 0))/(-1). Suppose a = -2*w + 2 - 6. Is (44 + w)*20/15 a multiple of 14? True Let o(y) = -4*y**2 + y**3 - 4*y + 1 - 4 + 4. Suppose 3*q + 2*p + 3 - 15 = 0, 9 = -3*p. Is o(q) a multiple of 7? True Let h(z) = -29*z + 41. Suppose 2*p + 5 = r, -3 = -r + 3*p + 7. Is 62 a factor of h(r)? True Let k = -2 - -17. Suppose 0*j - 5*j = -k. Is j + 1 + 8 + 4 a multiple of 4? True Let n be (-1)/4*248/(-2). Suppose 52 = 29*g - n*g. Is 24 a factor of (g/(-6))/((-4)/(-72))? False Is ((-1)/18 + (-91902)/(-1836))/(2/7) a multiple of 24? False Let l(t) = 46*t**2 + 36*t - 270. Is l(9) a multiple of 27? True Let t be (93/124)/((-1)/(-12)). Suppose 0*q = -t*q + 1827. Is 29 a factor of q? True Let p be 0 + 6/4*16. Is ((-1)/((-3)/p))/(10/160) a multiple of 16? True Let k = 25 - 22. Suppose -3*m = -2*w - 1057, -5*m - 3*w + 1894 = 164. Suppose 5*q - 10 = 0, 0 = -k*s + q - 6*q + m. Does 29 divide s? False Let k(s) = 174*s**2 - 21*s - 10. Does 112 divide k(-5)? False Let h(y) = 7*y + 45. Let b be h(-6). Suppose 501 = 3*j + b*t, -j + 6*j + 4*t = 838. Does 6 divide j? False Let h(y) = y**3 - 14*y**2 + 9*y + 9. Let i be h(14). Suppose 130*j + 2150 = i*j. Is 47 a factor of j? False Let w be (-3 - (0 - 1))*1. Let l be (-24556)/6*3/w. Is 36 a factor of l/35 + 2/(-5)? False Suppose 4*g = 4*n + 13136, 4*g + 4*n = 5613 + 7491. Is 7 a factor of g? False Let m(u) = u**3 + 10*u**2 - 15*u + 4. Let p be m(-11). Let w = p - 48. Suppose w = 5*l - 4*b - 496, -3*l + 72 = b - 212. Is 12 a factor of l? True Suppose -4*y + 273 = 3*r, -3*r - 6*y + 273 = -3*y. Let j be (r/42)/(1/6). Suppose j*h = 8*h + 505. Is h a multiple of 10? False Suppose 34*c - 37*c = 0. Suppose -4*b - 875 = -5*y - 53, c = -2*y + 3*b + 333. Does 25 divide y? False Let u(q) = -32*q**2 + q + 1. Let s be u(-1). Let o be s/(-10) + (-3)/15. Let l = 14 - o. Is 11 a factor of l? True Let z(n) = -132*n - 712. Does 16 divide z(-26)? True Let q = 110 + -50. Let k(i) = 10*i + 11*i - 29*i + q + 9*i. Does 10 divide k(0)? True Let m(l) = 2*l**2 - 23*l - 154. Does 6 divide m(-42)? False Let z = -3316 + 8676. Does 11 divide z? False Let k(s) = 5*s**2 + 4*s + 2. Let p be k(-4). Is 0 + 12/p + (-295)/(-11) a multiple of 17? False Suppose -37*s + 129 = -40*s. Let b = 91 - s. Is b a multiple of 8? False Suppose -16*f + 25538 = -25250 - 3020. Is f a multiple of 43? False Let f = -2700 - -4961. Is 46 a factor of f? False Suppose 4*p - 4*c = -88, -4*c + 9 = 4*p + 57. Let y(i) = -i. Let h(u) = 2*u + 37. Let s(g) = -h(g) + 3*y(g). Is s(p) a multiple of 13? False Let q = -7 - -7. Suppose q = 4*g - 2*o + 90, -o + 9 = -g + 4*o. Is 702/10 - g/30 a multiple of 29? False Let a(v) = 534*v**2 - 3*v - 2. Let n be a(2). Suppose -2*m + 10*m - n = 0. Does 14 divide m? True Suppose -5400 = 5*c + 19*c. Let o = c - -288. Does 21 divide o? True Let w(b) = -47*b**2 - b - 2. Let j be w(-1). Let q = -90 + 81. Is 7 a factor of (j/q + -3)/(1/6)? True Suppose -18*m + 14*m + 24 = 0. Let y be (-14)/(-6) - 2/m. Suppose -y*l = 2*l - 96. Does 20 divide l? False Let k(b) = -b**3 - 6*b**2 - 2*b - 8. Suppose d + 12 = -2*z, 4*z = 4*d - 3*d - 24. Let s be k(z). Suppose -144 = p - s*p. Is p a multiple of 12? True Let i(m) = m**3 + 15*m**2 - 18*m + 2. Let o be i(-16). Suppose 2*u = 106 + o. Is 5 a factor of u? True Let r be 0/(-5 - -2 - -2). Let y(p) = p**2 + 24*p + 53. Let x be y(-25). Suppose r = -o - u + x, 29 - 119 = -o - 4*u. Does 13 divide o? False Let o(u) = u**2 - 8*u + 8. Let b be o(4). Let q(n) = n**3 + 9*n**2 + 9*n - 10. Let h be q(b). Let v(d) = d**3 + 17*d**2 - 26*d - 24. Does 30 divide v(h)? True Suppose 3*a - 3515 = z, 5464 = 5*a - 3*z - 389. Is a a multiple of 2? False Let a = -272 - -125. Let f = -123 - a. Does 4 divide f? True Suppose 4*l = -4*x + 8176, 3*l - 8*l + 5*x = -10180. Is 12 a factor of l? True Let g be (20/(-35))/((-9)/(-21))*-309. Suppose -2*c + g = 2*l + c, 3*l + 4*c - 616 = 0. Is l a multiple of 20? True Let k(z) = -1416*z - 490. Does 115 divide k(-4)? False Suppose 2*g - 5 = 5. Suppose -g*k + 0 = -195. Suppose -h = 4*z - 39, k = -0*h + h + 2*z. Is 12 a factor of h? False Let h = 96 + -86. Suppose -h*r + 3*r = -616. Does 22 divide r? True Let z(v) be the second derivative of 7*v**3/2 - 9*v**2/2 + 6*v. Let d(x) = -x**2 + 20. Let o be d(-4). Does 12 divide z(o)? False Let m(t) = t**2 + 6*t + 5. Let g(w) = w + 1. Let i(l) = -2*g(l) + 2*m(l). Suppose 6*h = h - 30. Does 4 divide i(h)? True Suppose -2*x + 8350 = -4*i, -8355 = 64*x - 66*x - i. Does 34 divide x? False Let y = 4314 - 184. Is y a multiple of 32? False Suppose 2*r = -3*q + 21, -2 + 33 = 2*r + 5*q. Suppose -y = -r*t + 2*t + 149, -137 = -t + 4*y. Does 5 divide t? False Suppose 0*s - 82 = -2*s. Let k be -2 - 32/16*(-10)/4. Suppose k*i + 0*i - 8 = -4*q, s = 5*q - 4*i. Is q a multiple of 5? True Let s = -4913 - 3040. Does 10 divide (-1)/6 + s/(-198)? True Let d(g) = 146*g - 72. Let f(k) = -5*k - 21. Let q be f(-5). Does 59 divide d(q)? False Let b(x) = x**3 + 22*x**2 - 36*x - 144. Is b(-23) a multiple of 13? False Suppose 29 + 13 = 7*k. Let x be (-27)/9*(-884)/k. Suppose 5*g - x = -0*q - 3*q, 4 = q. Is 43 a factor of g? True Suppose -4*i = 5*s - 37, s + 4*s + 3 = i. Suppose f - i - 82 = 0. Is 13 a factor of f? False Suppose 7*b - 16 = -b. Suppose 50 = 2*z - m - 7, 0 = -z - b*m + 36. Does 15 divide z? True Let y be (174/24 - 6)*240. Suppose 2*q - x - 3*x = 174, 4*q = -4*x + y. Is 22 a factor of q? False Let l(m) = -m**3 - 25*m**2 - 24*m + 7. Let a be l(-24). Suppose a*o + 3*o - 3300 = 0. Is 10 a factor of o? True Let q(i) = i**2 - 2*i - 2. Let u be q(8). Let f = 48 - u. Is (-2)/(4/6) - (-30 + f) a multiple of 5? True Let s(y) = 4*y**2 + 523. Let b be s(0). Let m = b - 89. Is 14 a factor of m? True Let p(o) = -o**2 + 45*o + 33. Let f(h) = -4*h**2 + 91*h + 65. Let n(u) = -2*f(u) + 5*p(u). Is n(-18) a multiple of 16? False Let o be 2/(-8) - 5/(40/886). Let h = -70 - o. Does 4 divide h? False Suppose -3*g = -8 - 4, -38 = -2*m + 3*g. Let r be (15/m)/(1/5). Suppose v + r*v = 48. Is 12 a factor of v? True Let d be (-19)/4 - (-1)/(-4). Let x(o) = 12*o**2 - 8*o - 28. Is 8 a factor of x(d)? True Let s = 5443 - 2050. Suppose -4*j = -17*j + s. Does 9 divide j? True Suppose 0 = -2*d + 2, -5*l + 4*d + 23 = -8*l. Is 64 a factor of (-3)/l + (-2877)/(-9)? True Does 12 divide 240576/(-280)*15/(-6)? True Let k(q) be the third derivative of -q**5/60 + 31*q**4/24 - 31*q**3/6 + 20*q**2. Is 11 a factor of k(26)? True Let i(b) = -b**2 - 21*b + 55. Let c be i(-22). Suppose -5*w - 3*g = -70 + 10, c = 2*w + 3*g. Is w a multiple of 9? True Suppose 0 = 342*p - 356*p + 9198. Is p a multiple of 2? False Let k(l) = -l**3 + 5*l**2 - 3*l + 10. Let v be (-4)/10 + 36/15 - -3. Let i be k(v). Does 2 divide (-82)/(-6) - i/((-45)/6)? False Let h be 7 + ((-98)/(-4) - 3)*8. Let k(q) = -114*q**3 - q - 1. Let l be k(-1). Let c = h - l. Is c a multiple of 11? False Let p = 198 + -83. Suppose -5*l - 5*t = p, -4*l - 3*t - 64 - 29 = 0. Let g = -12 - l. Does 2 divide g? True Suppose 0 = -a - c + 4 - 1, -12 = -4*a - 2*c. Suppose a*u = -l, -4*u - 6 = -l - u. Suppose -l*r + 2*z = -560, 0*r + 5*z - 198 = -r. Is 38 a factor of r? False Suppose 4*p - 5*r + 7*r - 4306 = 0, 3*p + 3*r = 3225. Is 5 a factor of p? False Suppose -2 = p, 4*p = -2*r + 16 + 36. Let x = r + -29. Does 7 divide (x - 14/2)*-3? False Let l(h) = -h**3 + 29*h**2 - 23*h + 75. Is l(27) a multiple of 76? True Let o be (-23736)/(-13) + (-8)/(-52). Suppose -8*m + o = 3*m. Is 14 a factor of m? False Let x(f) = -94*f - 811. Does 6 divide x(-36)? False Let r = 10 + -29. Let i(n) = n**3 - n - 1. Let s(u) = -3*u**3 + 21*u**2 + 36*u - 9. Let k(t) = 4*i(t) + s(t). Is k(r) a multiple of 13? False Let f(i) = i**2 - 5*i + 26. Let c be f(-14). Suppose c + 320 = 6*z. Does 56 divide z? False Let o(v) = v - 9. Let f(y) = -3. Let p(h) = -14*f(h) + 2*o(h). Let z = 5 + -15. Does 4 divide p(z)? True Let c = 223 - 223. Suppose -d = o + 2*d - 311, -d - 5 = c. Is 27 a factor of o? False Let m(g) = -3*g**3 - 18*g**2 + 13*g + 88. Does 27 divide m(-13)? False Let i(q) = -q**3 - 7*q**2 - 13*q - 10. Let g = 2 - -11. Let b(v) = v**2 - 13*v - 7. Let n be b(g). Is 35 a factor of i(n)? False Suppose -4*n + 1102 = -5*q + 7*q, -4*n - 4*q = -1104. Is 6 a factor of n? False Suppose -3*p - 2*y - y = -54, 2*p - 5*y = 8. Suppose p = -4*z + 490. Is z a multiple of 17? True Suppose 2*a - 3*g - 765 = 0, 737 = 3*a + 3*g - 433. Suppose d = -261 + a. Does 4 divide d? False Let c = -390 - -597. Suppose -3*w + 86 = -5*a + 439, -3*w = 3*a - c. Does 9 divide a? False Let k(c) = 18*c**2 - 19*c - 37. Is 21 a factor of k(-15)? False Suppose -25*r = -15*r - 450. Is 23 a factor of (8/(-9))/(-4) + 2015/r? False Let p(r) = r**3 + r**2 + r + 1. Let j(m) = -391*m**3 - 4*m**2 - 4*m - 4. Let z(c) = j(c) + 6*p(c). Is 9 a factor of z(-1)? True Let g(l) = -l**3 + 9*l**2 + 7*l. Let o(r) = -r**2 + 6*r + 1. Let c be o(4). Is 4 a factor of g(c)? False Let h(d) = 3*d**3 - 2*d**2 - 5*d - 7. Let b(a) = a**3 - a**2 + a. Let l(n) = -b(n) + h(n). Let k be l(4). Let g = -58 + k. Is g a multiple of 3? False Suppose 13200 = 7*j + 7*j + j. Is j a multiple of 88? True Suppose -4*p + 4*z + 11980 = -1132, -3266 = -p - 3*z. Is p a multiple of 25? True Let j be -4*((-7)/4 + -2). Suppose 0*z = 4*g + z - j, g - 3 = -z. Suppose -4*w - g*u + 128 = 0, 5*w - 4*u - 77 - 65 = 0. Does 5 divide w? True Suppose 5*c - 4*m + 20045 = 59915, -4*m = -2*m. Does 176 divide c? False Let t(h) be the second derivative of -h**5/20 + 5*h**4/4 + h**3/6 + 7*h**2 + 769*h. Let b be (5/(-3))/(1/(-9)). Is 10 a factor of t(b)? False Let z = -7916 - -13529. Does 18 divide z? False Suppose 0 = -y + 3*r + 1188, -3*y + 3529 = 44*r - 46*r. Is 23 a factor of y? True Let q be (-32)/(-10)*55/22. Suppose q = 4*r - 2*k - 0*k, -k = 4*r - 8. Suppose -29 = -3*a + t, 0 = 3*a - r*a - 3*t + 1. Does 3 divide a? False Let f(v) = -837*v - 233. Is f(-5) a multiple of 34? False Suppose 0*d + 38 = -3*d - 2*f, 5*d + 72 = f. Let h = d - -47. Suppose -2*c = -5*r + h, -6 = -2*r - 0*c - c. Is 5 a factor of r? True Suppose -26*p + 990 = -23*p. Suppose 0 = -5*y + 3*x + 1590, y + 3*x - 6*x - p = 0. Is 35 a factor of y? True Let c be (3 - 4)*-3*(-40)/12. Let i be (-74)/(-2) + -1 + 1. Let q = i + c. Is 9 a factor of q? True Let i(d) = -d**3 + 20*d**2 - 42*d - 80. Does 61 divide i(11)? False Let d = 1602 - -2853. Does 27 divide d? True Let b be ((-3)/7)/(((-55)/35)/11). Suppose -25*i + 5*g = -22*i - 279, -g = b. Is 8 a factor of i? True Suppose -p + 89 = -0*p + y, 0 = -5*y + 15. Suppose -2*i - 3*f = 7, i - 3 = 3*f + 7. Suppose o = i, -5*o + 219 = 5*u - p. Is 20 a factor of u? True Let d be ((-154)/35)/(-2) - (-2)/(-10). Is 18 a factor of d*(-1236)/8*(0 + -1)? False Let a(p) = 3*p**2 + 3*p + 4. Let i be a(-1). Suppose i*q = -6*q + 2590. Is q a multiple of 16? False Let y = 80 - 30. Suppose -2*g - 10 = y. Is 140/g*(-57)/2 a multiple of 31? False Let v(z) = -z**3 - z**2 + 3*z - 1. Let d(w) = -6*w + 23. Let o be d(5). Does 34 divide v(o)? True Suppose 4*g - 516 = 2*t + 2*t, 6*g + 2*t - 814 = 0. Is 2 a factor of g? True Suppose 62 = 4*c + 2*m, 0 = -4*m - m - 5. Suppose -75 = c*d - 11*d. Is 6 a factor of (-5)/6*d*2? False Is ((-24)/36 + (-3033)/(-54))*176/6 a multiple of 37? True Let d(m) = -4*m - 57. Let c be d(-14). Does 13 divide 6/c + 8 - -193? True Suppose -4*v + 6*v - 1986 = 4*i, -4*v = 4*i - 4020. Does 105 divide v? False Suppose 5*f - 156 = 3*p, f + 4*p = 2*p + 26. Suppose 2562 = f*u - 16*u. Does 12 divide u? False Let v(n) = 2*n**3 - 24*n**2 + 99*n - 21. Is v(15) a multiple of 14? True Let b = 265 + -247. Let p = -17 - -31. Suppose -a = 3*f - p, 4*a - 2*a - 4*f = b. Is 3 a factor of a? False Let k(f) = f**2 + 42*f + 192. Does 14 divide k(43)? False Does 10 divide 14256/36 + 6/(-2)? False Let i(v) = 0 + 2 + 0 - 3. Let k(p) = 8*p + 17. Let d(y) = 2*i(y) - k(y). Is 10 a factor of d(-9)? False Let w be (-2)/(-2)*(-23 + 35). Let v(s) = 3*s + 12. Let i(a) = 3*a + 11. Let j(y) = 5*i(y) - 4*v(y). Is j(w) a multiple of 16? False Let c = 4645 - 3105. Does 44 divide c? True Suppose 4*n - 4140 = 4*x, 2*n - 3*x - 485 - 1583 = 0. Is 9 a factor of n? False Suppose 0 = 9*c - 11*c + 40. Suppose d - c = 3*d. Let z = d + 34. Does 8 divide z? True Suppose 22*z = 28*z - 6174. Let j = -651 + z. Is j a multiple of 14? True Suppose -4*h = -5*z - 13323, 7*h - 2*z - 13338 = 3*h. Does 67 divide h? False Suppose 21 = -4*m + 9, 0 = -3*u - 2*m - 24. Let x(o) = 4*o**2 + o - 4. Let r be x(5). Let g = r + u. Does 19 divide g? True Let m(x) = -36*x - 49*x + 6 - 83*x. Does 43 divide m(-2)? False Let p(o) = -o**2 - 55*o + 182. Is 9 a factor of p(-44)? True Suppose -3*a - a = -2*o - 346, 9 = -3*o. Let u = -218 - -361. Let x = u - a. Is 29 a factor of x? True Let m = -158 - -177. Does 11 divide m*6/((-30)/(-55))? True Suppose 15*p = 19*p - 16. Suppose 4*x + 5*s = -0*s - 2475, p*x - 4*s + 2520 = 0. Does 25 divide 3/(-6) + x/(-10)? False Let q be 8/(-5)*7770/(-84). Suppose 139 = p - q. Is 39 a factor of p? False Let x be (-4)/18 + -71*(-8)/(-36). Let c(a) = -a**2 - 20*a - 2. Is 7 a factor of c(x)? False Let m = -193 + 195. Suppose m*y - 4*b = 76, b = -2*y - 4*b + 40. Is 10 a factor of y? True Suppose 7*p - 6308 = 11*p. Does 21 divide (-88)/20 + 4 + p/(-5)? True Is 7638/(-10)*(-6 - -1) a multiple of 67? True Let x = 250 - 247. Suppose -2*h + 130 = -q, 5*h + 85 = -q + 396. Is h/21*103/x a multiple of 25? False Let y(j) = 33*j - 80. Let k be y(18). Let q = k - 293. Is 18 a factor of q? False Let a(p) = -19*p**2 + 8*p - 71. Let o(y) = 6*y**2 - 3*y + 24. Let w(s) = 2*a(s) + 7*o(s). Is w(4) a multiple of 10? True Does 14 divide (-4 - (8 - (10 - -5)))*196? True Let j(o) = -2*o**2 + 9*o. Let r be j(6). Let h = -13 - r. Suppose h*t - 3*u - 192 = 0, -t + 2*u - 13 = -57. Does 18 divide t? True Let o(w) = -70*w + 1792. Does 28 divide o(20)? True Suppose -f + 25 = 21. Suppose -f*s + 407 = -i, 409 = 3*s + s + i. Does 17 divide s? True Does 4 divide -4 + 10950/(-8 + 14) + (-1 - -2)? False Let s(b) = -b**3 + 12*b**2 + 5*b + 2. Let d be s(10). Let y = d - 185. Is 67 a factor of y? True Let v(g) = 583*g - 1. Is 46 a factor of v(3)? True Is 29 a factor of (-40 - -45)*6/10 - -2958? False Let v(m) = -12*m + 23. Let z be v(-15). Let f = 223 - z. Is 10 a factor of f? True Let m(x) = -x**3 - 13*x**2 - 8*x + 13. Let b be m(-12). Let t = 51 + b. Does 16 divide t/(-10)*(-315)/14? False Let j(q) = 77*q**2 - 206*q - 828. Is 4 a factor of j(-4)? True Let w = -120 - -122. Suppose 6*q = 5*z + 2*q - 301, w*q = -3*z + 185. Does 5 divide z? False Let k(t) be the third derivative of 31*t**4/24 - 3*t**3 + 2*t**2. Let q(h) = 2*h - 60. Let i be q(32). Does 14 divide k(i)? False Suppose -3*b + 1 + 8 = 0. Suppose -4*m + 60 = -m - 4*y, -5*y - 57 = -b*m. Suppose 16*o - 17*o + m = 0. Does 12 divide o? True Let b = -24 - -24. Suppose b = 5*h - 0*h - 1090. Suppose -4*w - 2*v + h - 68 = 0, 0 = 3*w - v - 115. Is w a multiple of 19? True Suppose -165 = -16*t + 15*t. Suppose 0*d = d - t. Does 9 divide d? False Let f = 105 - 98. Suppose 4*n + f*p = 4*p + 240, -n + 3*p + 75 = 0. Is n a multiple of 9? True Suppose 22250 + 898 = 5*a + 2*z, -4624 = -a + z. Is a a multiple of 26? True Does 5 divide (6/((-36)/118))/((-3)/9)? False Is ((-1)/5*136)/((-82)/1845) a multiple of 7? False Let y = -1458 - -1877. Is 3 a factor of y? False Let k(v) = -2*v**2 + 3*v - 5. Suppose -2*g = -9*g + 21. Let t be k(g). Let x = 22 + t. Does 4 divide x? True Suppose -3*x + 504 - 199 = -2*t, 2*t - 388 = -4*x. Does 48 divide (24/(-14))/((x/(-504))/11)? True Suppose 0 = -12*a + 10*a + 2604. Suppose r - 4*r + a = 5*s, -4*r = -16. Is s a multiple of 10? False Suppose 51*x - 37*x - 12931 = 747. Is x a multiple of 7? False Let j(f) = -f**2 - 5*f - 4. Let k be j(-3). Suppose 0 = 2*y - 5*w - 410, 6*y = 11*y - k*w - 1046. Is 21 a factor of y? True Suppose 11*n = 16*n - 795. Suppose -2*r = -3*r + n. Does 48 divide r? False Suppose 2*n - 3503 - 1617 = 780. Is 10 a factor of n? True Is 8 a factor of -90*(-8)/6*24/5? True Suppose 7*m = 3*m - 80. Let z(h) = 2*h + 42. Let a be z(m). Suppose g + g = -3*w + 255, -a*g = -5*w + 425. Does 21 divide w? False Let s(n) = -2*n + 17. Let u(a) = -a**3 - 6*a**2 + 5*a - 7. Let j be u(-7). Let l be s(j). Suppose l*i - 53 = -5. Does 2 divide i? True Let m be (-7 - 21) + (-10 - -4). Let a(r) = -2*r**2 - 71*r + 10. Is a(m) a multiple of 8? True Suppose -2*k = 3*k - 165. Let j = 52 + k. Is j a multiple of 15? False Let f(b) = -166*b**3 + 11*b**2 - b - 3. Is 12 a factor of f(-2)? False Let j(c) = -c + 4. Let f be j(1). Suppose t = 2*r + 6*t - 287, 0 = f*t - 15. Does 18 divide r? False Let d = 3610 - 3186. Is d a multiple of 5? False Let h(g) = g**3 + 3*g**2 - 5*g + 3. Let w be h(1). Let r(f) = 20*f - 7. Is 11 a factor of r(w)? True Suppose 7*q + 0*q - 4018 = 0. Suppose 746 = 22*g - q. Is g a multiple of 10? True Suppose -3*l + 15*l - 20380 = 8*l. Does 10 divide l? False Let r(f) = -f**3 + 6*f**2 - 7*f + 1. Suppose 5*t = 5*h - 35, 9 = -3*h - t + 26. Let i be r(h). Let x = -28 - i. Does 13 divide x? True Suppose 95*a - 499298 = -17*a + 419662. Is 33 a factor of a? False Let z be 155/10 - 2/4. Suppose -z = s - 4*s. Suppose -s*x + 46 = -474. Is x a multiple of 21? False Suppose -2*u - 2 + 13 = s, -2*u = 2*s - 14. Suppose -6*a = -4*a - x + 187, u*x = 3*a + 268. Is (-1)/(-3 - 284/a) a multiple of 11? False Let m = 1127 - 505. Suppose -l - m = -3*l. Does 36 divide l? False Let r(n) = -22*n + 10. Let f be r(4). Let c = 176 + f. Is 7 a factor of c? True Suppose 10332 = 4*z - 2*y, -190 + 200 = 5*y. Does 8 divide z? True Suppose -4*u - 3*i + 15 = 33, -5*i = -3*u - 28. Let p be (-4 + 0 - 2)*2. Let w = u - p. Does 3 divide w? True Suppose 23*p = 13*p - 70. Let z(m) = 9*m**2 - 2*m - 7. Does 56 divide z(p)? True Let o(m) = m**3 - 8*m**2 - 7*m + 15. Let u be o(8). Let i = 27 + u. Does 6 divide (-498)/(-42) + (-2)/i? True Suppose 2*d - s - 2722 = 0, 10*s = 5*d + 9*s - 6802. Is d a multiple of 4? True Let x(r) = -529*r - 568. Is x(-8) a multiple of 8? True Suppose -a = -4*a + 12. Suppose -52*s + 51*s = -a. Let u = s + 46. Is u a multiple of 16? False Suppose 2*m = 5*m - 4*q + 14, -5*m - 5*q = 35. Let g be (((-4)/6)/1)/(m/27). Suppose 3*d - 4*z - 33 = 0, 5*d - 60 = 2*z + g*z. Is d a multiple of 5? True Let y(t) = -2*t**3 + 116*t**2 + 137*t - 140. Is y(59) a multiple of 74? False Let p(a) = 3*a**3 - 6*a**2 - 6*a + 5. Let k be p(5). Is 3 a factor of (-27*2/(-15))/(15/k)? True Let b(k) = -2*k**3 + 24*k**2 + 11*k - 21. Is b(7) a multiple of 21? True Let z(t) = -t**3 + 48*t**2 + 96*t - 436. Is z(48) a multiple of 14? True Let c(k) = -k**3 - 6*k**2 + 26*k + 11. Suppose 2*a = v - 22, 4*a - v = 4*v - 50. Let w be c(a). Suppose 3*b - 116 - 51 = -2*o, -2*o - w = -3*b. Does 6 divide b? False Suppose -9*k + 7*k = -z + 2, -58 = -5*z - 2*k. Suppose -613 = -z*m + 2557. Does 61 divide m? False Let d(h) = -8*h**2 + 5*h + 11. Let f be d(-7). Let j = f + 661. Is 49 a factor of j? True Suppose 3*q - 4*g - 7855 = 3675, 5*q + 3*g - 19178 = 0. Is q a multiple of 62? False Suppose 2*v + v = -f + 1089, v - 370 = 2*f. Suppose 2*g + k + k - 200 = 0, -4*g + v = -5*k. Is 16 a factor of g? True Suppose -4*o + 5882 = 2*k, o + 2*o - 4411 = -k. Suppose 62*l + o = 68*l. Does 44 divide l? False Let y(q) = 11*q + 85. Let n be y(0). Let d be 13*(-2 + 1 - -8). Suppose -2*o + d = -n. Is 13 a factor of o? False Suppose -31*o + 18509 + 82036 = -75225. Is o a multiple of 11? False Let x(g) = -4*g - 64. Let p be x(-17). Suppose 2*o = p*v - 154 - 160, 326 = 4*v + 2*o. Is v a multiple of 5? True Let v(u) = u**3 - 2*u**2 - 9*u + 1. Let c be (-8)/6*(-810)/36. Let k = c + -24. Does 36 divide v(k)? False Let c be -5*(44/(-10) + 11 + -7). Suppose 11 = 3*q + c, 4*w = 2*q + 234. Is w a multiple of 6? True Let p = 4713 + -913. Is p a multiple of 25? True Let a be 12/9 + (-223)/3. Let u = a - -40. Let p = 17 - u. Is p a multiple of 10? True Suppose -1077 = -49*c + 6604 + 38428. Is 15 a factor of c? False Let z be (-2*(-1)/(-5))/((-9)/90). Suppose -5*k = -4*f - 72 + 514, -440 = -4*f + z*k. Is 6 a factor of f? True Let k(v) = -v**3 + 5*v**2 + v - 2. Let b be k(5). Is 9 a factor of (1/(4/168))/(b/2)? False Let j be (4/(-5))/((-1)/5). Suppose -4*u + 4 = 0, j*r + u = -2*u + 123. Let v = 45 - r. Does 15 divide v? True Suppose -3*u + 9 = 2*p - 0*u, -3*p + 7 = -2*u. Suppose b = -3*m + 99, 33 = p*m - 2*m - 4*b. Does 11 divide (m/(-12))/(3/(-96))? True Let y(s) = 2*s**2 - 14*s + 11. Let z be y(9). Let a = 58 - z. Suppose 5*j = 164 + a. Is 7 a factor of j? True Let p(t) = -5*t + 77. Let j be p(-14). Suppose 0 = -18*x - j + 903. Is 7 a factor of x? True Suppose -7*u + u = -90. Suppose -u = -8*c + 9. Suppose -4*w + 44 = -c*w. Does 22 divide w? True Let u = 3461 - 861. Is u a multiple of 65? True Suppose -39*f + 87052 + 2268 = 1882. Is 59 a factor of f? True Let z(y) be the third derivative of -11*y**4/24 - 64*y**3/3 + 33*y**2. Does 14 divide z(-32)? True Let f be (-15)/6*154/(-55). Let j = f + 1. Suppose m = 19 + j. Does 14 divide m? False Let r = -52 + 47. Let a(q) = 2*q**2 + 2*q + 8. Is a(r) a multiple of 15? False Let i(a) = 1164*a**3 + a**2 + a - 2. Is 12 a factor of i(1)? True Suppose 0*o + 4*o = -16, -8 = 2*y + 3*o. Let v be (-8 + -2)*(-2 + -26). Suppose 5*t - v = 3*k, y*t = -0*t + 5*k + 112. Is 7 a factor of t? True Let s = 3905 - -1562. Is s a multiple of 32? False Suppose -5 = 3*i + 1. Does 24 divide 28/(-21) + ((-2336)/12)/i? True Let n = 2917 + -1657. Suppose 3*v - 244 = -p, 4*p - 5*v - n = -p. Is 8 a factor of p? False Suppose d = x - 107, 3*d + 48 = 4*x - 382. Is x a multiple of 34? False Let s = 2666 - -1551. Does 57 divide s? False Suppose 56*l = 255944 + 38112. Does 11 divide l? False Let d(l) = 2*l**3 - 55*l**2 - 65*l - 218. Is d(30) a multiple of 26? False Let i be 3/2*(-108)/162. Let x(u) = 78*u**2 - 6*u + 1. Let d(n) = -39*n**2 + 3*n. Let h(k) = -5*d(k) - 2*x(k). Does 10 divide h(i)? True Suppose -2*d - 2*d + 768 = 0. Let k be d - 8 - (-1 - -5). Suppose 4*i + 0*i = -3*j + 180, k = 3*j - 2*i. Does 15 divide j? True Let b = -80 - -90. Is (((-64)/b)/(-4))/(1/90) a multiple of 48? True Suppose -4*g + 16 = 0, -48 = -3*k + k + g. Let l = k + -18. Is 16 a factor of 120*(-1)/((-20)/l)? True Suppose 32*m - 3304 = 18*m. Suppose -2*w + 84 = -4*n, -4*n - 108 = -5*w + 126. Suppose -4*u - 6 = -3*j - m, -u = 3*j - w. Is u a multiple of 14? True Is 44 a factor of (46 - 43)*18260/15? True Let d be (4 + 4/(-6))/(3/9). Suppose -d = 5*t, 3*q = 5*t + 680 + 122. Is 24 a factor of q? True Suppose 170 + 70 = 6*z. Suppose 0 = 2*j + z + 10. Is (-4 - -1) + 1 - j a multiple of 23? True Let y = -54 - -76. Suppose -l + 10 + 10 = -2*j, 0 = l - 4*j - y. Let v(b) = b**2 - 10*b - 18. Is 42 a factor of v(l)? True Let b be 3/(-6)*-4 + 15 + 1. Let y = 270 + b. Does 12 divide y? True Let d(q) be the third derivative of q**5/60 - q**4/24 - q**3/3 - 16*q**2. Let i be d(3). Suppose 2*u + i*u = 444. Is u a multiple of 37? True Suppose 0 = p - 3*p - 5*c + 985, -c = -4*p + 1915. Suppose s = -4*s + p. Suppose 7*v - s = v. Is 16 a factor of v? True Let h(o) = -8*o**3 + o**2 + 2*o + 2. Let i be h(-1). Suppose 0 = a - 22 + i. Suppose 10*w = a*w - 276. Does 13 divide w? False Let s = -167 + 169. Suppose -4*z + 112 = -4*m, -2*z - s*m = 3*z - 119. Does 18 divide z? False Let s(r) = 4*r**2 - 19*r - 3. Let t be s(5). Suppose -5*p + 4*p = 5*o - 2089, t*o + 2*p = 834. Does 13 divide o? False Let a(y) = -48*y + 22*y + y**2 + 23*y + 18. Let b be a(0). Let n = 46 - b. Does 11 divide n? False Let s = 17050 + -9039. Does 12 divide s? False Let s(v) = -2*v**3 + 47*v**2 + 55*v - 84. Does 12 divide s(24)? True Suppose 3*b + p + 1584 = 0, 0 = -3*b + 6*b + 4*p + 1593. Is 32 a factor of (-16802)/b - 4/(-34)? True Let u = -28 - 22. Let d be u/(-5) + (-6)/3. Let h = d - -2. Is h a multiple of 4? False Suppose 0 = 3*h + 2*h. Let f be (-2)/13 - (296/104 + -8). Suppose -3*i - 17 = -u - h*i, u = -f*i - 15. Is u a multiple of 4? False Let y be (-3 - 278/1)*3. Let n = y - -1280. Is n a multiple of 45? False Let l be (-122)/15 + (-18)/(-135). Let d(k) = 3*k + 54. Is 22 a factor of d(l)? False Does 104 divide 2/3*(4055 + 1)? True Let v(h) = -23*h**3 + 15*h**2 + 7*h + 2. Is v(-3) a multiple of 13? False Let d(w) = 67*w**2 - 61*w - 188. Does 5 divide d(-3)? False Let v(x) = 19*x**2 - 47*x + 18*x + 16*x + 1 + 17*x. Does 32 divide v(-3)? True Suppose -16306 = -9*n - 4642. Suppose 0 = 6*t - 726 - n. Is 15 a factor of t? False Suppose 8 - 4 = -t. Is 15 a factor of ((-6)/(-1))/(t/30*-3)? True Let s be 0*3*4/24 - -3. Suppose 3*g = -t + 6, 5*t + s*g - 7 - 35 = 0. Suppose t*b = 227 - 29. Does 3 divide b? False Let o = 1621 + 1750. Is 30 a factor of o? False Suppose -5*p - 25 = -6*n + n, 2*p = -3*n + 10. Suppose 3*v = -5*q + 524, v + n*q - 167 = -4. Is 34 a factor of v? False Suppose -58*m - 1120 = -63*m. Let u = 342 - m. Is u a multiple of 6? False Suppose 2*k + 3*i - 10 = 0, 0 = 3*k + 5*i - 20 + 4. Let b(y) = 48*y - 25. Let v be b(8). Suppose k*t + 89 = v. Is t a multiple of 21? False Let k(d) be the second derivative of 2*d**4/3 - 3*d**3/2 - 6*d**2 + 4*d - 9. Does 15 divide k(-6)? True Let v = 3 - 8. Let p = 2195 + -2125. Does 34 divide v*((-988)/p - (-4)/(-14))? False Let r(p) = -p**3 + 10*p**2 + 4*p + 2. Suppose 3*y - 88 = -8*y. Is 63 a factor of r(y)? False Let r(k) = 1519*k + 76. Does 41 divide r(3)? True Let t be 10/(-2 + 4) + 0. Let k(b) be the third derivative of -b**5/60 + 7*b**4/24 + 2*b**3 - 26*b**2. Is 22 a factor of k(t)? True Let s = 3322 - 1162. Is s a multiple of 27? True Let h = 214 - 208. Is 1/(h/(-12))*-17 a multiple of 17? True Let y(f) = -4*f**3 + 4*f**2 - 2*f - 6. Let b be (-58)/(-203) - 46/14. Is y(b) a multiple of 12? True Let q(o) = 2*o - 32. Let w be q(25). Suppose -1184 = -u + 3*u. Is 11 a factor of 78/w + -4 + u/(-6)? True Let x be (4 - 39/9)*63. Does 69 divide (-2 + -17 + -4)*x? True Let v(l) = l**3 - 6*l**2 + 5*l - 4. Let n be v(2). Let r(g) = -4*g - 30. Let h be r(n). Suppose 14*s - 168 = h*s. Is 21 a factor of s? True Let a = 4652 - 2652. Is 50 a factor of a? True Let m = 2816 - 1676. Does 76 divide m? True Suppose 2*m + 4*d + 2 - 6 = 0, 10 = 5*m - 5*d. Suppose m*r = 2 + 4. Does 16 divide (4/(-30)*r)/(2/(-320))? True Is 9 a factor of ((-52)/16 - 1)/((-7530)/3760 + 2)? False Let a(m) = 6*m**3 - 37*m**2 + 16*m - 4. Let d(l) = 22 - 25*l**2 + 4*l**3 + 29 - 54 + 11*l. Let p(s) = -5*a(s) + 7*d(s). Is 7 a factor of p(4)? False Suppose 0 = -128*k + 134*k - 222. Let v(c) = c**3 + 4*c**2 - 4*c - 4. Let z be v(-4). Suppose -k = 11*i - z*i. Is 7 a factor of i? False Suppose m - 153 - 50 = 0. Let w = 724 - m. Is w a multiple of 15? False Let m(c) = 4*c**3 - 7*c**2 - 5*c + 26. Let j be m(5). Suppose j*k = 325*k + 62. Is 21 a factor of k? False Suppose 0 = -g + 5*g + 204. Let s be 1 - 204/9 - 4/(-6). Let p = s - g. Is 24 a factor of p? False Let r = -3731 + 3856. Does 5 divide r? True Let p be 52/(-10) + 16/80. Let q(m) = -17*m + 15. Let n be q(p). Suppose -k = -0*k - n. Is k a multiple of 10? True Let u(v) = -v + 13. Suppose 21*o + 33 = 18*o. Is u(o) a multiple of 12? True Let q(p) = 305*p + 44. Does 5 divide q(3)? False Let h(r) = 5*r**2 - 38 - 2*r**2 - 2*r + 31. Does 29 divide h(5)? True Suppose -1 = 2*w + 4*n - 23, w = -n + 9. Suppose -w*c + 52 = -32. Does 3 divide c? True Suppose 5*x + 5*n = 10, 5*x - 2*n = n + 34. Suppose -x*s + 25 = -3*w - 0*w, 3*w + 15 = 0. Suppose 5*c = 10, -d + 206 = s*d - 5*c. Is d a multiple of 9? True Suppose -n = 5*h - 5*n + 134, -n + 27 = -h. Let r = h + 47. Suppose -r*g = -23*g + 64. Does 8 divide g? True Suppose -9*d - 31050 = -19*d. Is d a multiple of 49? False Let r(w) = -w**2 - 9*w - 4. Suppose -7*v = -2*v - 85. Let d(y) = -y + 13. Let t be d(v). Does 4 divide r(t)? True Suppose -13*s + 141570 = 17*s + 3*s. Is 6 a factor of s? True Let x(m) = 2231*m + 356. Is 129 a factor of x(2)? False Is ((-2601)/(-6))/(4*9/72) a multiple of 5? False Suppose -5*o + 3*u = -2*u - 2335, 2*u - 914 = -2*o. Suppose 0 = j + 2*b + 90, -b - 3*b = 5*j + o. Let c = j + 215. Is 24 a factor of c? False Suppose 0 = -5*c + 1155 + 5. Let p = c - -72. Does 19 divide p? True Let n be (5*10)/(4/24). Suppose -64 - 624 = 4*y. Let v = y + n. Does 16 divide v? True Suppose -767*x + 793*x - 228254 = 0. Is x a multiple of 134? False Suppose 3*b - 17586 = 6*z, -4*b - 3*z + 35626 = 12123. Does 16 divide b? True Let h be 2/(256/132 + -2). Let c = h - -72. Is 5 a factor of (-65)/c*(-36)/2? True Suppose 4*k + 1571 - 431 = 0. Let h = 435 + k. Is 10 a factor of h? True Let a be (136/12 + 2)*-12. Let l = 109 + a. Is (l*1/2)/((-11)/44) a multiple of 34? True Suppose -442 = 4*z + 294. Let r = z - -200. Is r a multiple of 4? True Let a(y) = -y**3 + 10*y**2 - 9*y - 6. Let t be a(9). Does 43 divide (-5 - (t - 3)) + 469? True Let q(n) = -2*n**2 - 12*n - 7. Suppose 4*u = o - 21, -2*o + 14 + 8 = -4*u. Let y be q(u). Suppose y*l - 387 = -111. Is 23 a factor of l? True Suppose -h + 8552 = -4*o, 0 = 4*h - 3*o + 2*o - 34238. Is 40 a factor of h? True Suppose 16936 = -0*c + 4*c. Is c a multiple of 36? False Let t(i) = -i**3 - 42*i**2 + 124*i - 185. Does 10 divide t(-45)? True Let g be (8 + 3 + -7)*2/2. Suppose -50 = -4*s - n, -g*s - s = -n - 58. Suppose s - 2 = f. Is f a multiple of 5? True Let r(c) = 8*c - 17. Let b be 3*1*(2 - 1) + 0. Suppose b*u + 2*u - 35 = 0. Does 19 divide r(u)? False Let h = 2386 + 1103. Is h a multiple of 24? False Let r = 8439 - 5431. Is r a multiple of 79? False Let o(t) = -t**3 + 11*t**2 - 12*t + 7. Let w be o(6). Suppose 0 = 5*z + 5 + w. Does 14 divide (-63 + z)*2/(-3)? False Let b = 34 + -29. Is (-13563)/(-45) + -7 - 2/b a multiple of 17? False Let y(a) = -49*a - 25. Let u be y(-3). Suppose 3*p - 273 = -4*o + u, 131 = p + o. Is p a multiple of 65? False Let q = 4756 + -3508. Is 4 a factor of q? True Let h = 19 + -10. Is 18 a factor of -163*3/(-9) - (-6)/h? False Let p = 4093 - 807. Is p a multiple of 31? True Let a = 20 + 0. Let n(z) = 16 - a + 2*z - 7*z - z**2 - 2*z. Is 7 a factor of n(-4)? False Let w = 23 - 19. Suppose 3*i - w = -1. Is 7 a factor of (2 + 0)/(15/14 - i)? True Suppose 30*h - 142940 = -11450. Is h a multiple of 80? False Let f(r) = 4*r**2 - 1. Let s be f(-1). Suppose -3*g - 5*c + s = -2*c, 0 = g + 2*c + 3. Suppose 49 = g*a - 226. Is a a multiple of 21? False Is 61 a factor of (-1*9/(-1) - 6 - 3) + 6586? False Is 6 a factor of -50*-3*312/65? True Let p(x) = 181*x**2 + x. Let y be p(-2). Suppose -12084 = -19*a - y. Is 13 a factor of a? True Let f = -11885 + 20180. Is 15 a factor of f? True Suppose 0 = -s - 2*a - 2, 0 = -2*s - 2*s - 5*a - 17. Let p(u) = u**2 + 5*u - 25. Let c be p(s). Is 2 a factor of 6/(-9)*c*(-30)/(-4)? False Let b = 224 + -146. Suppose 39 = t + w, -b = -3*t - 2*w + 40. Does 10 divide t? True Let o(n) = n**3 + 9*n**2 + 9*n + 8. Let z be o(-8). Suppose -11*w + 1013 - 364 = z. Is w a multiple of 8? False Suppose -4*c + 32 = -4*y, 8*c - 3*c - 16 = -y. Suppose 4*p = -c*f + 40, -14*f + 20 = -12*f - 3*p. Is f a multiple of 10? True Let r(y) = -y + 32. Let i be r(17). Suppose i*u = 783 + 327. Does 5 divide u? False Let g = 190 + -182. Is 6 a factor of g/(16/(-6)) - -78? False Let l = -116 + 117. Is 3*l - (-48 - 248) a multiple of 23? True Let y(l) = 21*l**3 - 11*l**2 + 50*l + 8. Is 18 a factor of y(6)? False Let w = 4048 - 3986. Is w even? True Suppose 3944 = -7*t + 8*t - 4696. Does 36 divide t? True Is 139 a factor of (0 + 4)/2*4/(-80)*-58130? False Suppose 0*y = 5*y - 25. Suppose -y*q + 133 = -52. Suppose -q = -s + 15. Is 13 a factor of s? True Let c(d) = d + 8. Let v be c(-3). Suppose -2*g + v = -13. Suppose 6*m = g*m - 75. Is m a multiple of 5? True Suppose 0*j + 9*j = 0. Suppose 10*h = -j*h + 3430. Is 49 a factor of h? True Let y = 42 + -40. Let o = 3 - -12. Let p = o - y. Does 13 divide p? True Let r(c) = 2*c**2 + 3*c - 4. Let n be r(6). Let u = 145 + n. Does 33 divide u? True Let n(q) = -q**3 + 12*q**2 + 18*q - 19. Suppose 68*x + 24 = 70*x. Does 75 divide n(x)? False Let w be 942/4 - 57/(-38). Let z = 419 - w. Is 13 a factor of z? True Suppose -49*w + 97450 = -46904. Is w a multiple of 17? False Let c = 79 - 80. Let r(s) = -235*s**3 + 3*s**2 + s - 1. Is r(c) a multiple of 25? False Suppose 0 = -27*v + 54831 + 84138. Is 119 a factor of v? False Let v = 2366 + 1727. Is v a multiple of 127? False Let l(r) = 49*r**2 - 30*r - 71. Does 8 divide l(11)? True Let v(b) = 4*b - 7. Let q(y) = y**2 + 1. Let z(g) = 5*q(g) + v(g). Let r be z(1). Suppose 0 = -4*s - 5*k + 50, 10 = s - k - r. Is 4 a factor of s? False Let b(a) = a**3 - 9*a**2 - 2. Let k be b(9). Let t be (k + 0)/(-5 + 4). Suppose -3*v + 2*v + t*j = -117, 5*j = 4*v - 465. Is v a multiple of 23? True Suppose -32*n - 5379 = -19811. Does 5 divide n? False Let t(r) = -19*r + 9 + 1 + 6 + 2. Does 5 divide t(-3)? True Let n = 9166 + -6496. Is n a multiple of 30? True Let s = 133 - 140. Is (-78)/(-10)*(-21)/s*15 a multiple of 13? True Suppose -10*f + 24*f - 28 = 0. Suppose r - 1 + 6 = 0, f*y - 374 = -2*r. Is y a multiple of 12? True Let i = 5 + -8. Is (2/(-4))/(i*(-7)/(-4746)) a multiple of 7? False Let l(i) = 10*i**3 + 3*i**2 - i - 1. Let w be l(1). Suppose w*g + 8*g - 3705 = 0. Is 24 a factor of g? False Suppose 0 = 137*c - 109*c - 59136. Is 3 a factor of c? True Let z = 48 + -45. Suppose z*s + 54 = -12. Let f = 28 + s. Does 6 divide f? True Let d(b) = 68*b**3 + b**2 - 3*b - 2. Let h be d(-1). Is (-11)/(h/448) + (-4)/(-3) a multiple of 19? True Suppose -5*v + 1372 = 322 - 70. Is 8 a factor of v? True Suppose 0 = -4*i + a + 2700, 4*i - 2700 = -0*i - 2*a. Does 10 divide i? False Is 30 a factor of ((-300)/35)/((-18)/11025)? True Let b = -57 - -82. Let g = b - 46. Is 21 a factor of -42*2*(g/6 - -3)? True Let f be 616/(-110) - (-2)/(-5). Does 20 divide (-3)/f - 1014/(-4)? False Let o = -30 - -22. Let i(k) = -6*k - 9. Let l be i(o). Suppose l*h = 37*h + 226. Does 30 divide h? False Let b = 3 + 797. Does 80 divide b? True Let b be -226*(-5 + (-2 - -8)). Let f = 307 + b. Is f a multiple of 9? True Let q = 3839 - 2965. Is q a multiple of 4? False Suppose 6288 = 31*v - 31687. Is v a multiple of 49? True Let z(p) = -18*p + 1446. Is 19 a factor of z(43)? False Let b(l) = -l**3 + 8*l**2 + l + 4. Let y be b(8). Let o = -22 + y. Is (3 - (-42)/o)*40/(-6) a multiple of 4? True Let t(s) = -s**3 - s**2. Let b be t(-1). Suppose -117 = -2*y - c, 3*c + 9 = -b*c. Is y a multiple of 10? True Let s = -10025 + 16613. Does 36 divide s? True Suppose 15*f - 19*f = 4*r - 29660, -5*r + 37040 = -2*f. Does 38 divide r? True Suppose 0 = 11*d - 14 - 8. Is (28 - 0) + 3 - d a multiple of 3? False Let y(m) = m**2 - 5*m + 4. Suppose q + q = 5*k - 27, -2*k + 2*q + 12 = 0. Let h be y(k). Let n(r) = 2*r**2 - 7*r + 6. Does 6 divide n(h)? False Let g = 10 + -3. Suppose 7*a + 208 = 243. Suppose a*u + 120 = g*u. Does 12 divide u? True Suppose 3*f - 9472 = -5*r, -2*f + r + 1508 = -4798. Is 19 a factor of f? True Suppose 0 = 2*d - 2, -4*d - 42 = -4*k + 10. Is k/((42/(-90))/(-7)) a multiple of 23? False Is (-428048)/(-3100) - (-4)/(-50) a multiple of 12? False Let w be (15/6)/((-3)/(-6)). Suppose w = -y, -4*y - 61 = -4*j + y. Suppose -6*d + j*d - 93 = 0. Does 19 divide d? False Suppose z - 3745 = -3*q, -91*q + 18751 = 5*z - 89*q. Is z a multiple of 7? False Let o = 53 + -48. Suppose 4*c = -o*u + 2140, 4*c - 1292 = -2*u - u. Does 51 divide u? False Let n(i) = -i**3 - 5*i**2 - 6*i - 5. Let w be n(-4). Suppose 0 = -w*v + 2*u + 3 - 5, -4*u = 5*v - 26. Suppose -v*q = 8 - 30. Does 11 divide q? True Let g be (-416)/(-20)*20/(-4). Let j = g + 194. Is j a multiple of 30? True Let q(h) = 2*h**3 + 90*h**2 + 247*h - 40. Does 2 divide q(-42)? True Let f(l) = 7*l - 6*l + 1 - 2*l**2 + 8*l. Let j be f(4). Is 2 + (0 - j) - (-109 + 1) a multiple of 15? True Suppose 21*d - 7*d = 16220 + 26606. Is 100 a factor of d? False Let i be ((-30)/(-4))/(9/276). Let s(g) = -15*g**2 + 5*g - 20. Let x be s(3). Let w = i + x. Is w a multiple of 14? False Let j(a) = -2*a**3 + 19*a**2 - 27*a - 9. Is 155 a factor of j(-9)? False Let v = 33 - 28. Suppose -x = v*x. Suppose -3*s - s + 4*y + 128 = x, 5*y - 36 = -2*s. Is 7 a factor of s? True Is (551/(-38))/(2/(-508)) a multiple of 127? True Let q = 4815 + -3054. Does 5 divide q? False Let t = 85 - 51. Suppose i - d = -t - 20, d - 266 = 5*i. Let v = -49 - i. Is 2 a factor of v? True Is 4 a factor of -3*(-1)/(-6)*2*(0 + -223)? False Let w(d) = d**3 + d**2 - 1. Let g(z) = z**3 + 2*z**2 - 1. Let h = 37 + -32. Let t(i) = h*g(i) - 6*w(i). Is t(3) a multiple of 3? False Suppose -37 = o + 4*q, -3*q + 4*q = 2. Let k = o - -44. Is 24*((k - 2) + (-17)/(-4)) a multiple of 10? True Let w(m) = 13*m**2 + 56*m + 19. Is w(-21) a multiple of 11? True Let h = 238 + -333. Suppose 0 = -2*v - 9 + 17, 5*i = -4*v + 66. Let g = i - h. Is g a multiple of 15? True Let o = 2131 - -3084. Does 139 divide o? False Let p be (20/1 - -1) + -1. Let m(y) = y**3 - 20*y**2 + 8*y - 14. Is 17 a factor of m(p)? False Let s(r) = -2*r + 33. Let q be s(9). Does 45 divide 3150/q*6/4? True Does 61 divide (-2)/(-2) + -18 + 4048? False Suppose 0 = -6*i + i - 2*d + 1514, -5*d = -2*i + 623. Suppose 4*h - 464 = i. Is 32 a factor of h? True Let o(b) = -42*b**3 - b**2 + 8*b + 9. Is o(-5) a multiple of 49? True Let m be ((-3)/(-9))/(-1)*3. Let n = 1 - m. Suppose 74 = 2*o + b, -2*b = n*o + o - 112. Is o a multiple of 12? True Suppose 38*s + 10 = 40*s. Suppose -s*k - 9 = -74. Suppose k*b + 20 = 14*b. Is 15 a factor of b? False Let m = 4774 - -1931. Is m a multiple of 149? True Let k(u) = 2*u - 1 - 1 - 4*u + 0*u. Is 14 a factor of k(-8)? True Let t be (36/4)/3 + (0 - 224). Let n = -127 - t. Let h = n - 30. Does 14 divide h? False Suppose 65*v - 66*v + 3717 = 2*r, 0 = -r - 3. Is 73 a factor of v? True Suppose c = -44 + 244. Is c a multiple of 24? False Let r = -209 + 384. Does 22 divide (-6078)/(-21) - (-5)/(r/(-15))? False Let s(o) = -o**3 - o + 1. Let p(q) = 19*q**3 + 4*q**2 - 2*q - 2. Let i(n) = p(n) + 2*s(n). Does 6 divide i(2)? True Suppose -14 + 2 = -3*i. Suppose i*c - 2 = 3*x, 3 = -4*x + 4*c + c. Let a(l) = -5*l**3 - 3*l**2 - 4*l - 3. Does 33 divide a(x)? True Let g be (-48)/(-12) - (-2 + 4). Suppose -5*y + 250 = -4*a, -3*a - 298 = g*a + y. Let i = 30 - a. Is 18 a factor of i? True Let l(f) = 140*f**3 + f**2 + 4*f + 3. Is l(3) a multiple of 10? False Suppose 5*r - 810 = 3*s - 0*s, 10 = 2*s. Suppose 10*h - r = 9*h. Is 14 a factor of h? False Let p = 2810 - 2485. Does 2 divide p? False Suppose l + 2 = -n + 5, 5*l + 4*n - 15 = 0. Let v be ((-8)/(-12))/(2/l). Does 15 divide (13 - -62) + -1 + v? True Suppose 2*b = -2*b + 12. Let t = 24 - b. Suppose -t*o = -22*o + 90. Is 40 a factor of o? False Suppose -2*g = -5*q - 17, -4*g + 32 = -g - q. Let s(n) = 2*n - 19. Let o be s(g). Suppose -z = -o*l - 21, -2*z + 0*z + l + 22 = 0. Is z a multiple of 9? True Let l(j) = j - 1. Let t = -11 - -14. Let d be l(t). Suppose -2*h + 3*h - 45 = w, 5*h - d*w - 210 = 0. Is 20 a factor of h? True Let h(a) = 4*a - 9*a - 5*a**2 + a - 3*a**3 + 5 + 2*a**3. Let g be h(-4). Let f(u) = 8*u**2 - 7*u + 6. Is f(g) a multiple of 36? False Let o(u) = -31*u - 7. Let t be o(-16). Suppose 2 = 2*y - 2. Suppose 5*l + 2*c + 39 = t, -274 = -3*l - y*c. Is l a multiple of 16? False Suppose s = -294 + 989. Suppose 83 - s = -4*r. Is r a multiple of 17? True Is 26 a factor of (-8 - (-378)/49) + (-174728)/(-28)? True Let p(z) = 0*z + 183*z**2 + 3*z + 3*z - 1 - 160*z**2. Is p(4) a multiple of 23? True Let o = 8463 - 3381. Does 42 divide o? True Let g(l) = -l**2 + 5*l + 127. Let u be g(0). Let x = -61 + u. Does 11 divide x? True Let x = 51 - 170. Suppose 0 = -2*p - 2*q - 410, 0 = -25*p + 20*p + 5*q - 1065. Let m = x - p. Does 15 divide m? True Let a = -3989 + 4654. Does 5 divide a? True Let t be (-2)/(-6) + (-40)/(-24). Suppose -4*s - 166 = -2*u, 0 = t*u - 2*s - 3*s - 171. Suppose i + 7 = u. Is 22 a factor of i? True Let h(n) = 215*n**2 + 101*n - 206. Is h(2) a multiple of 88? False Let q be 1/(3/26)*3. Suppose r - q + 100 = 2*g, 2*g = 3*r + 82. Does 7 divide g? True Let v(q) = q**2 + 2*q + 25. Let f = -35 + 35. Let n be v(f). Is (624/195)/(0 + 1/n) a multiple of 16? True Let m be ((-1)/((-8)/(-150)))/((-3)/112). Suppose -6*z + 392 = -m. Is 7 a factor of z? True Suppose -16 = 2*y + 4*g, 4*y = 2*g - g + 4. Suppose 2*h - 2*o = -3*h + 34, -4*h - o + 35 = y. Suppose 3*w - 4*p = h*w - 497, -3*p + 494 = 5*w. Does 14 divide w? False Suppose 394*r - 398*r = -8. Is 59 a factor of (-2 - 946/(-4)) + 1/r? False Let v(u) = 33*u - 75. Let n be v(9). Suppose -n - 22 = -4*b + 4*t, t = -5*b + 299. Is 10 a factor of b? True Suppose h + 436 = 3*r, 7*r + 304 = 9*r + 2*h. Let n = -9 + r. Is 33 a factor of n? False Suppose -90 - 72 = -9*b. Suppose 3*w - 4*n = b, -w + 2*n = 3*w - 34. Is w a multiple of 6? False Let f = 42 + 5583. Is 11 a factor of f? False Let y(c) = 16*c**2 - c + 85. Does 28 divide y(8)? False Let h(f) = 83*f**2 + 55*f - 337. Is h(5) a multiple of 33? True Suppose 0 = -289*w + 288*w + 1086. Does 52 divide (6/9)/(2176/w - 2)? False Is 48 a factor of (0 - 13/(-13)) + 11*489? False Let n = -11 + 16. Suppose 8*d = n*d + 987. Is d a multiple of 40? False Suppose -4*c - 3*o + 189 = 0, -7*c - 14*o + 347 = -12*o. Does 22 divide c? False Suppose -8 = -2*v + x - 3*x, 4*x = 5*v - 20. Let i be (-2)/(-6)*(-24)/v. Is 5 a factor of (-1)/2*i*17? False Suppose 4*s - h - 19301 = 0, -62*s + 67*s = -5*h + 24145. Is 127 a factor of s? True Suppose -v + 7863 = 3*j, 0 = 3*v + 3*j - 28686 + 5103. Does 58 divide v? False Let z(u) = -5*u + 133. Let r be z(-18). Suppose 677 = 6*k - r. Does 5 divide k? True Let k be 156/2*1/(-2). Let r = k + 37. Let i(a) = -19*a - 2. Is 9 a factor of i(r)? True Let l(y) = y + 0*y + 15 + 45. Suppose 4*h - 308 = -308. Is l(h) a multiple of 10? True Suppose -v - 3*z + 292 = 0, -v + 5*z - 6*z = -288. Suppose 8*t = 4*t + 3*y + v, -5*t + y = -363. Is 16 a factor of t? False Suppose 7*g = 17 - 59. Let r(z) = 2*z**3 + 13*z**2 + z + 2. Is 3 a factor of r(g)? False Suppose 0 = -8*g + 4*g - 16. Let h be 3 + (-1 + 5)/g. Suppose 0 = h*j - 43 - 161. Does 30 divide j? False Suppose 360 = -15*i + 23*i. Suppose -2*v = 3*z - 57, -2*v + z + 32 = -i. Is v a multiple of 6? True Let i(g) = g. Let k be i(5). Suppose 0 = k*o - 25 + 10. Is (o/(-9))/(4/(-204)) a multiple of 4? False Let b be (-170)/8*(-20)/(-5). Suppose 0 = f + 5*a - 5, a + 3*a + 29 = -3*f. Let h = f - b. Is h a multiple of 12? False Let s = -50 + 62. Suppose -2*j - s = -5*j. Suppose -168 = -y + j*p, 3*y - y = -2*p + 326. Is y a multiple of 33? False Let l = 10971 + -5211. Does 36 divide l? True Let v = -4975 - -7704. Is v a multiple of 68? False Let t be 12*(3 + -3 + -1). Let l = 7 + t. Does 6 divide (14/l + 3 + -3)*-10? False Let a(f) = 25*f**2 + 2*f - 2. Let y be a(-2). Suppose -r - y = -604. Suppose 6*g = -0*g + r. Does 24 divide g? False Suppose 20328 = 374*t - 366*t - 18608. Does 33 divide t? False Suppose l - r - 9 = 5*l, 4*l = -2*r - 10. Let x(n) = -12*n - 7. Let o be x(l). Let t = o + 13. Does 11 divide t? False Let c = 3460 - 1525. Is c a multiple of 9? True Let i = -43 - -37. Let g(r) = -5*r - 20. Let d be g(i). Suppose 110 = -8*p + d*p. Is 11 a factor of p? True Let w(i) = -i**3 - 6*i**2 + 7*i + 3. Let y = 42 - 49. Let z be w(y). Suppose 4*g + z*g = 273. Is g a multiple of 13? True Let j(z) be the second derivative of -3*z**5/40 + z**4/4 - 3*z**3 + 9*z. Let d(q) be the second derivative of j(q). Is d(-4) a multiple of 14? True Let o(d) = 19*d - 68. Let l be o(4). Is -9*(l/3 - 3) - -136 a multiple of 14? False Let q(x) = -x**3 - x**2 + 13*x - 12. Suppose 0 = 5*t - 25, -4*g + t - 9 = 24. Is q(g) a multiple of 19? False Let v = -34 - -2. Let s = 36 + v. Suppose -2*a = -s*h + 288, a - 157 - 210 = -5*h. Is 13 a factor of h? False Let x(o) = 12*o**2 - 8*o - 28. Let s be x(7). Is ((-11)/((-33)/s))/1 a multiple of 24? True Let y(j) = 34*j**2 - j - 10. Let d be y(-5). Let x = d + -569. Is 12 a factor of x? True Does 64 divide 111/74*(-136)/(-3)*16? True Suppose 0*s = -18*s + 216. Suppose -2128 = s*q - 20*q. Is q a multiple of 38? True Let c(f) = 57 - 23 + 15*f - 28 + 6*f**2. Is 39 a factor of c(-7)? True Suppose 33 = 3*n - 9. Suppose 0 = 4*u + 6 - n. Suppose -4 = -x + u. Does 6 divide x? True Suppose 5*l - 4*c - 28875 = 0, -254*l - 5775 = -255*l - c. Does 55 divide l? True Let u = 369 - -993. Is u a multiple of 9? False Let g be -500*((-12)/10)/(16/(-10)). Let o = 665 + g. Does 29 divide o? True Let m = 281 + -480. Let c(h) = 84*h - 588. Let q be c(6). Let y = q - m. Is y a multiple of 16? False Suppose 0 = 5*p + 3*g - 11352, 2*p + g = 1910 + 2630. Is 18 a factor of p? True Suppose -7*p + 5346 = 6*p - 2*p. Does 54 divide p? True Let d(r) = -2*r**3 - 5*r**2 - 5*r - 5. Suppose 4*t - 19 + 3 = 0. Suppose 0 = -9*q - 23 - t. Is 11 a factor of d(q)? False Suppose 4*f - 5*p + 21 = 104, -5*f + 82 = p. Suppose f = c + 4*k, -k + 123 = 16*c - 11*c. Is 5 a factor of c? True Is 38 a factor of 5404/168*-9*(-52)/3? False Suppose 4*w + 535 = -3*q, 0 = -5*w + 5*q - 0*q - 625. Is (-4)/(-3) - w/15 even? True Suppose 14675 + 117193 = 4*a + 23*a. Is a a multiple of 6? True Let j(d) = -d**2 + 8*d - 10. Let b be j(3). Suppose -4*x + 139 = 3*k, -b*k + 243 = -0*k + x. Does 7 divide k? True Suppose -13 + 33 = 4*q. Suppose -q*s + 5*k = -329 - 381, 0 = -3*s + k + 424. Does 31 divide s? False Let h = 942 - 871. Let p(t) = -t**2 + t - 1. Let y be p(4). Let l = h + y. Is 18 a factor of l? False Let y be 1*(2 - -3) + -2. Suppose -5*c = g - 87, 225 = y*g - 3*c - 90. Is 3 a factor of g? True Suppose 2583 = 13*r + 74. Let u = r + -157. Is 2 a factor of u? True Let w be (-4)/(-18) + (-21)/(-27). Let n(o) = -13*o**2 + o. Let l be n(w). Let u(g) = g**3 + 13*g**2 + 8*g + 4. Does 26 divide u(l)? True Let m = 108 - 113. Let v(q) = q**3 + 13*q**2 + 12*q + 10. Is 25 a factor of v(m)? True Let k(i) = -20*i**2 + 3*i - 3. Let s be k(2). Suppose -5*j - 24 - 26 = -2*t, 20 = -2*j - 4*t. Is 4/(-10)*s + (-2)/j a multiple of 10? False Suppose -b + 34*v - 12 = 33*v, -48 = 3*b + v. Suppose -3*l + 5*m - 19 = -2*l, -4*m + 28 = -4*l. Is 3 a factor of (1*-2)/l - b/2? False Suppose c - h + 0 = 11, -4*c + 41 = -h. Does 9 divide (76/(-2) + 2)*(-5)/c? True Let y(r) be the third derivative of -r**6/120 + 13*r**5/30 + 3*r**4/8 - 19*r**3/3 + 8*r**2 - 3. Is 49 a factor of y(26)? True Let t = 6187 + -4807. Is t a multiple of 23? True Suppose -7*j - 10*j = -119. Suppose a - 406 = -j. Is a a multiple of 21? True Suppose 2796 = 4*i - 1804. Suppose i = 13*s + 10*s. Is s a multiple of 5? True Let y = -964 - -983. Is 10 a factor of y? False Is (-27940)/(-45) + (-13)/(-117) a multiple of 22? False Let y = 131 + -128. Suppose -2*s - 121 = -y*s. Is 12 a factor of s? False Let u = 299 - -17. Suppose 9*p - u = 2753. Does 17 divide p? False Let a(z) be the first derivative of 1/3*z**3 - 13 + 3*z - 2*z**2. Is 5 a factor of a(-4)? True Let c be (-1)/((-3)/(-3924)*-3). Let s = -248 + c. Is 12 a factor of s? False Suppose -9*p - 41895 = -14*p - 2*p. Is p a multiple of 133? True Let o(h) = -h**2 - 4*h - 6. Let z be o(-2). Let x be (-70)/(-25)*(-15)/z. Is 6/x - 11/((-231)/1674) a multiple of 8? True Let k = 377 + 517. Does 64 divide k? False Suppose 7*z - 120 = 2*z - 5*b, 2*z = 4*b + 18. Suppose -4*x = 2*v - 10, -4*x - 12*v = -13*v - z. Is 4 a factor of x? True Suppose 0 = -7*j - 823 + 3133. Suppose -8 = -3*n + n, -2*k = 4*n - j. Does 4 divide k? False Let v(z) be the first derivative of 39*z**2 - 4*z + 3. Let o(u) = -u**2 + 10*u - 8. Let i be o(9). Is 20 a factor of v(i)? False Let i(u) = -5 + 3*u + 2*u + 4*u**2 + 2*u**2. Let h = 1041 + -1039. Is 9 a factor of i(h)? False Let j(c) = c**3 + 5*c**2 + 4*c + 4. Let b be j(-4). Let k be 46 + 0 - 4 - b/(-2). Suppose 2*a - k = 76. Is a a multiple of 15? True Let k(b) = -4*b**3 - 2*b**2 + 3*b**3 - 1 + 4*b**3. Suppose 24*a = 3*a + 42. Is 3 a factor of k(a)? True Let k = 0 - 1. Let b(o) = -37*o**3 + 2*o**2 - o + 5. Let u(v) = -35*v**3 + v**2 + 4. Let g(m) = -2*b(m) + 3*u(m). Is 15 a factor of g(k)? True Let h(k) = -5*k - 39. Let c be h(-13). Suppose -1386 = 12*u - c*u. Does 3 divide u? True Suppose -14489 = -5*x + 13646 - 8070. Does 32 divide x? False Let x be (-3 + 0)/((-51)/34). Suppose w + 5 = 0, 6 = 4*u - x*w - 196. Is 7 a factor of u? False Let w = -3 - -21. Is 38 a factor of 3952/12 - (-12)/w? False Let p(j) be the third derivative of j**5/12 - 19*j**4/24 + 11*j**3/6 + 54*j**2. Is 49 a factor of p(9)? True Let l(v) = -4*v**3 + 0 + v**2 - 2*v**3 - 5*v**3 - 1. Let k be l(-1). Suppose 0 = -13*y + k*y + 270. Is 12 a factor of y? False Suppose y - 4*n - 2527 = 0, 2913 = 2*y + 2*n - 2111. Is y a multiple of 10? False Let z be (-6)/(4/(-4)) - -112. Suppose 5*p - 558 = -2*r, -p - r = r - z. Is 11 a factor of p? True Let r(u) = 247*u**2 - 4*u - 16. Is r(2) a multiple of 4? True Let j = -114 + -10. Is 14 a factor of (j/5)/((6/1)/(-60))? False Suppose 5*l = -4*y + 700 + 373, -3*y + 2*l = -822. Let c = y + -196. Does 18 divide c? False Let h(v) = -8*v + 6. Let x be h(-6). Let b be (-2)/(-3) - (43/3)/(-1). Let r = x - b. Does 4 divide r? False Let h(u) = -u**3 + 28*u**2 - 45*u - 10. Is 32 a factor of h(10)? False Let t(c) = -73*c**3 + 18*c**2 + 46*c - 4. Does 181 divide t(-3)? True Suppose c - 191485 = -2*c - 32*c. Is c a multiple of 17? False Suppose 0 = 5*b + 3*h - 3207, -b = 3*h - 531 - 108. Does 4 divide b? False Let k = 5835 - 4011. Is k/26 - 66/429 a multiple of 4? False Let a be 0 + -168 - -4 - (-8)/4. Let f = a - -270. Does 6 divide f? True Let o be (-40)/20 + 1 + -1. Let w(r) = r**2 + 8*r + 15. Let t(a) = -2*a**2 - 15*a - 31. Let j(h) = o*t(h) - 5*w(h). Is 4 a factor of j(-5)? True Suppose 1323 = 3*x + 87 - 8163. Does 8 divide x? False Let v = -3355 + 5457. Is 27 a factor of v? False Suppose -2 = -3*i - 2*q, -3*q = -3*i - 7*q + 4. Is 89 - 7 - i/1 a multiple of 10? False Let r(j) = j**3 - 8*j**2 - j + 3. Let u be r(8). Let z be 3/u - (-3 - 765/25). Suppose -3*v = 3*d - 48, 3*d - 2*v + 0*v = z. Is d even? False Let j(y) = 12*y**2 + 27*y - 54. Does 102 divide j(18)? False Let u be 3/(53/14 + -4) - 4. Is 31 a factor of u/(-12) + 591/2? False Let k(t) = -8*t + 57. Let q(i) = 4*i - 28. Suppose -2*r + 30 = 4*l - 0*r, 3*l = -2*r + 24. Let c(z) = l*k(z) + 13*q(z). Does 7 divide c(11)? False Suppose -3*m + 606 = j, 3*j - 16 + 7 = 0. Let w = -185 + m. Is w a multiple of 3? False Suppose -v - 2*t = 3*v - 498, -246 = -2*v + 2*t. Let z = v - 46. Is z a multiple of 3? True Let t(m) = 1139*m - 126. Is t(4) a multiple of 10? True Does 130 divide ((-30)/9)/((-56180)/18720 - -3)? True Let o(j) = -11*j + 1. Let z be o(-1). Suppose -z*f + 4 = -13*f. Does 31 divide (-12)/f*(-250)/(-6)? False Let h be (-1 - -4)*(-5)/(-15)*-149. Let t = h - -155. Is t even? True Does 7 divide (8 - (-813)/6)*2? True Let i(b) = 10*b**2 - 3*b + b - 14*b**3 + 16 - 3*b**2 + 13*b**3. Let z be i(7). Suppose z = -2*s, 2*t - 4*s - 41 = -5*s. Is 3 a factor of t? True Suppose 283 = 4*k - 57. Let i = 165 - k. Is 4 a factor of i? True Let r = -10 + 37. Is 46 a factor of ((-966)/(-8))/(r/8 + -3)? True Let i = -198 + 200. Suppose 4*a - i*a - 4*v - 180 = 0, 5*v = 2*a - 181. Is 2 a factor of a? True Let u(h) = -2*h. Let k be u(-9). Suppose 8*c = 5*c + k. Is 100 + c + (-1)/(2/(-6)) a multiple of 27? False Suppose -6*s = 240 + 246. Suppose -5*y = -651 - 69. Let u = y + s. Is u a multiple of 10? False Let j be -6 + (-1 - -5 - -15). Does 8 divide 110 + 3 - (-12 + j)? True Let w be (-2 - -2)*1/2. Suppose 5*d - d - 544 = w. Is d a multiple of 34? True Is 7 a factor of ((-476)/(-8))/((8 + -6)*2/48)? True Let f(d) = -d**3 - 5*d**2 - 3*d - 6. Let i be f(-5). Does 31 divide (-5 - 172/(-36)) + 1955/i? True Suppose 3*d = -2*y + 994, 5*y + 688 = -110*d + 112*d. Does 4 divide d? False Let h(j) be the first derivative of -j**3/3 + 6*j**2 + 24*j - 4. Suppose -9*a + a = -88. Is h(a) a multiple of 9? False Let r(k) = 2*k**2 - 10*k - 14. Let g be r(-6). Does 11 divide (g/8)/(366/72 + -5)? False Is 672049/155 - (-3)/15 a multiple of 92? False Let n be (8/6)/(10/15). Let s(i) = -3*i + 2*i**n - 13 + 10*i + 19. Is s(-6) a multiple of 9? True Suppose -5*q - 5 = 0, 3*z - 18301 = 5*q + 322. Is 29 a factor of z? True Let w = 3812 + 504. Is w a multiple of 83? True Suppose 0 = 5*y - 25, -20*y = -p - 24*y + 7674. Is 89 a factor of p? True Suppose -5*g + 131*f - 135*f = -37314, 5*g - 37309 = f. Does 65 divide g? False Suppose 3121 + 1016 = 7*q. Let n be (q/(-6) - 3)*-2. Let y = n + -143. Is 20 a factor of y? True Suppose 3*y + 20 = 7*y. Let x be 3*1 + y + (-7 - 0). Let c = 5 - x. Is 4 a factor of c? True Is (6/(-44))/((-6)/8) - (-10444)/154 a multiple of 11? False Suppose -c + 2*c - 321 = 0. Let a be 6 + 6/9 + (-28)/6. Suppose a*t - c = -113. Is 18 a factor of t? False Let l(r) = -289*r + 1. Let c be l(-1). Let d be (-2)/(-6) + -1 - c/(-30). Suppose -d*j = -2*j - 294. Does 21 divide j? True Suppose w - 536 = 2*j, w = -j + 5*w - 254. Is 27 a factor of j*(-1 + 12/30)? True Let d be (2/(-3))/(-4 - (-44)/12). Suppose -3*w + 5*u + 157 = -904, -d*w + 714 = -5*u. Is w a multiple of 27? False Let b(m) = 7*m**3 + m**2 + 3*m + 6. Let t(d) = 15*d**3 + 2*d**2 + 6*d + 13. Let r(w) = 9*b(w) - 4*t(w). Let k be r(-2). Is 22 a factor of 99*-1*k/18? True Let w be 2*3/6*15. Suppose -3*a + 3*k + 16 = 1, 3*k = -3*a + w. Suppose 148 = a*i - i. Is 7 a factor of i? False Suppose 4*o - 7 - 1 = 0, -3*u - 5*o = -1525. Let g(l) = u*l**2 - 489*l**2 - 11*l - l**3 + 5 - 19. Is g(15) a multiple of 22? False Is ((-109692)/(-32) - -3) + (-16)/(-128) a multiple of 126? False Suppose 5507 = 19*x - 9826. Is x a multiple of 3? True Suppose 60*u = 5*n + 63*u - 2689, -2*n + 3*u + 1063 = 0. Is 67 a factor of n? True Does 42 divide -1092*((-11)/6 - ((-14)/6 + 4))? True Let k(i) = -47*i**3 - 6*i - 6*i**2 - 7 - i**2 + 40*i**3. Is 29 a factor of k(-4)? False Suppose -5 = -g + 2*v - 3*v, -9 = -2*g - 3*v. Let t be 3*(10/(-7))/(g/14). Let h(r) = -r**3 - 10*r**2 - r + 4. Does 6 divide h(t)? False Let q(d) = -d - 2. Let r(h) = -57*h - 68. Let k(m) = -6*q(m) + r(m). Is 16 a factor of k(-7)? False Suppose -88 = -3*c + 4*c. Let l = 168 + c. Suppose 0 = 5*h + l - 370. Is 20 a factor of h? False Suppose 5*f + 2*g - 32 = -0*f, 0 = -2*g + 2. Suppose -5*h - 36 = -f*c + 2*c, -2*h - c - 4 = 0. Let m(q) = -30*q + 10. Does 26 divide m(h)? True Let y(l) = l**3 + l**2 - l - 1. Let v(n) = -3*n**3 - 9*n**2 + 7*n - 7. Let f(o) = -v(o) - 4*y(o). Let h be f(5). Let k = 23 + h. Is k a multiple of 10? False Let y = -189 - -187. Is 15 a factor of (1 + 1 + -712)*1/y? False Suppose -4*j = -3*v - 175, -4*j + 3*v + 185 = -2*v. Let z = -38 + j. Suppose 42 + 198 = 4*h + z*i, 0 = 4*i. Is h a multiple of 9? False Let i(l) = 2*l**2 + 15*l + 6. Suppose -4 - 18 = 2*a. Let n be i(a). Suppose -67 = -2*j + n. Does 25 divide j? True Let t = -79 - -71. Does 13 divide (-6750)/(-40) + (-2)/t? True Let x(r) = 10*r**2 + 44*r + 348. Does 6 divide x(-6)? True Let r(x) = x**3 - 6*x**2 - 13*x + 14. Let h be r(8). Let w = -54 + h. Is w/10 + 2 + (-365)/(-25) a multiple of 4? False Let g = -3994 + 4432. Is 13 a factor of g? False Let i(f) = -f**3 - 11*f**2 - 31*f + 72. Is 13 a factor of i(-16)? False Let j(c) = -c**2 - 8*c - 12. Let m = 13 + -17. Let i be j(m). Suppose -2*u - g - 4*g + 59 = 0, -i*g + 34 = u. Does 7 divide u? False Let a(z) be the first derivative of -z**4/4 + 13*z**3/3 + z**2 + 56*z - 27. Is a(13) a multiple of 18? False Let x(l) = 2*l - 10. Let r be x(6). Suppose r*s + h = 10, 7 + 8 = s + 3*h. Suppose 4*v - 269 = s*z, 2*v = 4*v - 3*z - 133. Is v a multiple of 25? False Suppose 733 + 581 = 9*n. Let h = 229 - n. Is h even? False Let v = 170 - 140. Suppose -35*k + 2720 = -v*k. Is k a multiple of 24? False Suppose -8*d - 34 = 166. Let a = 23 - d. Does 8 divide a? True Let c(t) = -t**2 + 11*t - 14. Let k be c(9). Let v(m) = 50*m + 12. Let r be v(k). Does 6 divide (3/(-6))/((-2)/r)? False Suppose 668*a - 656*a - 8832 = 0. Is a a multiple of 8? True Suppose 3*y - 6 + 3 = 2*o, -3*y + 3*o = 0. Suppose z - 5*q = -8, 2*z = -0*z + 2*q. Suppose 2*g = -4*f + 198, f - z*g - 77 = y*g. Is 22 a factor of f? False Suppose w - 5440 - 999 = -z, -3*z + w + 19301 = 0. Does 65 divide z? True Let r(c) = 8*c**3 - 3*c**2 + 2*c - 1. Let m be r(-2). Does 22 divide (-2286)/m + 2/(-9)? False Does 13 divide -13 + (-6 - (9 + -9659))? False Let b = 15 - 14. Does 15 divide 49*40/10 - (-3)/b? False Let n = -36 - -76. Suppose 3*t + 5 = -7, 0 = 3*f - 4*t - 184. Let h = f + n. Does 16 divide h? True Let b(x) = -1422*x - 887. Is 47 a factor of b(-7)? False Let j(i) = -46*i**2 + i + 48*i**2 + 10*i. Let x be j(-5). Let r = 31 - x. Is 12 a factor of r? True Let f(s) be the third derivative of -s**7/840 + s**6/180 - s**5/60 + 7*s**4/12 - 2*s**3 + 3*s**2. Let u(h) be the first derivative of f(h). Does 4 divide u(0)? False Suppose s + 2*l = 13, -15*s - 3*l = -17*s + 12. Let t(u) be the first derivative of u**2 + 17*u + 1. Is t(s) a multiple of 5? True Suppose 194*x = -365842 + 1250870. Is 62 a factor of x? False Let f(v) = -v + 9. Let l be f(5). Let u be (l/(-6))/(20/(-4230)). Suppose -u = -k - 17. Does 31 divide k? True Let z = 218 - 72. Let n = 23 + z. Is n a multiple of 16? False Let c(p) = p + 10. Let r be c(-3). Suppose -3*x = 6, -w = 2*w + x - r. Suppose 2*s - 383 = -3*s + k, 5*s = -w*k + 391. Does 12 divide s? False Let g(c) = 280*c - 1459. Is 13 a factor of g(9)? False Let v = -16038 - -24846. Does 24 divide v? True Suppose 0 = -96*y + 97754 - 9530. Does 4 divide y? False Suppose w + 2626 = g, 3*g + 2*w - 9590 + 1697 = 0. Is 11 a factor of g? True Let v(m) be the second derivative of m**4/6 + 13*m**3/6 + 7*m**2/2 + 59*m. Is 24 a factor of v(6)? False Let y(k) be the second derivative of -23/6*k**3 - 5/2*k**2 + 0 + 4*k. Is y(-2) a multiple of 20? False Is 19 a factor of -6*2/(-18) - (12243/(-9) + -1)? False Suppose 4*f = -0*f + c + 32, 2*f - 26 = 3*c. Let r be (-1*10)/(f - 8). Suppose 0 = -2*a + r - 0. Is 2 a factor of a? False Let y be (3 + 0 - 0)*(-20800)/(-60). Suppose -y = 65*c - 70*c. Is c a multiple of 26? True Let i(o) = 3*o - 13. Let k be i(13). Suppose 60 = -n + k. Does 9 divide (-14)/4*n/7? False Let p(r) = 11*r**2 + 1. Let k be p(-1). Let c be (k/10)/((-3)/(-260)). Let h = c - -22. Does 19 divide h? False Let q be -3 - (-45)/(-25)*(-20)/(-6). Let u(d) = d**2 + 9*d + 18. Let g be u(q). Suppose 2*j - 22 = g. Does 4 divide j? True Let y(l) = -5*l - 6*l - 5*l**2 + 4*l**2 + 6. Suppose 10*b = 8*b - 18. Does 24 divide y(b)? True Suppose 3*b + 2 = -3*a + 5, 4*a - 5*b = -41. Let s be 1/a + (-9)/16*-4. Suppose -264 + 84 = -s*z. Is 18 a factor of z? True Suppose 2*o - o - 2*s = 74, -5*s = -2*o + 146. Suppose -3*y = -2*l + o, 0*y = 4*l + 3*y - 174. Suppose -4*r = 4*i - 6*i - l, r + i = 12. Is r a multiple of 2? False Suppose -2*n + 2 = -n. Let w(h) = 5*h - h**2 + 0*h**2 + n*h**2 + 7 - 2*h. Does 3 divide w(-4)? False Does 21 divide 50/(-200) - ((-4)/(-6) - 18659/12)? True Let m = 237 - 232. Suppose 4*i = v - 232, 14*i - 13*i + 1198 = m*v. Is v a multiple of 10? True Let p(m) = -15*m - 5. Let k be p(-1). Is 9 a factor of (-2)/k - (44712/45)/(-8)? False Suppose 4419 = 5*m + v, v + 885 = -2*m + 3*m. Suppose w + 4*o - 221 = 0, -o - 3*o = -4*w + m. Does 17 divide w? True Let y(o) be the first derivative of -o**4/4 - 2*o**3/3 + 4*o**2 + 3*o + 318. Let g = 5 + -11. Does 16 divide y(g)? False Suppose -2727*q - 1677 = -2720*q - 8152. Is q a multiple of 37? True Suppose -f + 4*k + 5698 - 1878 = 0, -3*k = 4*f - 15375. Is 32 a factor of f? True Let r be 2 + -7 - -11 - (1 - 1). Suppose -4*m = -3*m - 2. Suppose -m*w + r = w - z, -3*w + 6 = 3*z. Is w a multiple of 2? True Let d(m) = -2*m**2 - 2 + 4*m + 3*m + 4*m**2 + 7. Let x be d(-4). Let v = -2 + x. Is 4 a factor of v? False Let i be (-432)/(-5) - (-2)/(-30)*-9. Suppose 3 = -3*z, -2*l + 2*z + 309 = i. Is 8 a factor of l? False Let b = 82 - 117. Let r = 22 - b. Is r a multiple of 7? False Let r(c) = -65*c**3 - 5*c**2 - 23*c - 25. Does 76 divide r(-3)? False Let z(n) = -n**3 + 28*n**2 - 55*n + 2. Is z(21) a multiple of 40? False Let c(m) = m**2 + 16*m + 18. Suppose 13*a - 4*a + 171 = 0. Let z be c(a). Suppose 207 = 6*k - z. Is 14 a factor of k? False Let p = -240 + 856. Suppose 13*j - 9*j - p = 0. Is 14 a factor of j? True Suppose 125 = 5*o + 5*d, 0*o + 52 = 2*o + d. Let t = 276 + o. Is t a multiple of 11? False Does 17 divide 1768/(-3)*(75/10 - 9)? True Let x be 3/(-30)*-5*4. Suppose x*f + 5*l = 23, -4*l - l = -15. Is 2 + 5 + (5 - f) a multiple of 4? True Suppose 5*m + 2*n = -5 + 62, -m + 4*n + 29 = 0. Suppose m*i - 14*i = -133. Is i a multiple of 7? True Let z(s) = -2*s + 9. Let t be z(0). Suppose t*d = 1937 + 817. Is 18 a factor of d? True Suppose 13*p = 3300 + 2082. Does 23 divide p - (1 - 36/6)? False Let o(r) = -r**3 + 12*r**2 - 16*r - 22. Suppose 2*t - 3 = -1. Let c(x) = x. Let j(q) = t*o(q) + 6*c(q). Does 17 divide j(9)? False Suppose -2*c = -4*i - 38, 77 - 6 = 5*c + 2*i. Does 28 divide 1124/10 - 6/c? True Let a = 27 + -25. Suppose 0*q = a*q + 62. Let g = q - -88. Is g a multiple of 19? True Suppose 0 = 4*y - 0*y + 180. Let a be y/(-3)*(-21)/(-9). Suppose 10*l = 3*l + a. Is l a multiple of 5? True Let j = -2 - -6. Suppose -j*b - 3*l = -308, -4*b = -3*l - 410 + 78. Suppose -12*k - b = -16*k. Is k a multiple of 17? False Is 3 - -2 - 11 - (9 - 3571) a multiple of 28? True Let j be (15/(7 - 2))/((-12)/8). Let f(c) = 43*c**2 - c - 7. Is 7 a factor of f(j)? False Let g(c) = 4*c**2 + c. Let v be g(-1). Suppose 4*p - j = 3, -9 = 3*p + v*j - 0. Suppose -o - 4*o + 65 = p. Is o a multiple of 13? True Suppose -27*m + 84359 + 11147 + 6851 = 0. Does 17 divide m? True Suppose -2*n + 21 = 5*o, o - 4 = 5*n - 16. Is 12 a factor of (-61)/(((-9)/n)/9)? False Suppose -49*t - 29*t = -17*t - 286517. Is t a multiple of 6? False Let v(c) = c - 16. Let q be v(0). Let n = -209 - -210. Does 11 divide 49/n - (16 + q)? False Let b(x) be the third derivative of 29*x**4/24 + 10*x**3/3 - 60*x**2. Does 23 divide b(12)? True Suppose 3*n - 430 = 4*b, -2*n - 3*n = -b - 745. Suppose -d - 5*z = -58 - n, -z - 748 = -4*d. Is d a multiple of 10? False Let n = -25 + 39. Suppose -j - u + n = 0, 4*j - 41 - 3 = 2*u. Suppose 0 = -3*q + 216 - j. Is q a multiple of 17? True Let f = 1451 - 1649. Suppose 2*y + 102 = -y. Let v = y - f. Is 44 a factor of v? False Suppose -5805 = -n + 4*r + 2658, 3*n - 25368 = 5*r. Is 129 a factor of n? False Suppose 0 = 69*l - 78*l + 3699. Let p = l + -171. Does 16 divide p? True Let k(g) = -g**3 + 7*g**2 + 31*g - 7. Let y be k(10). Suppose y*n - 36 = -3*n. Is 3 a factor of n? True Is 19 a factor of 5/(-45) + 35481/27? False Let d(g) = g**2 + g. Suppose 5 = -u + 3*j, 4*u = 3*u - 2*j. Let h(c) = 131*c**3 - 4*c**2 - 2*c + 1. Let i(p) = u*d(p) - h(p). Is i(-1) a multiple of 19? False Does 21 divide (-54)/(-3 + -6) - 1932/(-6)? False Suppose 0 = -2*p - s + 4388, 5*s = -3*p + 905 + 5663. Is p a multiple of 18? True Does 18 divide 1 + 4 + 6/(18/5601)? True Let w = -1174 + 1406. Does 7 divide w? False Let b be ((-6)/10 + (-132)/(-120))*1774. Suppose 343 = 5*f - b. Is 41 a factor of f? True Does 50 divide (50373/174)/((-3)/(-46))? False Suppose 5*m + 5 = 0, -16 = 5*y - 3*m + 6. Let x be -4 + (-8)/(-2) - y. Suppose -x*s + 414 = s. Is s a multiple of 6? False Let q(u) = 5*u**2 + 2*u - 1. Let v be q(3). Suppose 270 = -41*c + v*c. Does 30 divide c? True Does 114 divide 2324*-1*3*(-74)/222? False Let y = -947 - -3593. Does 54 divide y? True Let t = -269 + 124. Let u be (-3 - (-51)/15)*t. Let p = u - -99. Does 13 divide p? False Suppose -l + 0*k - 2*k = -4, 8 = 2*k. Is (9/l)/(-9)*164 a multiple of 30? False Is 17 a factor of -9 + 434/21*174? True Let k = -4376 - -5352. Does 61 divide k? True Suppose 5*l - 38259 = 2*w, -15303 = -2*l + 9*w - 8*w. Does 13 divide l? False Suppose h = 5*j - 17, -j - 4*h - 7 = -2. Suppose -w = -j*d + 12, 12 = 2*w - 5*d + 35. Is ((-15)/w - -2)*(8 - -4) a multiple of 11? True Suppose -3*k = -5*u - 4*k - 628, -4*k = -4*u - 488. Let m = -55 - u. Is 6 a factor of m? False Let l(f) be the first derivative of -f**3/3 - 4*f**2 + 22*f + 6. Let d be l(-10). Is 9 a factor of -4 + 4 + d + 43? True Let i = -12 - -4. Let f(h) = -h**3 - 9*h**2 - 9*h - 5. Let q be f(i). Suppose 18 = -q*p + 84. Does 15 divide p? False Let l(s) = 5*s - 2*s**2 - 9 + 17*s - 8*s. Let a be l(6). Suppose 25 = 4*u + a*k - 87, 0 = 3*u + 5*k - 84. Is 4 a factor of u? True Let b = 2803 + -1642. Is b a multiple of 4? False Let u(n) = -n**2 + 20*n - 19. Let i be u(11). Is 21 a factor of i/15*(3 + 294/4)? False Let z be 2 - ((-14)/12 + (-8)/(-48)). Suppose -z*v + 721 = j, 0 = -4*v - 4*j + 1069 - 113. Let w = v - 110. Is w a multiple of 37? False Let n(i) = -i**3 + 80*i**2 - 77*i + 166. Is n(79) a multiple of 11? False Let z(u) be the first derivative of u**2 + 70*u - 39. Does 13 divide z(-7)? False Is 33 a factor of 9*(-99)/108*-332? True Suppose 3*k - 3*f - 11469 = 0, -5*k - 157*f + 152*f = -19165. Is k a multiple of 22? True Suppose -7 = -2*a + 5*a + 4*g, -a = 4*g + 5. Let x be 1*(1 + -2)*(-7)/a. Does 5 divide (-5)/(15/3)*(x + 2)? True Let a be ((-12)/8)/((-3)/4). Suppose d - 114 = -a*b, 17*d - 19*d = -2*b - 210. Is d a multiple of 9? True Let s(q) = 2*q**2 + 3*q - 11. Let b be s(-13). Suppose 9*a + b - 1179 = 0. Is a a multiple of 33? True Let b(w) = -3*w**2. Let p be b(-2). Let o(r) = r**3 + 11*r**2 + 9*r - 14. Let v be o(p). Let j = -166 - v. Is j a multiple of 15? False Let x be 35/(-10)*(-744)/14. Suppose -5*i = 5*q - 1860, 5*q - 1724 = 5*i + x. Does 58 divide q? False Let v(z) = 2*z**3 - 9*z**2 - 10*z - 54. Is v(8) a multiple of 13? False Is 13 a factor of (-3394092)/(-507) + 12/(-26)? False Let j = 123 - 118. Is 37 + 25/j + 0 a multiple of 12? False Let o = 3607 - 2375. Is o a multiple of 9? False Let r(h) = h**2 + 1. Let a(d) = -13*d**2 + 5*d - 5. Let l(j) = -a(j) + r(j). Is l(-3) a multiple of 7? True Let a(v) = 9*v**2 + 6*v + 6. Let u(q) = q**2 + 4*q - 2. Suppose 3*p - 4*p = 2*p. Let z be u(p). Is 15 a factor of a(z)? True Let o(v) = 29 - v**2 - 7*v + 15*v + 6*v. Is o(11) a multiple of 43? False Let a = 6977 + -4921. Does 8 divide a? True Let r(k) be the first derivative of -8 - 7/2*k**2 + 8/3*k**3 + 5*k. Is 21 a factor of r(4)? True Suppose -n = 20*u - 22*u - 873, -5*n + 4350 = -5*u. Is 49 a factor of n? False Suppose -9*a + 10*a = -4*j + 7905, -2*j + 15798 = 2*a. Is a a multiple of 30? False Suppose -3*l = -38 - 16. Suppose -l = 4*i + 22. Does 26 divide (-256)/i + (-22)/(-55)? True Does 15 divide ((-7)/(35/9192))/(21/(-70))? False Let h(p) = -332*p + 22. Is h(-7) a multiple of 69? True Is (-2)/(-1)*(-79 - -450 - (-1 - 3)) a multiple of 189? False Suppose -m - 61 = 5*a - 10, -37 = 4*a - 3*m. Let k = -19 - -18. Does 5 divide 175/14*(16/a)/k? True Suppose -12*u + 14911 = 6*u - 43643. Is 23 a factor of u? False Suppose -224 = -12*g + 19*g. Does 15 divide g/(-168)*732 - (-4)/7? False Let k be 1*4*(-7)/(-14). Suppose 0 = k*q - 3*z, 3*z + 11 + 13 = -2*q. Let v(f) = -f**3 - 6*f**2 - 14*f + 2. Is 29 a factor of v(q)? False Is 3240/864*1360/6 a multiple of 85? True Is 41 a factor of 8262/(-90)*(-210)/18? False Let y(w) = -w**3 + 11*w**2 - 4*w - 4. Suppose 24 = 6*j - 12. Is 6 a factor of y(j)? False Let s = 4789 + 1648. Is s a multiple of 80? False Let u = 5 + 0. Suppose -5*g = -0 - u. Does 17 divide 17/(g - (-8)/(-12))? True Suppose 0 = 2*z + 6, 2*h + 15*z - 10*z - 1003 = 0. Is h a multiple of 3? False Suppose -7*d + 306360 = 24*d + 6*d. Is d a multiple of 60? True Let p(a) = 7*a**3 + 8 + 3 - 5 - 6*a. Let v(s) = -6*s**3 - s**2 + 5*s - 6. Let y(o) = -5*p(o) - 6*v(o). Does 12 divide y(-3)? False Suppose 5*c - 4*o = 206 + 3590, -o + 1 = 0. Does 3 divide c? False Suppose -w + 3*b + 10 = -41, 5*w + 2*b = 187. Suppose 1385 = -34*o + w*o. Does 13 divide o? False Let t = 965 + 3426. Does 28 divide t? False Suppose 0*x + 22949 + 35483 = 22*x. Is x a multiple of 16? True Let p(t) = 9*t**3 + 2*t**2 - 27*t + 13. Does 9 divide p(5)? True Suppose -3*n - n - 2*v + 258 = 0, 5*v + 265 = 4*n. Let g be -2 + 4/4 + n. Suppose 0 = 2*x - g - 2. Is x a multiple of 19? False Let h be -3 + (33 - (2 + 0)). Let u = -39 + 125. Let x = h + u. Is x a multiple of 21? False Let s(f) = -14*f + 14. Let m be s(1). Suppose m = 6*n + 981 - 2685. Does 50 divide n? False Let b(f) = -4*f**2 + 1. Let q be b(1). Let k(l) = -64*l**2 + 3*l + 70*l**2 - l - 7. Is 12 a factor of k(q)? False Let i be 177 + (10 - 1) + -3 + -3. Suppose 3*r = i + 126. Does 3 divide r? True Let g(t) = 6*t**2 - 36*t + 53. Is 8 a factor of g(22)? False Suppose -10*s = -4*s - 12. Suppose -x = 3*y - 316, 3*y - 192 = -s*x + 443. Suppose 0 = -4*a + 81 + x. Is a a multiple of 17? False Suppose -9728 - 3273 - 4289 = -7*d. Is 64 a factor of d? False Suppose -25*g = -52*g + 13635. Does 5 divide g? True Is (-2 - -93)*(-3674)/(-77) a multiple of 88? False Let z(y) = 934*y**3 - 6*y**2 - 20*y + 44. Does 62 divide z(2)? False Is 5 a factor of (-1 - 279)*(-210 + 207)? True Suppose -3*v = -v + 5*c - 973, 0 = -2*v + 4*c + 928. Is 8 a factor of (19/(-76))/((-2)/(-2 + v))? False Let z(h) = -2*h**2 + 25*h - 14. Let w be z(11). Suppose 0 = 5*m + 4*a - 46, -m + 3 + w = 4*a. Is 2 a factor of m? True Suppose -16 - 14 = -6*m. Suppose -2*g - 272 = -4*p, -m*p - 100 = -2*g - 442. Is p a multiple of 8? False Is 23 a factor of (-14)/42*23*-1110? True Let c(h) = 142*h**2 + 30*h + 143. Is 15 a factor of c(-4)? True Suppose 2*b + 9 = 1, -4*r - 5*b + 3184 = 0. Is r a multiple of 9? True Suppose -14*c + 2415 = -7*c. Suppose -c*o = -350*o + 230. Is 12 a factor of o? False Suppose -52*x - 470608 = -186*x. Is x a multiple of 7? False Let o(z) = -2*z**2 - 9*z + 9. Let t be o(-5). Suppose -t*b + 6*y - y = -148, 2*b + 2*y = 74. Is b a multiple of 4? False Suppose 0 = 26*k - 28*k. Suppose k = 5*d - 4 - 16. Suppose -3*m + 72 = 4*i - 2*m, 0 = d*m. Is 4 a factor of i? False Let n = 11 - 7. Suppose 0 = 4*x + 15*x - 3192. Suppose -n*f + 28 = -x. Does 12 divide f? False Let o = 13 - -17. Suppose 0*m + o = 5*m. Suppose 336 = -m*j + 10*j. Does 21 divide j? True Let d be 3917/3 + (-14)/21. Suppose 24*u = 19*u + d. Does 29 divide u? True Suppose -7*f - 9 = -37. Suppose -2*m = -3*i - 118, 0*m + f*m = 3*i + 248. Is 7 a factor of m? False Let u(w) = 13*w**2 - 4*w - 5. Is u(-15) a multiple of 25? False Let s(v) = 46*v + 126. Let f be s(6). Let k be (3 - 5)/(-2)*4. Suppose 4 = -h, -3*i - h + f = -k*h. Does 18 divide i? False Let b(y) = 250*y - 449. Is b(2) even? False Suppose y - 4*s = 5*y - 41648, 5*y - s - 52054 = 0. Does 46 divide y? False Is ((-132)/(-88))/((-6)/20) - -4835 a multiple of 105? True Suppose 6*c = 3*x - x - 15174, 5*c - 30365 = -4*x. Is 22 a factor of x? True Suppose -187 = 2*u - 229. Is 58 a factor of (29/(-2))/(u/(-672))? True Suppose -2 = 5*r + 2*y, 4*r - 2*y + 8 + 8 = 0. Is r + (-1654)/(-4) + 60/40 a multiple of 64? False Let u be 1 - (-4)/2 - 3. Suppose 3*c - 8*c = 2*o - 4, -5*c = -3*o + 31. Suppose -d + 3*b + 51 = u, -3*b - 2 = o. Does 6 divide d? True Let j = 720 + 1198. Does 10 divide j? False Let l be 10/4*(3 + -1) - -4. Suppose a = -l*a + 1100. Is 22 a factor of a? True Let z be (-2 - -2)*1*(-2 - -3). Suppose 39*n - 34*n - 1590 = z. Does 35 divide n? False Let p(a) = 3*a**2 + a - 13. Let y be p(-3). Let m(d) = -d**3 + 11*d**2 - d + 24. Is 4 a factor of m(y)? False Let a be (61 - (-15 + 8))*-1. Let y(s) = -4*s**2 + 2*s + 1. Let m be y(-3). Let d = m - a. Is 21 a factor of d? False Suppose 0 = -4*x - 4, 2*a + 40*x - 42*x - 2206 = 0. Is 58 a factor of a? True Let i(f) = -f**3 + 20*f**2 + 26*f + 33. Let o be i(19). Suppose 3*t - 15*t + o = 0. Is t a multiple of 15? False Suppose 6288 = 3*f + 9*f. Is f a multiple of 13? False Let b = 165 + -159. Suppose 0 = 3*m - b*o + o - 230, o + 151 = 2*m. Is 15 a factor of m? True Let z(c) = c**3 - 5*c**2 + 2*c + 3. Let r be z(4). Let o be (-6)/(-3) + -1 - (-4 + r). Is 29 a factor of (-4 + 2)/o - 2904/(-20)? True Let n(s) = 6*s**3 + s**2 + 43*s + 8. Does 109 divide n(8)? True Let g be -4 + (2 - -1) + -23. Let q be (-6)/8*g/1. Suppose -3*l = -2*l + 5*h + 2, -q = -3*l - 3*h. Does 3 divide l? False Let w be 3/7 + 15*57/63. Suppose -3*n - 66 = -w*n. Is 3 a factor of n? True Suppose -1480 = -7*n + 2*n. Let j = 4 - 0. Suppose -i + n = j*r - 40, -r + 4*i = -101. Does 17 divide r? True Let h(o) = 11*o - 135. Let w(c) = -6*c + 67. Let t(f) = -3*h(f) - 5*w(f). Does 5 divide t(0)? True Let s(w) = -66*w**2 + w - 2. Let a be s(2). Let t = a + 143. Let q = -53 - t. Does 17 divide q? True Let v(x) = -61*x**3 - 18*x - 48. Is v(-3) a multiple of 29? True Let y be 2/(-4) + (-258)/(-4). Suppose -y*t = -68*t + 832. Does 46 divide t? False Let s(u) = u + 3. Let a be s(-3). Let p be 1 + 2 + (0 - a). Does 17 divide (-2 - 4)/p + 87? True Suppose 4*i - 25 = 3*x, 0*x = -2*i + 2*x + 14. Suppose 2*g - 182 = -2*g - 3*u, i*g - 186 = -u. Let m = -30 + g. Does 4 divide m? False Let p(w) = 59*w**3 + 3*w**2 - 3*w + 1. Let k be p(2). Suppose 351 = -j + 3*d, -2*j + 4*d - 687 = d. Let n = j + k. Is n a multiple of 20? False Let i(a) = 420*a - 1083. Does 24 divide i(17)? False Let y = -388 + 201. Let g = -123 - y. Is 16 a factor of g? True Suppose -58083 = -73*f + 54*f. Is f a multiple of 31? False Suppose -9165 = -3*m + 5*o, -15*m + o + 15297 = -10*m. Is 9 a factor of m? True Suppose 4 = -2*y + 14. Let z be 2*(-4 - -30) + -5. Let h = z - y. Does 21 divide h? True Let a = -3077 + 8989. Does 74 divide a? False Let l be (-4)/14 - 14760/(-63). Suppose 4*o - 7*o = -l. Let m = -38 + o. Is m a multiple of 5? True Let z(a) be the third derivative of -a**5/60 + 19*a**4/24 - 2*a**3 - 9*a**2. Let c be z(14). Let t = c + -47. Is 11 a factor of t? True Let u(d) = -d**2 - 10*d + 14. Let b be u(-11). Suppose -5*h + 4 = -b*h. Suppose 368 = 4*q + 4*g, 2*q - q + h*g = 88. Is q a multiple of 16? True Suppose -16*h + 11*h + 3896 = 4*q, h + 5*q = 775. Is h a multiple of 12? True Let w(f) = -2 + 8*f**2 + 2*f + 15*f**3 - 25*f**3 + 11*f**3. Suppose 0 = -d - o, 2*o = -7*d + 6*d + 4. Does 27 divide w(d)? True Suppose 0 = 2*q - 5*h + 8 + 23, 3*q = -3*h - 99. Let l = 31 - q. Is l a multiple of 11? False Let a(k) = 3*k**2 + 19*k + 11. Let i be a(-6). Let q(n) be the third derivative of n**6/60 - n**5/20 + n**4/4 - 7*n**3/6 - n**2. Is q(i) a multiple of 41? False Let s(z) = -z**3 + 4*z**2 + 3*z. Let y be s(5). Is 36 a factor of 180*((7 - 3) + 12/y)? True Let c(z) = 5468*z**3 + 14*z - 14. Does 15 divide c(1)? False Let a = -1018 - -1357. Does 42 divide a? False Let u(l) = 107*l**2 + 10*l - 16. Suppose -6*d + 52 = 40. Does 16 divide u(d)? True Is 22 a factor of -1*(-572 + -6) + -6? True Let i(j) be the first derivative of -3*j**2/2 - 4*j - 5. Let z be i(-2). Does 2 divide z/(-4 - -2) - -8? False Let u(f) = -f**3 + 37*f**2 - 26*f + 49. Is u(12) a multiple of 47? True Let h(l) = l**3 + l**2 - 9*l + 10. Let n be h(2). Suppose -15*s + 1859 = -n*s. Is 13 a factor of s? True Suppose 19*j - 4868 = 14*j - 2*q, 3*q - 2919 = -3*j. Is 30 a factor of j? False Suppose -10*c = -796 - 9604. Suppose -r - c = -9*r. Is r a multiple of 8? False Let d(g) = -2*g**2 - 7*g - 2. Let n be d(2). Is 38/((-3)/(-12)*n/(-27)) a multiple of 9? True Let v be (2 - 24/9)*-3. Suppose -3*y + 2*b + 15 = -b, 3*b + 17 = 4*y. Suppose 5*z = -y*u + 189, v*u - 5*u - 4*z + 280 = 0. Does 23 divide u? True Suppose 0 = 8*m + 2*r - 26168, 3*m + 4509 - 14331 = -3*r. Is 30 a factor of m? True Let l = 468 + -845. Let f = 331 - l. Suppose -23*g = -17*g - f. Is g a multiple of 25? False Let j be 2*(3 + 85/(-30))*12. Does 19 divide 386 - ((-36)/(-6) - j)? False Let f be (4 + -6 - -5200)/2. Suppose 0 = -9*u + f + 551. Is 25 a factor of u? True Suppose 2*b = -30 + 622. Suppose -5*y - 4*n + 359 = -b, 4*y + n - 535 = 0. Is 26 a factor of y? False Let p be 99/18 - 1/2. Suppose -p*j - 5*s = 22 + 3, -j + 2*s = -10. Suppose j = -l + 4*a - 3, 5*l + 2*a + a = 77. Is l even? False Let h(g) be the third derivative of g**5/6 - 7*g**4/24 - 11*g**3/6 - 13*g**2. Let c be h(5). Suppose 3*l - 117 = c. Is l a multiple of 17? False Let x be (-50)/40 - (-45)/4. Let q(r) = r**3 - 8*r**2 - 12*r. Is q(x) a multiple of 12? False Let q(v) = -13*v - 13. Let u be q(-4). Let t be -4 + u + (-3)/(0 + 1). Suppose 0 = 4*n - 100 - t. Is 12 a factor of n? False Suppose -s + 18 = -3*w, 6 = -4*s - 4*w + 14. Suppose 45*d = 49*d - 8. Suppose -d*l = -l - s. Is 2 a factor of l? True Suppose 85*x - 12624 = 79*x. Is x a multiple of 5? False Let b be 2/(2/(-3)*3). Let y = 4 - b. Suppose 0 = -x + y*x - 112. Does 14 divide x? True Let o be -1*(-1 + 3 + 0) + 7. Suppose -5*i + o = -15. Is 7 a factor of (i/(-6)*-84)/2? True Suppose 4*g = 8*g + 52. Let t be -10*g/6 + 10/30. Let j = t + 48. Does 14 divide j? True Let n(i) = 9*i**2 - 27*i - 186. Is 116 a factor of n(-23)? False Is ((-3804)/((-2)/(12/(-45))))/((-64)/160) a multiple of 12? False Let s(m) = m**3 + 2*m**2 - 4*m - 5. Let x be s(-3). Is 9 a factor of 129 + x - (4 + 0 - 4)? False Let c be (950/20)/19*2*1. Suppose -2*f = -c*m + 803, -m + 64 = -4*f - 93. Is 7 a factor of m? True Suppose 28 = 2*a + p - 5*p, 4*a + 2*p - 46 = 0. Suppose -a*x = -14*x + 218. Is 3 a factor of x? False Let v = -1 + 6. Suppose -u - 2 = k, -k + 37 - 9 = -v*u. Does 9 divide (-13 + 40)*((-1)/k)/(-1)? True Let a be ((-112)/(-21))/(2/(-33)). Let c = -60 - a. Is c a multiple of 14? True Let t(g) = -2*g**2 - 37*g - 11. Let s be t(-14). Suppose 12*d = 17*d - s. Is d a multiple of 6? False Let o(w) = -w**2 + 20*w - 91. Let r be o(12). Suppose -2*f = -0*f - 24. Suppose 4*n = r*d - 405, f = d - n - 69. Is d a multiple of 33? False Suppose -5*b + k + 16962 = 0, 3*b + 1023 = 4*k + 11207. Does 48 divide b? False Let u be -7*(26/7 - 4). Suppose -4*o = -u*o - 8. Suppose o = 2*n, 0*s + 3*s - 79 = n. Does 4 divide s? False Suppose 22*h - 21*h = 18*h - 51000. Is 15 a factor of h? True Let i(y) = 2*y**2 - 7*y + 19. Let v be i(-8). Suppose 0 = w + v + 83. Let f = -156 - w. Is f a multiple of 26? True Does 31 divide 20/(-32) - 122775/(-24)? True Is 68 a factor of (-12)/(-4) + -2 - (3 - 3169 - 9)? False Let d = -143 - -131. Let m(y) = -8 + 10*y - 2*y**2 - 3*y**2 + 6*y**2. Does 6 divide m(d)? False Let q be 4114/153 + (-2)/(-18). Is 7767/24 - q/(-72) a multiple of 54? True Let t(p) = -11*p + 66. Let j be t(6). Let g(b) = b**2 + 2*b + 18. Is 13 a factor of g(j)? False Let g = -2676 - -2885. Is g even? False Let u(c) = -c + 2. Let a be u(-1). Suppose -291 = -a*o + 12. Suppose -o = -2*n - 5*i, 5*i - 91 = -5*n + 154. Is n a multiple of 8? True Does 32 divide (-11 - 49643/77)/((-2)/14)? False Suppose -4*n + 4*p - 44 = 5*p, -5*n - 2*p - 58 = 0. Let b = 73 + n. Does 10 divide b? False Let t = -1720 - -1004. Let w = -506 - t. Does 9 divide w? False Suppose -4*z + 453 = 13*u - 8*u, -3*u = 4*z - 443. Let a = z + 235. Does 18 divide a? True Let y(w) = -4*w. Let o be y(-1). Let n = -396 + 401. Suppose 3*j - 156 = -o*x, 2*j + 129 = n*j - 5*x. Is j a multiple of 16? True Let m be 1 - ((-4)/4 - 0). Is 8 a factor of (238 + m)*2/5? True Suppose 0 = -b - 1, -3*b + b = -3*w + 8. Suppose -5*j + 4*o = -2392, 3*j = -w*o + 152 + 1292. Is j a multiple of 60? True Suppose -2*h = -2*w, 2*w - 8 = h - 3*w. Suppose -2*c + 952 = 3*l, -h*c + 1584 = 6*l - l. Does 16 divide l? False Does 92 divide 5/35 + (-6 - 259520/(-35))? False Suppose -2*t + 96 = 4*t. Suppose -11*g + t*g - 180 = 0. Is g a multiple of 6? True Let d(b) = 102 - b + 88 - 98. Is 10 a factor of d(31)? False Suppose -7*x - 1820 + 5005 = 0. Is 7 a factor of x? True Suppose 2*n + 3*o = -0*n + 18, 0 = -4*n + 2*o + 20. Suppose 15*r = n*r + 819. Is r a multiple of 4? False Let s = 11815 - 7140. Does 92 divide s? False Suppose 112*l + 4*l - 560187 - 485553 = 0. Is 15 a factor of l? True Suppose -5*v = -3*b + 12, -5*v - b = -0*b - 4. Suppose 2*n = 6 + 6. Suppose n*h - 132 - 252 = v. Does 32 divide h? True Let y(s) = -10*s**2 + 2*s - 2. Let m be y(1). Let q = 35 + m. Let h = q - 22. Does 3 divide h? True Suppose 12*t - 16*t + 12 = 0. Suppose t*d - 180 = 2*m, 2*d + 7*m = 3*m + 104. Does 28 divide d? False Let k be -4 - -2*16/4. Suppose -2*t = -5*d - 176, t = 3*t + k*d - 158. Is 31 a factor of t? False Let o(s) = s**3 - 8*s**2 - 4*s - 9. Let l(d) = d**3 - 12*d**2 - 14*d + 15. Let y be l(13). Suppose 2*a + y = 22. Is o(a) a multiple of 25? False Suppose 8*u - 15472 + 6953 = 14001. Does 89 divide u? False Let r be 2/(-3) - 5/(-3). Suppose 2*s - r = 5. Let m(f) = 22*f - 6. Does 7 divide m(s)? False Let q(t) = 2*t**2 + 39*t - 1437. Is 66 a factor of q(21)? True Let m(x) be the third derivative of x**5/15 - x**4/3 + 7*x**3/6 + 24*x**2. Is 11 a factor of m(-4)? False Let r(c) = c**2 + 4*c + 4. Let g be r(-5). Let a(s) = s**2 - 8*s - 14. Let v be a(g). Let l(w) = -23*w + 3. Is l(v) a multiple of 37? False Let s(f) = 29*f - 2. Let z be s(6). Suppose -25*w + z = -21*w. Does 4 divide w? False Let z be -1*(6 + (2 - 8)). Suppose f - 21 = o, -2*f + 3*o - 5 + 44 = z. Is 3 a factor of f? True Let t(y) = y**3 - 33*y**2 + y - 110. Does 8 divide t(34)? True Let k be (-4 - 4) + (-3 - -3). Suppose -5*z = -3*s - 58, -3*z - 4*s = s - 62. Let g = z + k. Is 2 a factor of g? True Suppose -50976 = -23*y - 19*y - 12*y. Is y a multiple of 9? False Let i(v) = 4*v**2 - v - 3. Suppose 0 = -3*z - 5*m + 47, m + 2*m + 33 = 5*z. Let s be (2/(-4))/(1 - z/10). Does 13 divide i(s)? False Suppose -2*f - 13*v + 148 = -14*v, v = -4. Suppose 16*p - f = 13*p. Does 9 divide p? False Is ((-1046019)/18)/(-13) + (-2)/24*2 a multiple of 149? True Suppose -4 - 172 = -11*m. Suppose m = n - 5*p, n - 5*n + 98 = -3*p. Is n a multiple of 2? True Is 9 a factor of (-360)/(-4140) + 353552/46? True Suppose 8*j - 9415 = -303. Suppose 4*v - j = l, l + 10 = 3*l. Is v a multiple of 8? False Suppose -28 = 4*r + 2*x, 0 = -0*x - 3*x + 6. Is 4/r + (1 - (-675)/10) a multiple of 7? False Let w = -140 + 149. Suppose 14*y - 1150 = -w*y. Does 3 divide y? False Suppose -3*b + 2*x = -1283, 4*b - 3*b - 423 = -4*x. Suppose 3*y - 2*s = 621, -4*y - 3*s + b = -2*y. Is 27 a factor of y? False Let h be ((-114)/(-9) - -2) + (-1)/(-3). Suppose -2*z + h = 7. Is 12 a factor of 4 + (z*-17)/(-1)? True Suppose -18*k + 35*k + 43*k - 193860 = 0. Is k a multiple of 15? False Let f(s) = -s**3 - s**2 - 2*s. Let k be f(0). Suppose k = 3*i + 1 + 71. Let c = i + 44. Is c a multiple of 5? True Let t(p) = -16*p + 481. Does 15 divide t(-44)? True Let f(g) = -g**3 + 5*g**2 + 9*g - 14. Let u be f(6). Let p be u + 0 + (-30)/(-3). Suppose 20*y = p*y + 168. Does 15 divide y? False Suppose 0*u = 3*v + 3*u, 0 = -2*v - 5*u - 9. Let g = v - 5. Is (-1)/((-8)/100) - 3/g a multiple of 9? False Let p(a) = -36*a - 4. Let f(u) = -u. Let k(c) = -10*f(c) + p(c). Is 7 a factor of k(-6)? False Let b be (-14)/21 + 296/(-6). Let h = 54 + b. Suppose -u - 3*j + 101 = -h*j, -2*j = 2*u - 182. Is 10 a factor of u? False Let p be (-45)/(-25) - 2/(-10). Suppose -980 = -4*i - 4*v + 2*v, -i + 245 = p*v. Does 35 divide i? True Let a(k) = 3551*k + 201. Let s(q) = -15 + 4 - 71*q + 7. Let i(g) = 4*a(g) + 201*s(g). Is i(-1) a multiple of 20? False Let f = -9 - -21. Let w(v) = -17*v**2 + 28*v + 19. Let t(s) = 27*s**2 - 42*s - 29. Let p(b) = 5*t(b) + 8*w(b). Is p(f) a multiple of 31? True Suppose -10*j = -2*j. Suppose j = v + 3 + 2, z + v - 81 = 0. Does 14 divide z? False Suppose -24*m - 20916 = -52*m + 24*m. Is 63 a factor of m? True Let n be (-22)/8*-8*(-1)/(-1). Suppose n*t - 18*t = -12. Is 2 a factor of (-341)/(-33) + 1/t? True Suppose -3*u - 6*b = -2*b - 28, -u - 9 = 5*b. Suppose 12*s - u*s = 0. Suppose s = -q - 4*q - 4*t + 109, 0 = -5*q - t + 121. Is 3 a factor of q? False Suppose -119*c + 118*c - 4*p + 2594 = 0, 4*p = -16. Does 58 divide c? True Let v(x) = x**3 - 15*x**2 - 24*x + 31. Let g be v(15). Let r = 574 + g. Does 49 divide r? True Suppose -4*u - 5*q = -4971, 3*q - 2273 = -2*u + 212. Does 66 divide u? False Let q(a) = 5*a - 17. Let g(l) = -l - 1. Let d(x) = 2*g(x) - q(x). Suppose 0 = 7*m - 13 + 55. Is d(m) a multiple of 11? False Suppose n - 2 = 0, 0 = -2*v + 4*v + 4*n. Is (-612)/(2 + v) - 2 a multiple of 15? False Let i(t) = t**2 + 9*t - 20. Let q be i(-11). Let j be ((-2)/5)/((q/60)/(-1)). Does 6 divide 142/j - (-5)/30*1? True Let s = 197 + -112. Let o = -51 + s. Does 3 divide o? False Let g(l) = -l - 236. Let m be g(0). Let t(v) = 42*v + 112. Let w be t(7). Let z = w + m. Is 34 a factor of z? True Let h be 4/10 - ((-18)/5 - 1). Suppose -2*r + 6*r - 4*f - 28 = 0, h*f + 17 = 3*r. Suppose 0 = r*n - 374 - 85. Does 11 divide n? False Let n(t) = -190*t**3 - t**2 - 13*t - 52. Does 123 divide n(-3)? False Let p(q) = -2*q**2 - 13*q + 6. Let a = 36 - 43. Let u be p(a). Let x = 23 + u. Is x a multiple of 22? True Let y be 1 + -3 + 1 + (1 - 28). Let p = y + 31. Suppose -4*b = -2*r + r - 204, 0 = -b - p*r + 38. Does 25 divide b? True Let o(v) be the second derivative of v**4/3 + v**3/3 - 6*v**2 - 42*v. Is 51 a factor of o(10)? True Suppose -21226 + 1685 = -10*h + 1549. Is h a multiple of 22? False Let j = 7777 - 4462. Is 17 a factor of j? True Let x = 41 + 175. Is (x/81)/(2/3) even? True Suppose 2*h = -5*z + 26288, -3*z = 2*z + 4*h - 26296. Is z a multiple of 24? True Is ((-14106)/4)/(627/(-836)) a multiple of 95? False Let c(l) = 3*l**2 + 56*l + 340. Let t be c(-8). Suppose -5*s = -3*s - 4. Let b = t - s. Is 13 a factor of b? False Let a be (-4)/(-24) - -107*2/12. Let q = a - -3. Does 21 divide q? True Suppose -43*k + 39*k = -20. Suppose -c + 3*c = k*m - 71, -4*m + 4*c = -52. Is 2 a factor of m? False Let p(b) = -b**3 + 28*b**2 + 19*b - 30. Does 15 divide p(21)? False Let p(u) = 237*u**3 - 2*u**2 + 3*u - 1. Let k be p(1). Suppose 17*s = k + 1378. Does 11 divide s? False Let o(v) = -9*v - 48. Let z be o(-3). Let p(u) = -2*u + 48. Is 10 a factor of p(z)? True Let p(l) = 1 - 10 + l**2 + 3. Let m be p(3). Suppose 0 = 3*f - m*n - 138, 4*f - 226 = -f + 4*n. Does 11 divide f? False Suppose 8*h - 3398 = 6234. Does 25 divide h? False Let q be ((-10)/8)/(60/(-11520)). Suppose -3*p = 2*p - 40. Suppose 6*w + q = p*w. Is w a multiple of 15? True Suppose 0 = -8*n - 15 + 47. Suppose -2*u = -n*u + 10. Suppose 11*y - u*y = 756. Does 14 divide y? True Let w = -226 - -445. Let n = -208 + w. Is n even? False Does 26 divide (-1*(-3050 + -9 + 2))/1? False Suppose 4*n + 4*o - 145 - 475 = 0, 3*o = 2*n - 300. Let y = 178 - n. Is y a multiple of 5? True Let o(d) = -d**2 - d. Let g(j) = 3*j**2 + 22*j + 5. Let i(k) = -g(k) - 4*o(k). Is 14 a factor of i(-9)? True Let l(z) = z**2 - 9*z - 6. Let q be l(9). Let f = 39 - q. Is 15 a factor of f? True Let u(j) = 19*j + 30. Let t(n) = -56*n - 88. Let y(k) = 4*t(k) + 11*u(k). Is 2 a factor of y(-3)? False Let p(d) = d**3 + 13*d**2 - 72*d - 32. Is p(-16) a multiple of 8? True Let i(t) = -t**2 - t - 1. Let d(j) = 14*j**2 + 10*j - 2. Let b(f) = d(f) + 5*i(f). Does 6 divide b(-3)? False Is 13 a factor of -2*1 + 3 + -1 + -8 + 892? True Let k(g) = -g**2 + 64*g + 819. Is k(55) a multiple of 9? True Suppose 27*g - 22581 = -9216. Is 55 a factor of g? True Let m = -4557 + 4927. Does 74 divide m? True Suppose -4*r - 94 = -3*g, 10*r - 6*r - 88 = -4*g. Suppose 0 = -5*z + 49 + 111. Let j = z - g. Is j even? True Let r = 11 + 7. Let o = 22 - r. Let k(y) = y + 2. Is 2 a factor of k(o)? True Suppose -3*p = -p - 5*q - 3117, 0 = p + q - 1548. Is p a multiple of 11? True Let d be (-14)/(-105) - (-10448)/(-60). Let l = d - -198. Is 3 a factor of l? True Let m(u) = -u + 10. Let b be -1*(3 + 0) - 12. Let w be m(b). Let i = w + -11. Does 5 divide i? False Let a be (-3 + 1)*(4110/12 + 2). Let n = -190 - a. Is 15 a factor of n? False Let a(g) = 195*g + 14 + 196*g - 386*g. Is 4 a factor of a(6)? True Suppose 10*y - 9 = 381. Suppose -157 = -7*x + y. Is x a multiple of 28? True Is 13 a factor of (-2)/(-5) + 43629/15? False Suppose 9 = 2*t + 3. Let m be 2/(-4)*((2 - t) + -3). Suppose 0 = -m*v - w + 99, -3*w = -v - 3*v + 173. Is v a multiple of 23? False Let y(q) = q**3 - 2*q**2 + 2. Let f be y(2). Suppose -f*l + 2*x = 7*x - 13, 3*l - 14 = -2*x. Does 12 divide 56 - (3 - (-3)/(-2)*l)? False Suppose -9*o = 9*o - 882. Let r = 58 + o. Is 9 a factor of r? False Let u(y) = y + 12. Let x(d) = d + 12. Let r(q) = -2*u(q) + 3*x(q). Let g be r(-9). Suppose -2*b = -c - 61, -g*b + 34 = -2*b - 4*c. Is 13 a factor of b? False Is 13 a factor of ((-366)/(-610))/(1/3905)? False Suppose 9*n + 598 = 10*n - 2931. Is 132 a factor of n? False Let w = 44 + -50. Let f(g) = 42*g + 43*g + 24 - 96*g. Is 21 a factor of f(w)? False Suppose -3*t = -0*c - 5*c - 17, 2*t - 11 = 3*c. Suppose 4*m + 464 = t*h, 0 = h - 2*h - 3*m + 116. Suppose 0 = 5*v - v - h. Is 4 a factor of v? False Suppose n = -0 + 3. Suppose -3*p = -n*y + 579, 0 = 4*p - 0*p - y + 775. Is 11 a factor of 8/36 + p/(-18)? True Let t(s) = s**2 + 9*s - 3. Let d be t(-14). Let u = -123 + d. Let r = u - -96. Is 10 a factor of r? True Suppose 5*u + 8 - 23 = 0, 324 = 3*z - u. Suppose 0 = l + 1 - 5. Suppose -l*s + z - 25 = 0. Is 21 a factor of s? True Let d be (-214)/10 + 14/35. Let p = -21 - d. Suppose 85 = q - p*q. Does 19 divide q? False Let z = 839 - 515. Suppose -4*o + z = 100. Does 37 divide o? False Let v = -231 + 276. Suppose v + 9 = i. Is 27 a factor of i? True Let d(s) = s**2 + 1. Let i(u) = u**2 - u - 1. Let g(l) = 4*d(l) + 2*i(l). Let t be g(-3). Let x = t + -34. Does 9 divide x? False Let a(m) = -m**3 - 9*m**2 - 3*m + 3. Suppose -2 = i - 4. Suppose -5*g = 4*d + 61, d + i*d - 2*g = -17. Does 10 divide a(d)? True Suppose 1894 + 27680 = 31*y. Is y a multiple of 18? True Let w = 2413 + 4659. Is 13 a factor of w? True Suppose -5*l - 4*t + 6849 = -12739, -4*l + 15695 = -5*t. Is l a multiple of 70? True Does 13 divide 14/(-35) - 429426/(-90)? True Is 6 a factor of (-112)/40 + 2 - 2924/(-5)? False Let w = -2540 - -2542. Let t(c) = c**3 - 8*c**2 + 7*c + 5. Let a be t(6). Is 18 a factor of (-8*36/40)/(w/a)? True Suppose -347*n + 345*n = -388. Suppose 0 = -4*g + 58 + n. Is g a multiple of 4? False Suppose 19 = 10*p - 21. Suppose -h = h, 5*k - p*h - 435 = 0. Is 13 a factor of k? False Is 136 a factor of (-7755)/(-2)*(-51 - -53) - 3? True Let f(n) = n**3 - 3*n**2 + 3*n - 2. Let r be f(3). Suppose 0 = r*g - 26 - 2. Suppose g*h + 374 = 5*a - 0*h, 2*h = 8. Does 26 divide a? True Is (30687/39 - 7) + 4/156*6 a multiple of 39? True Let s(p) be the first derivative of -7*p**2/2 + 4*p + 74. Let f(u) = u**3 - 3*u**2 - 2*u + 2. Let h be f(3). Does 8 divide s(h)? True Does 48 divide (92/(-8))/((-12)/4 - (-574)/192)? True Let l(u) = -u**2 + 20*u - 30. Let j(y) = y**2 - 21*y + 30. Let x(f) = -5*j(f) - 6*l(f). Is x(15) a multiple of 8? False Suppose 2*s + 0*s = 0. Suppose -573 = -s*v - 3*v. Let j = v - 116. Is 31 a factor of j? False Let d(k) = k**2 + 5*k - 11. Let t be d(-7). Let c(p) = p**3 + 2*p**2 + p - 2. Let n be c(t). Let g = -19 + n. Is 9 a factor of g? True Let c = 53 - 50. Suppose c*o = 4*l - 309, -l + 4*o + 87 = -0*l. Let m = -45 + l. Is m a multiple of 6? True Suppose 288 = z - 12*x + 7*x, 0 = 3*z + 4*x - 788. Is 67 a factor of z? True Let t(f) = -3*f + 21. Let w(n) = 14*n**2 + n. Let c be w(-1). Let d be t(c). Let z = d + 23. Is z a multiple of 5? True Is (8250/(-525))/((-1)/42) a multiple of 11? True Suppose -a - 136 = 630. Let p be a/(-3)*12/8. Suppose -4*w + 5*o = -p, 0 = 4*w - 2*o + 249 - 647. Does 17 divide w? True Let o(v) = -2*v**3 - v**2 - v + 2. Let j be o(1). Let z(x) = -3*x**2 - 5. Let q(g) = -g - 1. Let p(w) = 3*q(w) - z(w). Does 10 divide p(j)? True Suppose p - 31752 = -5*s, s - 2*p = -6*p + 6339. Is s a multiple of 29? True Suppose -7 - 2 = u. Let c = 14 + u. Suppose c*y - 338 = x, 0 = 3*y - 4*x - 0*x - 213. Is 11 a factor of y? False Let v = -141 + 150. Suppose -v*w = -10*w + 425. Does 18 divide w? False Let t = 128 - 126. Suppose 3*z - 64 = -0*c - c, t*z = c - 89. Does 9 divide c? False Is 7 a factor of (-108384)/(-64)*(-2)/3*-1? False Let g(w) = -5*w - 17*w - 5*w. Suppose -10*c = -5*c + 25. Is 27 a factor of g(c)? True Let q(a) = -3*a**3 + 7*a**2 + 18*a - 2. Is q(-3) a multiple of 8? True Suppose -5*j + 3*n + 32 = 0, -n - 27 = -5*j - 3. Does 6 divide 136*(j + (-6)/((-36)/(-21)))? False Let h(i) = i**3 - 3*i + 2. Let u be h(5). Does 33 divide u/(3/30*4)? False Let z(g) = -3*g**2 - 8*g - 10. Suppose -5*s + s - 6 = -5*c, c = -2. Let i be z(s). Let a = i + 42. Is a a multiple of 8? True Let z = 15594 - 9377. Is z a multiple of 12? False Let r = -65 + 53. Does 8 divide (88/r)/((-6)/261)? False Suppose 13*v - 9*v = 3*y - 682, 2*y - 454 = 2*v. Is 38 a factor of y? False Is 6 a factor of (-4052)/(-5) + 2/(-5)? True Let h(q) = -35*q + 191. Is h(-9) a multiple of 2? True Suppose 34*n - 39*n + 420 = 0. Suppose -2*r + 196 + n = 0. Does 5 divide r? True Let t(x) = x**3 - 5*x**2 - 5*x. Suppose -5*a + 19 = -11. Let r be t(a). Does 27 divide (r/4)/(6/216)? True Suppose -200*u + 210*u - 78570 = 0. Is u a multiple of 27? True Suppose 17 = q + 2*q + 2*c, -2*q - 3*c + 18 = 0. Suppose -5*u + 448 = -q*u. Suppose -2*d - v = -5*v - u, d + 2*v - 112 = 0. Is 28 a factor of d? True Let g(r) = 34*r - 47. Let k(s) = 171*s - 233. Let x(p) = 11*g(p) - 2*k(p). Does 44 divide x(4)? False Let w = 10 - -9. Suppose 591 = 4*d + w. Is d/5*(8 - 3) a multiple of 15? False Let u(y) = y**3 + 7*y**2 + 9*y + 5. Let x be u(-5). Is 5 a factor of 55/(-22)*(-28)/x? False Let o = 1428 - 472. Let y = o + -652. Is 38 a factor of y? True Let r be -52*4/5 + 2/(-5). Let j be 97/(-5) - 0 - r/(-70). Does 27 divide -3 - 1565/j - (-3)/4? False Let k(d) = -605*d - 162. Is 67 a factor of k(-14)? True Let z(y) = 8*y**3 + y**2 - 25*y + 134. Is 75 a factor of z(5)? False Let t = -142 + -65. Let k = t - -267. Is 17 a factor of k? False Suppose 68*y - 117236 = -66*y - 24*y. Does 2 divide y? True Let l(p) = 9*p**2 - 53*p - 86. Does 42 divide l(26)? True Suppose 2848 = m + 3*a, -m + 2*a = -0*m - 2868. Is m a multiple of 13? True Let d = 30 + -28. Suppose -3*o - 9 = 0, d*o + 0*o - 238 = 4*n. Is (n - 2/2)*-1 a multiple of 22? False Suppose 4*r - 2*u + 642 = 0, r + 4*u - 306 = 3*r. Let q = r - -211. Is q a multiple of 3? True Let p be (-3)/(-3) + -2 - -785. Suppose -13*k + 906 + p = 0. Is 10 a factor of k? True Suppose -5*m + 12 = -2*m. Suppose 32*r - 37*r = 0. Suppose 0 = 3*p, 0 = -r*w - m*w - 4*p + 80. Is 5 a factor of w? True Suppose 5*z = d - 22, 4*z + 17 = 3*d - 16. Let i(y) = 4*y - 21. Is i(d) a multiple of 7? True Is 11 a factor of (1 + 14/3)*(-3732)/(-4) - 4? False Let n be (-2 - 0) + 0 - -654. Suppose 5*y - 3*f = n, 3*y + f + 0 = 394. Let k = y + -76. Is k a multiple of 11? True Let n = -320 + 194. Let m = n - -243. Is m a multiple of 9? True Let q = 57 - 55. Suppose -4*i - z - 140 = -1224, -q*z = -3*i + 824. Is i a multiple of 34? True Suppose 0 = 13*w - 3206 - 17789. Does 17 divide w? True Let h = -386 + 1003. Let m = -392 + h. Is m a multiple of 25? True Suppose 0 = -12*k - 136 - 3152. Let m = -64 - k. Does 24 divide m? False Suppose -3*o = -4*q - 7372, o - 2*q + q - 2459 = 0. Is o a multiple of 88? True Let t = 965 + 925. Is t a multiple of 14? True Let o be (-16)/(-8) + ((-10)/2 - -1). Let i(v) = 53*v**2 - 3*v - 5. Does 55 divide i(o)? False Suppose 44*k + 32928 = 67661 + 94671. Is k a multiple of 24? False Suppose 4*o = 3*j - 232, -2*j - 2*o - 70 = -234. Suppose -5*z = 2*n - 5*n + j, 0 = n - z - 26. Is 21 a factor of n? False Is (5 - 0)*18/(-9 - -15) a multiple of 2? False Suppose 0 = -24*a + 35302 + 16946. Does 33 divide a? False Let g = 1054 - 333. Does 31 divide g? False Suppose 163 = -j + 168. Suppose 0 = j*v - 36 - 54. Is 3 a factor of v? True Suppose -10 = 4*c - 2*n, c + c + 2*n = -8. Let h be 36/8 - c/(-6). Suppose 3*r + 79 = -p + 285, -4*r = -h*p - 296. Is 18 a factor of r? False Let t = 24 + -18. Let x be (3*3)/((-20)/t + 3). Let h = x - -43. Is h a multiple of 2? True Suppose 896 = 22*t - 358. Suppose -4*z + 5*a + 51 = -z, -4*z + 3*a = -t. Is 4 a factor of z? True Let n = -1932 + 4759. Is n a multiple of 4? False Let c be (-149 - -8)*(0 + 2 + -3). Let f = -113 + c. Does 5 divide f? False Let b(t) = 3*t**3 + t**2 - 40*t + 3. Does 41 divide b(6)? False Let o be 1 + 17/2*14. Suppose -4*i - o = -i. Let x = i - -64. Is 5 a factor of x? False Suppose -4 = 63*h - 62*h, 2*h = l - 4022. Is 59 a factor of l? False Suppose 5289 = 2*j - r, 9*r = j + 7*r - 2646. Is j a multiple of 7? False Let s(n) be the first derivative of 0*n + 1/3*n**3 + 1/2*n**2 - 3. Is 10 a factor of s(5)? True Let k(j) = 9*j + 23*j - 21 - 3 + 16*j. Is k(3) a multiple of 10? True Let n = 2973 + -2557. Is 13 a factor of n? True Suppose -3*j + 12504 = 4*i - 5*j, -3*i - 5*j = -9365. Is i a multiple of 4? False Let m(s) = -3*s**3 + s**2 + 4*s - 6. Let y(f) = f - 1. Let k(c) = m(c) - 2*y(c). Let g be k(3). Let v = 175 + g. Does 21 divide v? True Suppose 0 = -145*v - 27*v + 217580. Does 23 divide v? True Suppose 0 = -p + 102 + 4. Let d(o) = 11*o + 11. Let t be d(4). Let a = p - t. Is 17 a factor of a? True Let z(g) = g**3 + 24*g**2 + 15*g - 14. Suppose j + 40 - 7 = 2*x, -x + 28 = -j. Does 17 divide z(j)? True Let m(n) = -4*n - 65. Let x be m(-17). Suppose -b + 5*t = -x*b + 139, b + 3*t = 70. Is 4 a factor of b? False Let f(z) = -55*z**2 + 7*z + 5. Let o = 41 - 46. Let x(a) = -109*a**2 + 15*a + 10. Let g(q) = o*f(q) + 2*x(q). Is g(-1) a multiple of 20? False Let f(g) = -g**3 - g**2 - 1. Let c(w) = -5*w**3 - 15*w**2 + 11*w - 12. Let v(j) = -c(j) + 4*f(j). Let m be v(-12). Is (1/(-2))/(m/152) even? False Suppose -5*b + t + 347 = 0, -3*b + 89 + 112 = -3*t. Suppose -37*h + b = -30*h. Is 7 a factor of h? False Suppose -3 = l, -17*p + 22*p + 4*l - 39073 = 0. Is p a multiple of 18? False Let k = -111 - -120. Suppose -k*j = -574 - 11. Is 13 a factor of j? True Suppose -3*s - 688 = -5*s + 4*x, -2*s = -3*x - 688. Does 20 divide (-12)/20 + (-15)/(-25) + s? False Let u be 1/(2/58)*1. Let a = 32 - u. Suppose -2*v = a*v - 115. Is 8 a factor of v? False Suppose -120 = d - 18. Let m = -58 - d. Suppose -5 = i, -c + 3*i = 5*i - m. Does 13 divide c? False Let q(k) be the second derivative of 2*k**3/3 + 35*k + 1. Is q(20) a multiple of 22? False Suppose 151 = 3*m + 37. Let n = m - 36. Suppose -2*x - 116 = -w - 0*x, n*w = -x + 222. Is w a multiple of 20? False Suppose 3*b - 7*b = -2*q + 20, -2*q - b - 5 = 0. Suppose q = 7*u - 8 - 20. Suppose 0 = -2*j + s + 5, -u*j + 1 = -3*s - 10. Does 2 divide j? True Let n be 480*((-1)/(-3) - -3). Suppose 9*m - n = -7*m. Is m a multiple of 25? True Let y(v) be the third derivative of -37*v**4/12 + v**3 + 40*v**2 + 1. Does 23 divide y(-2)? False Let x be (7/(-7))/(5/(-25)). Suppose -4*q + 875 = 5*j, 10*j - x*j = -5*q + 870. Is j a multiple of 24? False Let i = 64 + -62. Suppose 3*k + 20 = i*b - 78, -4 = -2*k. Does 8 divide b? False Suppose -14*k - 13*k + 157514 = -86134. Is 32 a factor of k? True Let i be (-1 - 19)*(-333)/(-148). Does 46 divide (-2 + -4)*1200/i? False Let m = 10 - 0. Suppose t - 414 = -w, m*t - 5*t + 2*w - 2073 = 0. Is 20 a factor of t? False Let n = -4 + 8. Suppose -2*i = 2*d + 6, -6 + 0 = 2*d + n*i. Is 9/(81/6) - 130/d a multiple of 11? True Suppose 0*t = 4*t - d - 9, 15 = -5*t - 4*d. Let n(s) = 190*s - 1. Is n(t) a multiple of 18? False Let v(b) = 11*b**2 - 3*b + 4. Let x be v(1). Does 11 divide (-171)/x*(4 + -8)? False Let j(n) be the first derivative of -8*n**2 - 20*n + 10. Let y(w) = -w**3 + 14*w**2 - 6. Let c be y(14). Is 11 a factor of j(c)? False Let n = -44 + 57. Suppose 0 = -q - 3 + n. Let t = q - -4. Is 4 a factor of t? False Suppose -2*y - 3*y + 4*f = -9, 2*f - 3 = y. Suppose -g = -0*g - y. Suppose 0 = g*x + 2 - 187. Does 37 divide x? True Let z = -21 - -40. Let v = z + -3. Does 9 divide 1/((-4)/v) - -76? True Let o(t) = t**3 - 5*t**2 + 7*t - 8. Suppose 2*l = 3*l - 4. Does 4 divide o(l)? True Suppose 0*j = 2*j - 10. Suppose 2*f + 285 = 4*q + 5*f, -5*f + 350 = j*q. Let i = q + -10. Is 13 a factor of i? True Let s be 3*1/6*4. Suppose 6*k = s*k + 320. Let v = k + -38. Does 21 divide v? True Suppose -7*n + 2*n = o - 8, n - 4 = o. Suppose -15 = d - 5*h, 3*d + n*h - 4 = 2. Is (d + 20)*(-26)/(-65) a multiple of 2? True Suppose -6716 = -31*j + 27*j + 4*t, 0 = -7*j + 4*t + 11744. Is j a multiple of 19? False Let x(r) = -r**3 + 7*r**2 + 3*r + 1. Let c be x(9). Let u = 190 + c. Is 56 a factor of u? True Suppose 6*q = 5*q. Suppose q = 8*i - 180 - 668. Is 16 a factor of i? False Let k = -179 - -89. Let z = -42 - k. Let d = z + -6. Is 25 a factor of d? False Suppose -14*w - 3*z = -11*w - 2331, -5*w = z - 3905. Does 5 divide w? False Suppose -29*y = -26*y + 624. Let j = -100 - y. Is j a multiple of 18? True Let w(f) = -1360*f - 136. Is 38 a factor of w(-2)? True Is 6 a factor of ((12/((-18)/3))/((-6)/(-6582)))/(-2)? False Let g = 68 + -134. Let n be g/8 + (-6)/8. Let v(j) = -9*j - 6. Does 25 divide v(n)? True Let d(t) = -42*t - 57. Let s be d(-11). Let n = 665 - s. Is n a multiple of 18? False Let c be 5496/18*6/4. Let d = c - 192. Is 16 a factor of d? False Let g(f) = -369*f - 257. Is g(-4) a multiple of 8? False Let q(o) = 2*o - 18. Let g be ((-2)/(-3))/(6/(-4 + 22)). Let b be (5/g)/5*26. Is q(b) even? True Let t(a) = 12*a**3 - 5*a**2 - 4*a - 8. Let s be t(3). Let z = -129 + s. Is 5 a factor of z? True Suppose -115*f + 209113 = -113807. Is 54 a factor of f? True Let o(n) = -82*n - 1464. Does 66 divide o(-57)? False Let a(q) = -991*q**3 - 2*q**2 + 2*q + 3. Let t be a(-1). Suppose t = 6*f + 270. Is f a multiple of 20? True Suppose 2*g = -8, 0*l + 5 = 3*l + g. Is 21 a factor of (0 - 4/(-24)*l)*362? False Let r(m) = -48 - 15*m + 122 + 86. Is r(0) a multiple of 40? True Suppose 5*s - 1 = -16. Is (-3)/((-6)/(-552)*s) a multiple of 5? False Let q = -109 - -77. Let j = -30 - q. Suppose 4*w + j*m - 6*m - 88 = 0, w + m - 32 = 0. Is w a multiple of 12? False Let r = 220 - 139. Let n = 279 - r. Is 33 a factor of n? True Suppose -16 = 2*w - 10*w. Suppose 2*d - w*q - 23 = 3*q, d - 5*q - 24 = 0. Is 10 a factor of (-16)/24 - ((-161)/3 - d)? False Let l(c) = 2*c**3 - 409*c**2 + 6 - c**3 + 400*c**2 + 14*c. Does 6 divide l(7)? True Suppose -109*u + 15843 - 1673 = 0. Suppose -5*h = -6*a + 3*a + 344, -72 = h + a. Let n = u + h. Is n a multiple of 12? True Suppose 87*j = 88*j - a - 283, 283 = j - 5*a. Does 4 divide j? False Suppose 23484 = 107*f - 12468. Is 7 a factor of f? True Let l = 1489 + -732. Let v = l + -537. Does 10 divide v? True Suppose 956 = -11*a - 2575. Let w = -103 - a. Is 10 a factor of w? False Let c be -6*(-6)/((-72)/(-51))*10. Suppose -2*b = -c + 105. Is b a multiple of 6? False Let u be (-36)/(-10) - (-4)/10. Let f be ((-360)/162 - 4/(-18)) + 6. Suppose -509 = -4*d + 5*v - u*v, 4*v + 512 = f*d. Does 17 divide d? False Let i(h) = -h**3 - 3*h**2 + 7*h - 7. Let l be i(-5). Let b(d) = d**2 + 34. Is 5 a factor of b(l)? False Let u be 133 + (-5 - (-5 + 0)). Suppose 5*h - 3*d - 491 - 166 = 0, 0 = h - d - u. Is h a multiple of 10? False Let m(c) = -5*c**3 - c**2 - 22*c - 17. Let d(z) = -4*z**3 - 21*z - 17. Let s(w) = -6*d(w) + 5*m(w). Let t be s(-7). Suppose t*h + 64 = 262. Does 33 divide h? True Let k(h) = -h + 38. Let a be k(15). Let w = 305 + a. Suppose -3*z + w = z. Is z a multiple of 19? False Let v(z) = -z**3 - 5*z**2 - 6*z - 6. Suppose 2*d - 4*j = 8, -3*d + 8 = j - 6*j. Let g be v(d). Suppose g*n = 8 + 4. Is n a multiple of 6? True Let k(z) = -50*z + 24. Suppose 12 = 4*d, 4*s + 12 + 13 = -d. Is k(s) a multiple of 17? True Let a = 11194 + -6421. Is 111 a factor of a? True Suppose 2*p - 885 = c, -c + 1948 - 633 = 3*p. Is p a multiple of 5? True Let h = 286 + 88. Let g be h/(-14) - (-38)/(-133). Is 18 a factor of (g/(-4))/(3/16)? True Suppose 228 = -2*h + 66. Suppose -376 = 3*u - 4*o, u = -u + o - 249. Let r = h - u. Is r a multiple of 43? True Let t(a) = a**2. Let b be t(2). Suppose b*c - 4*i - 36 = i, 0 = 3*c - 4*i - 28. Suppose -4*h - f = -6*f - 93, -4*f + 84 = c*h. Does 11 divide h? True Let v(p) = -p**2 - 8*p - 5. Let b be v(-8). Is 23 a factor of ((-6 - -1)/b)/((-3)/(-1314))? False Suppose -3*v + 15 = -2*m + 5*m, -5*v + 22 = 4*m. Suppose -6*f - 570 = -4*p - m*f, -4*f - 712 = -5*p. Is p a multiple of 12? True Suppose 0 = -4*d + 2*v + 20924, 36*d - 37*d + 5241 = -3*v. Is d a multiple of 25? False Let h = 464 + -783. Let k = h + 459. Is k a multiple of 14? True Let v(k) = -91*k**3 + 5*k**2 - 15*k - 68. Is 11 a factor of v(-4)? True Suppose 7*z + 24 = 38. Suppose -3*v + 136 = 5*x - x, 2 = z*x. Is v a multiple of 11? True Let u(y) = 31*y**2 - 6*y - 57. Let n(q) = -16*q**2 + 3*q + 28. Let x(v) = -9*n(v) - 4*u(v). Does 11 divide x(-3)? True Let i(w) = w**2 - 6*w + 25. Let q be i(-8). Let v = q - -24. Is 22 a factor of v? False Let n = -2157 - -5403. Is n a multiple of 7? False Suppose 110*d = 142*d - 66752. Does 14 divide d? True Let l be -8 - (-2576)/35 - 6/(-15). Let t be 1/(5/14)*15. Let p = l - t. Is 8 a factor of p? True Let x be ((-11)/77)/(1/(-2))*7. Let a be (-2074)/(-6) - x/3. Suppose -2*g - 43 = -a. Is 27 a factor of g? False Let u(g) = 6*g**2 + 20*g + 36. Suppose -3*p + 10 = s + 4, -3*p + 51 = -4*s. Does 18 divide u(s)? True Let y be -6 + 320/55 + (-1055)/(-55). Let m be -17 + (0 - 2 - -3). Let k = y - m. Does 9 divide k? False Suppose -7*q + 4829 = -32684. Does 68 divide q? False Let h = 6161 + -1404. Does 148 divide h? False Let u(w) = -4*w + 0*w + 3*w - 22. Let t be u(19). Let p = t - -83. Is 29 a factor of p? False Let l(x) = x**3 - 11*x**2 + 13*x - 18. Let p be l(10). Suppose -17*h + p*h = -2345. Is 67 a factor of h? True Does 17 divide (449/(-3) - 9)/(6/(-108))? True Suppose -18*x = 61 + 29. Is x*((-88)/40)/(3/66) a multiple of 29? False Suppose 0 = -556*g + 545*g + 38649 - 369. Is g a multiple of 40? True Suppose -12464 - 8677 = -429*x + 420*x. Is 29 a factor of x? True Suppose 5*o - v = 7016, 8*o - 3*v = 7*o + 1406. Does 48 divide o? False Suppose 9*k - 10*k - 16*k = -54264. Is k a multiple of 76? True Let o be (-18)/(-16) + ((-735)/56 - -13). Let s(p) = -5 + 3 + 18*p**2 - 3*p + 4*p. Is 13 a factor of s(o)? False Let r(c) = -3*c**2 + 38*c + 1. Let v be r(12). Suppose 0 = -v*k + 23*k + 528. Is k a multiple of 33? True Let i(c) = 32*c**3 - c**2 - 2*c + 2. Let r be i(1). Let y be (-43)/(-4) + 6/24. Suppose y = -m + r. Does 5 divide m? True Suppose 465 = b + 5*u - 268, 2*b - 1534 = 7*u. Is 128 a factor of b? False Let q(s) = s**3 + 79*s**2 - 91*s - 227. Does 30 divide q(-80)? False Let g(p) = 2*p**2 + 1. Let k be g(1). Suppose 4*u = -0*n - 2*n, k*u = -2*n. Is 0 + 2 + 19 + (3 - n) a multiple of 8? True Let f = -271 - -562. Is 19 a factor of f? False Is 17 a factor of 2/((-31548)/3944 + 8)? True Suppose 2*v + w - 6 = -2, 0 = -v - 5*w - 7. Suppose -h = -6*h - 10, -v*h - 166 = -5*y. Suppose -y*m + 37*m = 375. Is 17 a factor of m? False Suppose 0 + 8 = 4*b. Suppose 4*x + 4*r = -8, b*x + 4*r = r - 8. Suppose 0 = -2*w - v + 269, v + 36 = x*w - 239. Is 34 a factor of w? True Suppose 5*x - 254 + 74 = 0. Suppose -2*s = -3*o + 4 - 0, -x = 3*s + 3*o. Let f(y) = -11*y - 12. Does 19 divide f(s)? True Is 58 a factor of 3 + 8 + 2069 + 8? True Let v(c) = 11*c - 71. Let k be v(7). Suppose 4*i = k*i - 114. Is 57 a factor of i? True Let n be -4*((-15 - -3) + 10). Let j(r) = 6*r**2 - 3*r**2 + 0*r**2 + 16 - 9*r. Is 17 a factor of j(n)? True Let o = -15 + 19. Let n(g) = -g - 4. Let s be n(o). Is (-22)/s - 21/28 even? True Suppose 5*l = -2*z + 8748, -3*z - 7110 = -4*l - 107. Does 7 divide l? True Suppose -21 = 9*c + 6. Is c/(36/(-834)) - 3/(-6) a multiple of 7? True Suppose 0*u - 90 = 3*u. Let j be 3/u*-2998 - 1/(-5). Suppose 0 = -6*x + x + j. Does 12 divide x? True Suppose -3*v + 53 = 20. Suppose -v*o = -9*o - 644. Does 14 divide o? True Does 8 divide 1618 - ((-18)/6 + -8)? False Suppose -864 = 17*o - 34*o + 14*o. Is 3 a factor of o? True Let y(q) = 2*q**3 - 13*q**2 + 12*q + 19. Let u(g) = 6*g**2 - 2*g + 3. Let v be u(1). Is 19 a factor of y(v)? True Let l(n) = 207*n + 3. Let h = 24 + -22. Let y be l(h). Let d = -273 + y. Does 48 divide d? True Suppose -4*c - 2*r + 7*r + 23 = 0, 5*c - 25 = 5*r. Suppose c*s + 6*s - 2688 = 0. Is s a multiple of 48? True Suppose 3*y = 3*h + 24, y + 5 + 8 = -2*h. Let u = -4 - h. Is 189/u + -2*(-2)/(-4) a multiple of 37? False Let x be (802 + 1 + -1)/(3 - 5). Let m = x - -711. Is 31 a factor of m? True Let a = 90 + -50. Suppose a = -2*n + 6. Let d(f) = -7*f - 22. Is 11 a factor of d(n)? False Let g = 208 + -178. Does 2 divide -24*g/(-40)*16/18? True Suppose 0 = -4*w + o + 28, 5*o = -3*w - 0*o - 2. Suppose -1 = 3*n - 2*r, -5*n + 29 + w = 4*r. Suppose -q = 4*f + q - 142, 101 = n*f - 4*q. Is 11 a factor of f? False Suppose 2*c = 5*u - 7075, -13*c + 18*c = 0. Is u a multiple of 39? False Let p be (-5 - 35/(-4)) + (-2)/(-8). Let t be (-5)/p - (-2)/8. Let i(w) = 28*w**2 - 2*w. Is 21 a factor of i(t)? False Suppose 4*r = -118 + 2. Let z(h) = h**2 + 3*h - 96. Let x be z(-13). Let f = r + x. Is f a multiple of 2? False Suppose -2*g = 19 - 53. Let i = 239 + -231. Let w = i + g. Is 6 a factor of w? False Let y = 5140 - 3429. Is 24 a factor of y? False Let w(n) be the third derivative of -n**6/120 + n**5/5 + 11*n**4/24 - 25*n**3/6 + 4*n**2 - 7*n. Does 14 divide w(12)? False Suppose 5*n - 50 - 14 = -3*u, -u + 3 = 0. Does 9 divide n? False Let u(m) = -359*m - 1381. Is u(-15) a multiple of 28? True Suppose 2 = -t - g, 5*g = -20 - 0. Suppose -2*c - 199 = -t*y - y, -c + y = 99. Let l = -65 - c. Is 11 a factor of l? True Does 11 divide (-14)/(-231)*3*1 - (-178795)/55? False Let o = 36 - 32. Suppose -i = 2*i + 5*h - 68, 0 = 5*i - o*h - 101. Is 21 a factor of i? True Is 2/(-2) + -3 + 1291 + (9 - 5) a multiple of 15? False Let x = 273 - 408. Let f = x - -246. Does 13 divide f? False Let b = 10872 + -6406. Does 77 divide b? True Let r = 6758 + -3635. Does 33 divide r? False Is 174*(-21 + 28 + (-147)/(-9)) a multiple of 29? True Let c be 375/25 - -1*2. Let z = -14 + c. Suppose 4*w + z*w - 798 = 0. Does 19 divide w? True Let u(b) = -1259*b - 606. Does 21 divide u(-3)? True Let w(m) = -1 + 0*m + 0*m + 0 - m + 7*m**2. Let p(x) = x - 1. Let v be p(3). Does 4 divide w(v)? False Let y = 588 + 63. Suppose -12*w - y = -15*w. Is w a multiple of 10? False Let k(n) = 7*n - 66. Let x be k(9). Is 46 a factor of (-4040)/(-12) - ((-7)/3 - x)? False Suppose -5*v = -2*v + 3. Let n be (-2)/(-6)*0*v/(-2). Suppose n = -p + 93 - 15. Does 26 divide p? True Suppose 3*g - 194 = -4*z, -164 + 354 = 3*g + 5*z. Is g a multiple of 14? True Let f(a) = -61*a + 1297. Does 18 divide f(-15)? False Suppose 8*u = 5*u + 36. Let r(t) = t - 8. Let s be r(u). Suppose -o - s + 0 = 0, 5*q - 360 = -5*o. Does 14 divide q? False Let t(o) = -2*o**2 + 43*o + 72. Let v be t(23). Suppose d = -3*d - 2*a + 1014, -d = v*a - 261. Is d a multiple of 15? False Let a(w) = -34*w - 22. Let u(p) = -p**2 - 8*p - 19. Let d be u(-7). Does 63 divide a(d)? False Let r(f) be the first derivative of 11 + 13/2*f**2 - 1/3*f**3 - 9*f. Is r(12) a multiple of 3? True Let b be 226/(-10) - (-140)/(-350). Let a be (-101)/(-2) + (-3)/6. Let l = b + a. Is l a multiple of 9? True Let f(m) = m**2 + 8*m - 6. Let s be f(-6). Let c = s - -18. Suppose c*t = -t + 25. Is t a multiple of 3? False Let f(n) = 2504*n - 1277. Is f(3) a multiple of 33? False Does 38 divide 2/(-13) - (-85)/(-221)*-6126? True Is 3 a factor of (490/56 + -8)*232? True Let o be 7 + 2/(-1) - 11/11. Suppose 3*f + f - v - 560 = 0, o*f - 4*v - 548 = 0. Is 23 a factor of f? False Suppose 18*o = -129 - 69. Let a(b) = -13*b - 44. Is 9 a factor of a(o)? True Let m(d) = -d**2 + 1053. Let i be m(0). Suppose 3*p - 8*k + 4*k - i = 0, 5*p - 1741 = 2*k. Is p a multiple of 21? False Let l(q) = -q**3 + 6*q**2 + 5*q - 15. Let b be (3/(-12))/((-3)/84). Suppose -b*d - 12 = -9*d. Is l(d) a multiple of 9? False Let u be 0/8*(-2)/(-4). Suppose u*c = -3*c + m + 669, -m = -4*c + 891. Is c a multiple of 15? False Is 45 a factor of 0 + 5/4 - (-115416)/32? False Suppose 11*w = 66967 - 23627. Does 13 divide w? False Suppose 2*h + m - 43 - 10 = 0, -3*m - 3 = 0. Suppose 5*i + 233 = 3*t, 4*t + h*i = 23*i + 364. Does 29 divide t? False Let o = 5 - -35. Let y = 46 - o. Is 5 a factor of ((-80)/y)/(14/(-21))? True Is 4 + -3 - (-18)/(-22) - 16936/(-22) a multiple of 21? False Let l(a) = 361*a**2 - 367*a - 3. Is l(4) a multiple of 37? False Let h(r) = 947*r**2 - 3*r + 2. Let d be h(1). Suppose d = 4*x - 494. Suppose 5*l - 2*b - x = -0*b, 85 = l - 3*b. Is 17 a factor of l? False Let t(p) = 4*p - 32. Let a be t(13). Suppose 0 = -a*y + 26*y - 552. Is y a multiple of 9? False Let m(w) = w + 15. Let y be m(-13). Suppose -y*o + 4186 = 21*o. Does 13 divide o? True Let r be 382*(-156)/(-80) - (-4)/40. Suppose 4*z - 439 = z + c, 5*c + r = 5*z. Is z a multiple of 13? False Let x(y) = -y**3 + 16*y**2 + 4*y - 33. Let n = 130 + -115. Does 7 divide x(n)? True Let k be (-9)/(((-819)/260)/21). Let q(w) = w**3 + w**2 + 4. Let c be q(0). Suppose 4*d + c*o - k = 0, 4*o = -d - 0*o + 24. Is d a multiple of 5? False Suppose 4 - 10 = 3*v, -5*p + 3*v + 12046 = 0. Is 86 a factor of p? True Suppose -2 = -2*o + 2. Suppose o*h - 488 = -2*u + 6*u, -2*h - 5*u = -524. Is h a multiple of 28? True Suppose -39*q - 59 = -30141 - 61568. Is q a multiple of 18? False Suppose -5*l - 87 = 3*p, 3*l + 58 + 0 = -2*p. Let k(a) = -a**3 - 30*a**2 - 38*a - 49. Is 10 a factor of k(p)? False Suppose 35*o = -45*o - 133917 + 384077. Is 13 a factor of o? False Let h = 225 + -212. Suppose 0 = h*f - 11*f - 680. Is f a multiple of 20? True Let q be 15/(-6)*(-1 - 7). Suppose -4*j + 28 + q = 0. Suppose -8*a - 392 = -j*a. Does 15 divide a? False Let x(l) = 10*l**2 - 8*l + 4. Let u be x(3). Suppose 0 = 23*b - 28*b + u. Let a = 42 - b. Is a a multiple of 4? True Let x be (0/1)/(24/3 + -10). Suppose x = -29*h + 25*h + 136. Is 2 a factor of h? True Let w(r) = 11*r - 21. Let m(l) = -53*l + 49. Let b(d) = -18*d + 16. Let k(o) = 17*b(o) - 6*m(o). Let v(z) = 3*k(z) - 4*w(z). Does 31 divide v(-11)? False Let g be (-1 - -2)/(-2 + 11/5). Suppose m = -2*m + g*j + 449, -m + 143 = 5*j. Suppose 8*k = 116 + m. Is k a multiple of 5? False Let w = -1934 + 4904. Is 99 a factor of w? True Suppose -695 = -6*r + 11*r. Let d = r - -223. Is d a multiple of 42? True Suppose -403*k = -377*k - 27982 - 5662. Is k a multiple of 7? False Does 7 divide (1419 + -40)*(-1 - (-3 + 1))? True Let h = -128 - -149. Suppose -u - h = -86. Is u a multiple of 13? True Suppose -4*s + 15470 = 7*j - 2*j, -9255 = -3*j + 3*s. Does 6 divide j? True Suppose -96*g + 91*g + 30 = 0. Is (-10)/(-15) + (4 - (-518)/g) a multiple of 7? True Let u(c) = -53*c - 592. Does 21 divide u(-50)? True Let i = 159 + -19. Does 10 divide 1706/8 - 175/i? False Let l(c) = 22*c**2 + 180*c + 37. Does 36 divide l(-11)? False Let z be 12/(132/121) - 11. Let v(h) = 3*h. Let y be v(1). Suppose z*q - 60 = -y*q. Does 3 divide q? False Let g(z) = 3*z**2 - 7*z - 11. Let y = 26 + -22. Is g(y) a multiple of 5? False Let g = 978 + 1230. Is 92 a factor of g? True Let l = -4822 - -5092. Does 30 divide l? True Suppose 222*u = 217*u - 5*a + 3790, -746 = -u + 3*a. Does 166 divide u? False Suppose -4*j + 278 = n, -3*n - 4*j = -507 - 335. Does 2 divide n? True Let k(j) = -24*j**3 + 59*j**2 + 9*j + 47. Let o(x) = 11*x**3 - 29*x**2 - 5*x - 23. Let g(n) = 6*k(n) + 13*o(n). Is 59 a factor of g(-23)? True Let p(x) be the first derivative of -3*x**2/2 - 16*x - 545. Suppose -5*v - 21 = 49. Is 11 a factor of p(v)? False Is -1 + 4509 + 82/41 a multiple of 82? True Suppose -3*m = 5*b - 2898, 2*m = -15*b + 20*b + 1932. Is m a multiple of 42? True Let p(c) = 2*c**2 - 9*c + 52. Let a be p(8). Is (320/(-96))/((-2)/a) a multiple of 12? True Let x(l) = l**2 + 7*l + 17. Let t be x(-2). Is 14 a factor of 146 - (3 + (t - 4))? True Let m(x) = -21*x + 74. Let u be m(12). Let b = u + 282. Is b a multiple of 13? True Is (61/610)/(2/74540) a multiple of 8? False Suppose 4*j - 9*a - 20116 = -5*a, -5*j + 4*a + 25142 = 0. Does 37 divide j? False Suppose 120*y - 7*y - 135374 = 0. Does 50 divide y? False Let s = 211 - 206. Suppose -2*l - 836 = -5*l + s*i, 5*l = -2*i + 1445. Is 18 a factor of l? False Suppose -5*j + 2068 = 4*c - 3448, 0 = -c - 5*j + 1394. Suppose -4*q + i + 488 = -c, -1860 = -4*q + 2*i. Does 16 divide q? False Let b(z) = 23*z**2 - 4*z - 107. Is b(-8) a multiple of 83? False Suppose -23 = -5*h - 13. Let x(z) = 2*z**2 - 3*z**3 - h*z**3 - 82*z + 85*z + 0*z**2 + 3. Is x(-2) a multiple of 5? True Let a(z) = -2*z**3 - 49*z**2 + 27*z + 54. Let j be a(-25). Suppose 5*x - j*u = 2*x + 61, 4*u + 99 = 5*x. Does 12 divide x? False Suppose 0 = -42*n + 1290 + 1188. Does 42 divide n? False Let g(i) = -2*i**3 + 21*i**2 + 5*i - 8. Suppose 26*m - 355 = -121. Is 40 a factor of g(m)? True Suppose 3*d - 14 = 4*r + 4, 0 = 2*d - 4*r - 16. Suppose p - 5*n = -n + 30, -d*p = 5*n - 112. Does 12 divide p? False Let z(y) = y**3 + 11*y**2 + 14*y - 27. Let x be z(-10). Let c = 111 + x. Does 4 divide c? True Let v = -5274 - -9150. Does 6 divide v? True Let l = 30 - 21. Suppose d + 54 = -2*d - 4*h, -4*d + 4*h - 44 = 0. Is 5 a factor of ((-36)/d)/(l/42)? False Let u be 1/((-30)/(-12) + -3). Is 23 a factor of ((-232)/32 - -7)/(u/184)? True Let o be 3/(((-30)/(-28))/(-5)). Suppose 26 = -5*g + 31. Is 7 a factor of (0 + o)/(g + -3)? True Let n be (-4)/(-3)*-12*4/(-16). Suppose -221 + 313 = n*o. Is o a multiple of 16? False Let a be (-51)/(-15) - 3 - 931/(-35). Suppose a = -10*k + 11*k. Is k a multiple of 3? True Let n(p) = 242*p**2 + 85*p - 9. Is 21 a factor of n(-5)? False Suppose -3*o - 55 - 29 = 0. Let g = o - -27. Is 24 + g - (-3 + 2) a multiple of 4? True Let k be (-130)/(-18) - 22/99. Suppose -x + 29 = 2*v, k*v + 42 = 3*x + 4*v. Is x a multiple of 6? False Suppose 10*l = 13*l - 42. Is (4/(-10))/(l/(-7945)) a multiple of 74? False Does 9 divide (-510)/4*(-7 + (-30)/6)? True Let k(g) = -2*g**3 + 39*g**2 - 10*g - 13. Is 15 a factor of k(18)? False Let k = 2666 + -2403. Does 12 divide k? False Suppose -29*n + 28*n + 2898 = 0. Suppose 13*z + 8*z = n. Is 35 a factor of z? False Suppose -2*y - 4*a + 12 = -42, 128 = 4*y + 4*a. Let c = y + -39. Is 11 a factor of 0 + 0 - (2 - 15) - c? False Let u = 29 - -30. Let s = u - 25. Does 6 divide s? False Suppose 1 - 2 = -w, 0 = a - 5*w - 1267. Is a a multiple of 39? False Let f(o) = -3*o**3 + 8*o**2 - o + 3. Let v(t) = 7*t**3 - 16*t**2 + t - 5. Let d(g) = 5*f(g) + 2*v(g). Is d(7) a multiple of 2? False Suppose 40 = 11*j - 15. Suppose j*h = -2*a + 126, 21*a + 2*h - 284 = 17*a. Is a a multiple of 8? False Let g(t) = -7*t**3 - 28*t**2 - 19*t + 2. Does 50 divide g(-11)? False Let y(u) = u**2 - 2*u + 14. Let q be (54/15)/((-6)/(-20)). Suppose -2*x = -5*x + q. Is 22 a factor of y(x)? True Suppose -5*u + 9821 = -3*j, -3*j = 2*u + u - 5883. Does 11 divide u? False Suppose 3*b + 1183 = 2*j - 1252, 0 = 4*b + 4. Suppose 2*h = m + h - 297, -4*m + j = 3*h. Is m a multiple of 43? True Let x = -2 + 4. Suppose -4*m + 5*j - 158 = 0, -m - j - 31 = 2*j. Let n = x - m. Is n a multiple of 12? False Suppose -3*b - 9*p + 10*p = -16064, -26777 = -5*b - 2*p. Is 51 a factor of b? True Let w(z) = 225*z + 88. Is w(5) a multiple of 23? False Let k(o) = 9*o - 1. Let a be k(-2). Let c = -16 - a. Suppose -c*t = -t - 8. Is t a multiple of 4? True Let w(s) = -5*s**2 + 11*s + 16. Let b be w(-8). Let y = b + 618. Is 19 a factor of y? False Suppose 2*f - 19*f + 5*f + 28272 = 0. Does 10 divide f? False Is -1 - (-2 - (-1513)/34)*1168/(-10) a multiple of 28? False Suppose 0 = 123*w - 127*w + 12. Suppose 22 = k - 0*k + w*q, 73 = 3*k + 2*q. Is 25 a factor of k? True Let k be ((-54)/12)/(-9)*50. Suppose -4*x - x - k = -2*h, -5*x = -5. Is 3 a factor of h? True Let r be (2 - (-24)/(-4)) + 21. Let a(c) = c**2 + c + 14. Does 12 divide a(r)? False Let v(h) = 3*h**2 + 4*h + 420. Is v(-30) a multiple of 30? True Suppose -7*z + 14 = -0. Suppose 4*m - d = 454 + 863, -z*m = -2*d - 654. Is 11 a factor of m? True Let p = -4 - -10. Let z be 4*(-16)/8 + 112. Is 17 a factor of z + (0 - p)*(-9)/(-27)? True Let b = -10 - -15. Suppose 5*k - 159 - 26 = -b*t, 4*t = 3*k - 118. Suppose 72 = 4*l + w, 2*l - w - k = -2*w. Is l a multiple of 11? False Let z be 4/(-14) - (-132)/21. Let c = 3 + z. Does 21 divide 3/(-27) - (-298)/c? False Suppose 4 = 4*x - 0, 0 = -k - 4*x - 47. Let z = -43 - k. Is z a multiple of 4? True Let o = -52 + 1918. Is o a multiple of 42? False Let l be (-1 - 3)*(-105)/(-28). Let o be (0 - l)/(28/336). Suppose -4*g + o = 5*k, 4*g - 135 = g + 4*k. Does 12 divide g? False Suppose 1188 + 1832 = -20*u. Let k = 159 + u. Is k a multiple of 4? True Suppose 3*m = -2*f + 37, -m = -3*f + 4*m + 8. Suppose -f*c + 1125 = -6*c. Let l = -87 + c. Does 23 divide l? True Does 48 divide 594675/90 + 5/2 + (-2)/1? False Suppose 7*w - 34 - 43 = 0. Suppose w*h = 17*h - 2250. Does 25 divide h? True Let m(r) = -3*r**3 - r**2 + 22*r - 4. Is m(-10) a multiple of 12? True Let r = 4995 - 3449. Is 30 a factor of r? False Let o(k) = -k**3 - 4*k**2 - 11*k - 7. Does 73 divide o(-5)? True Suppose 0 = 3*j + 4*i - 1, -4*j - 5*i + 2 + 0 = 0. Is 4 a factor of (-1968)/(-36)*j/2? False Let i = 103 + 5627. Is 20 a factor of i? False Suppose 5*p + 2*w = 24, -5*p = 2*w - 5*w - 14. Let r be 36100/45 + p/(-18). Suppose 6*u + 298 = r. Is 21 a factor of u? True Let o = -5 - 95. Let a be o/(-16) + (-9)/(-12). Suppose 0 = 2*k + a*k - 90. Is 5 a factor of k? True Let q = 1172 - 206. Suppose -8*t + q = -2*t. Does 9 divide t? False Suppose 2*v = y - 3*v - 16, -5*v = 5*y - 200. Let s be -4*(-4 - (-3 + y/8)). Suppose 2*h = -0*u - u + s, 2*h - 14 = -5*u. Is h even? True Suppose -16*y - 68 = -33*y. Suppose 2*v - r = 784, -1938 = -5*v + r - y*r. Does 26 divide v? True Let b(o) be the third derivative of -o**6/120 - 19*o**5/60 - 2*o**4/3 + 13*o**3/3 + 9*o**2. Let v be b(-18). Does 25 divide v/(-20) - (-158)/4 - -1? False Let p(c) = -c + 20. Suppose 0 = -3*x - 5*u - 9, -14 = -x - 3*x + 2*u. Suppose 4*s + 5*y = 62, -s + 5*y = x - 5. Does 4 divide p(s)? False Let q be (-165)/6*80/(-50). Suppose -2*j - 94 = -4*j. Let u = q + j. Is 13 a factor of u? True Let k be (3/12 + (-2)/(-4))*-484. Let x be 2*k/(-10)*(-60)/12. Is (4/(-6))/(11/(x/2)) even? False Suppose 5 = q, -3*w - 156*q + 151*q = -8089. Is w a multiple of 5? False Let u = -8609 - -12553. Suppose 21*g - 29*g + u = 0. Is 22 a factor of g? False Let l = 2 + 1. Suppose 5*z - v - 1080 = 0, 0 = 3*z - 4*v - 0 - 665. Suppose l*u = -5 + z. Does 35 divide u? True Is 8 a factor of 404784/252 + (-4)/14? False Suppose 23*m = 8*m - 5235. Let z = m - -544. Does 8 divide z? False Let z(m) = 2*m**2 - 3*m + 1. Let f be z(2). Suppose -4*q - 117 = f*h, -2*q + 0*q = 6. Is 12 a factor of h*1/((-2)/6)? False Suppose j = x + 975, 2893 = -8*j + 11*j + 5*x. Does 48 divide j? False Let y = -925 + 1829. Is y a multiple of 135? False Let b = -232 - -235. Suppose 4*y + b = 487. Is y a multiple of 9? False Let r(i) = -i**3 + 8*i**2 + 10*i - 5. Let f be r(9). Let t(m) = -2*m + 17. Let b be t(7). Suppose 5*q - 2*q - 68 = 4*w, -f*q + 100 = -b*w. Does 4 divide q? True Suppose -3659 = -6*t + 10381. Does 4 divide t? True Let b be (1 + (-1 - -2))*-5. Let s be (3 + -1 + b/4)*-4. Suppose v + s = -0, -380 = -2*g + 4*v. Is g a multiple of 38? False Suppose 3 = 5*n + 13, -3*n - 18502 = -2*i. Is 14 a factor of i? False Let y(x) = -2*x**2 + 4*x - 12. Let j be y(-5). Let p = j - -404. Suppose -q = -b - 114, 3*q + b = -0*b + p. Is 39 a factor of q? False Does 11 divide 55881/63*((0 - -2) + -1)? False Suppose 3*l = 4*b + 85, 0*l - 4*b = 2*l - 30. Let w = l - 17. Suppose i = w*i - 510. Is 28 a factor of i? False Let z = -3686 - -7769. Does 48 divide z? False Let k = 32 - 28. Suppose 2*b - 284 = k*i, 139 = -b + 2*b + i. Does 22 divide b/(-15)*(0 + -12) + 1? False Let j be -5*-3*(-4)/(-15). Suppose -j = 3*t + 3*u + 2*u, 5*u = -25. Is (6/(-7))/(t/(-1078)) a multiple of 33? True Let u be 0 - ((-9 - 4) + 3). Let a = -22 - -20. Is 17 a factor of (-1)/a + 575/u? False Let k(z) = z**3 - 83*z**2 + 478*z - 166. Is k(77) a multiple of 49? False Suppose 0 = -27*u + 33834 + 25809. Does 7 divide u? False Suppose -2*l + 3992 = 4*g, 248 = -4*g + 4*l + 4252. Is 59 a factor of g? False Let r be (-1 - -4)/(45 + -44). Suppose 0 = -3*q - 5*u + 498, -r*q + 2*u = -5*q + 336. Is q a multiple of 36? False Suppose 0*v + 60 = 6*v. Suppose -10 = p + v. Is 9 a factor of (147/p + 2/(-5))*-4? False Suppose 0 = u + 2*u + 24. Is ((-420)/(-9))/(-2)*(u - 1) a multiple of 7? True Let b = -532 + 537. Suppose -z + 1 = 4*p + 3, -9 = -5*z - p. Suppose -b*u = -x - 93, -3*u + 61 = 4*x - z*x. Is 19 a factor of u? True Let f(i) = -56 + 3*i + 47 + 36. Is 17 a factor of f(8)? True Let f(o) be the third derivative of -o**6/120 + o**5/20 + o**4/8 - 5*o**2. Let c be f(-3). Let x = c - 41. Is x a multiple of 4? True Let u(j) = -30 + 20*j - 5*j + 2*j**2 + 2*j. Is 42 a factor of u(-14)? False Suppose 5*y - 30 + 5 = 0. Let n(j) = -j**3 - 6*j**2 - 4*j - 19. Let s be n(-6). Does 2 divide (-1 - -13)/(1/(s/y))? True Let m(g) = -61*g - 1. Let l(z) = 30*z. Let p(r) = 5*l(r) + 2*m(r). Is p(5) a multiple of 21? False Let p(w) = -9 + 2*w**2 - 6 + w - w**2 + 21. Let j = -14 - -7. Is 16 a factor of p(j)? True Let i(f) = -f**3 + 4*f**2 + 2*f + 18. Let h be i(5). Is 64 a factor of 8/(((-15)/400)/(h/(-2)))? True Is 17 a factor of (-3 - 14/(-4) - -6 - 6)*1842? False Suppose 3*m - 99 = 2*m. Let r be (-12)/(-42) + 11/((-462)/(-240)). Suppose r*v - 7*v = -m. Does 11 divide v? True Suppose 4*k + 14*k = 51300. Is 57 a factor of k? True Let a(g) = 3*g + 24. Let d be a(-8). Suppose -4*t - 696 = -2*y - y, d = -4*y - t + 909. Is y a multiple of 19? True Let m(j) = -j**3 + 16*j**2 - j - 6. Let o = 39 + -24. Let p be m(o). Let d = -138 + p. Is 11 a factor of d? True Let a = -143 + 148. Suppose 0 = a*p + 20, 4*p = -2*x + 232. Does 31 divide x? True Let h(r) = -7*r**2 - 3*r. Let q be h(6). Suppose -695*b + 2015 = -700*b. Let k = q - b. Is k a multiple of 19? True Let h(j) = j + 1. Let y be h(2). Suppose 3*p = y*d - 237, 5*d - 403 = -2*p - p. Does 5 divide d? True Suppose 19665 = 34*x - 47383. Does 13 divide x? False Let t(u) be the second derivative of u**3/2 - 3*u**2/2 + 16*u. Let q be t(-2). Let o = q - -20. Does 11 divide o? True Let w(f) = 223*f - 8. Let u be w(3). Let v = u + -345. Does 18 divide ((-27)/(-4))/(v/(-64) - -5)? True Suppose 2*q - 4 = -0*q. Let p = -1084 - -1086. Suppose 144 = q*z + p*z. Is z a multiple of 12? True Let d(r) = 62*r - 1468. Is 61 a factor of d(63)? False Let o = 56 + -139. Let u(x) = -68*x - 355. Let c be u(-5). Let h = c - o. Does 17 divide h? True Is 6 a factor of (-19616)/(-6) - (-800)/300? False Let s be (24 + 0)*(-4)/(-12). Suppose 24*j + 682 = -638. Let f = s - j. Is 9 a factor of f? True Let w be (-4)/(-7) - (-2740)/7. Let s = w + -202. Does 38 divide s? True Let x(k) = k**3 + 19*k**2 + 31*k - 51. Is x(13) a multiple of 24? True Suppose 0 = -r - 8*r + 10989. Suppose 5*q + 126 - r = 0. Does 11 divide q? False Let f(c) be the second derivative of -53*c**3/6 - 2*c**2 + 40*c. Is f(-4) a multiple of 10? False Suppose -2*h + 0*h = 0. Suppose -65 = -a - 61. Suppose h*x + 4*p = -2*x + 70, -a*x - 4*p + 156 = 0. Is x a multiple of 8? False Suppose 0 = 2*r - 2*m - 18 + 6, 0 = 5*m + 10. Suppose 0*u + 5*i = 4*u + 61, r*u = -i - 55. Is 8 a factor of -1 + 597/7 - (-4)/u? False Suppose -276737 = -84*c + 65196 - 40961. Is c a multiple of 18? False Suppose o - 3*r = -12, -r - 60 = 5*o + r. Let y(u) = -48*u**2 + 2*u - 2. Let j be y(1). Is (90/o)/(9/j) a multiple of 20? True Suppose 5*g + 28 = 19*g. Suppose -2*z + 208 + 17 = t, -339 = -3*z - g*t. Does 37 divide z? True Let q(f) = -153*f**3 + f. Let n be q(-1). Let u = 157 - 82. Let w = n - u. Is w a multiple of 14? False Does 26 divide (2 - 21/2)/((-89)/4628)? True Suppose 5*a - 4040 = -73*w + 68*w, -3*a + 2464 = -5*w. Is 23 a factor of a? False Is 3/(21996/7320 + -3) a multiple of 4? False Suppose 3*j - 14703 = -3*y, -9808 = -2*y + 184*j - 183*j. Is 35 a factor of y? False Let p(z) = 4*z**2 + 248. Let g = -25 + 25. Does 31 divide p(g)? True Suppose 4*d + 3 = -n, -4*n = -2*d - 0*d - 24. Let t be 5*16*(-2)/n. Is 16 a factor of -2 + t/(-18) - (-19472)/144? False Suppose 0 = -4*m + 2*m + 4. Suppose 0 = m*j + 5*z - 11, 0 = -j - 4*j - 5*z + 5. Is 48/(-2)*((-25)/j)/(-5) a multiple of 15? True Suppose 13*f = -8*f - 105. Does 5 divide (3 + -11 - f)*43/(-3)? False Suppose -5*z = -9*z + 72. Suppose 15 = 4*r + h, 0 = 5*r + 2*h - h - z. Suppose 5*m + 5*f + 46 = 341, 178 = r*m + 2*f. Is m a multiple of 20? True Let o(m) = 152*m**2 + 3*m. Let r be o(-2). Suppose 0 = v + 6*v - r. Suppose 2 = -i + v. Is 33 a factor of i? False Suppose 5*q + 30 = -3*j + 4, -q = -3*j - 2. Let s = 62 + j. Does 12 divide s? True Suppose -5*t + 3*t = f - 16, 45 = 3*f + 5*t. Suppose f*n - 12*n + 98 = 0. Is n a multiple of 10? False Let w(y) = -334*y**3 - 4*y**2 - 5*y - 4. Is 58 a factor of w(-1)? False Suppose 8*n = 7*n - 5*j - 227, -2*n = 2*j + 422. Let h = n + 598. Is 17 a factor of h? True Let x be (3918/4)/3 + (-3)/(-6). Let c = x - 39. Does 24 divide c? True Let r(f) = -f**2 + 5*f + 7. Let j(u) = -u**2 + 10*u + 15. Let y(p) = 2*j(p) - 5*r(p). Let m be (-20)/8*24/(-20). Does 7 divide y(m)? True Let v(h) = 12*h - 8. Suppose 1 = 4*i - 63. Does 8 divide v(i)? True Suppose -b + 6*b = -5. Is (-4 + (-323)/b)*1 a multiple of 53? False Suppose -14*h + 43 = -1805. Suppose -r + 56 - 2 = 3*y, -3*r + y + h = 0. Is 6 a factor of r? False Let u be 58/(-8)*(-24 + (1 - 9)). Suppose 2*t - u - 208 = 0. Is 35 a factor of t? False Suppose -3*i - 33139 = -7*h, -2*i + 12969 = 5*h - 10681. Is 97 a factor of h? False Suppose -39*b + 37*b = -5*y - 3265, -4*b + 4*y + 6500 = 0. Does 19 divide b? False Suppose 0 = 5*j + v - 24148, -5*j - 3*v = -4*v - 24152. Is j a multiple of 15? True Suppose 4*v + 68 = -4*i, -i - 4*i + 4*v - 40 = 0. Let j be i*(-1 + 123/(-3)). Suppose 5*x - x - j = 0. Is 18 a factor of x? True Suppose -5*r = -5*b - 23495, 0 = 6*r + 2*b - 21321 - 6881. Does 69 divide r? False Does 17 divide (1 - -2)/(-3) - -3299? True Let s = 3982 - 3002. Does 42 divide s? False Suppose 2*x = -x + 9. Suppose -573 = -x*l - 4*h + 1027, -l + h + 524 = 0. Does 48 divide l? True Let s(r) = 1 - 3 + 6*r - 2 - 10 + 3*r. Suppose -4*u - 5*q = 5 - 49, -4*q = -16. Is s(u) a multiple of 8? True Let f be 3 - (-16)/(-6) - 11/33. Is 24 a factor of 51*(1 + f)*(-1190)/(-210)? False Suppose 4*n - 102 = -k + 43, 0 = 4*n + 3*k - 139. Let s = -38 + n. Is 0 + (-1)/s + 7 + 48 a multiple of 7? True Let j(l) = l**2 + 5*l - 5. Suppose 0*c = -4*c + 8. Suppose 4*g = c*z + 5 - 3, -5*z = -4*g - 13. Is 10 a factor of j(g)? False Is 12 a factor of (-4)/(12/(1 + -12241))? True Let o(g) = -4*g**3 + 2*g**2 - g - 7. Let t be o(3). Let a be 2/(-8) + t/(-16). Is 18 a factor of a/((-48)/(-140)) + 1/2? True Let q(p) = -6*p**3 + 2*p**2 + 5*p + 16. Is 8 a factor of q(-8)? True Let u be (-44)/(-10)*1 + 6/10. Let x(c) = c - 5. Let g be x(u). Suppose 2*l - 30 - 240 = g. Is l a multiple of 27? True Suppose 4*v - 2 = 2*v. Is 21 a factor of (2/6)/(v/786)? False Let g = 5360 - 2643. Is g a multiple of 26? False Suppose 4*z = 18 - 102. Let v(p) = 18 + 1 + 34 - 3*p - 10. Is 19 a factor of v(z)? False Let s = 1803 + -1233. Is s a multiple of 114? True Let g = 2657 + 3175. Is 18 a factor of g? True Suppose -27*z + 35*z = 2080. Suppose -7*g + 5*g = -z. Is g a multiple of 26? True Let x(q) = q**3 + 2*q**2 + 4*q + 3. Let d be x(-2). Let i(j) = j**3 + 10*j**2 - 9*j - 3. Is i(d) a multiple of 21? False Suppose -3*n - 3 = -12. Suppose -n*h = -1074 - 504. Does 17 divide h? False Let r be 3/(1 + 22/(-16)). Let b = -1 - r. Let q = 46 - b. Is q a multiple of 39? True Let r(u) = -u**2 + u - 28. Let z be r(0). Let i(v) = v + 83. Let h be i(-28). Let j = z + h. Is j a multiple of 9? True Let k(g) be the second derivative of -20 + 20 + 2*g**3 - 3*g + 10*g. Is k(8) a multiple of 12? True Suppose 7 = -x + 80. Suppose -x*h + 140 = -69*h. Is 7 a factor of h? True Let f = 217 - -73. Let t = -130 + f. Is 10 a factor of t? True Suppose -17*b + 6*b = -45056. Is b a multiple of 32? True Let k be (-2)/21 + (-360)/189. Is 15 a factor of (k - -5)/(-6) + (-212)/(-8)? False Suppose s - 199 = -4*z, 2*s - 4*z + 394 = 4*s. Let l = s - 139. Is 21 a factor of l? False Let a(j) = 9*j**2 - 28*j - 78. Is a(25) a multiple of 42? False Let z(x) be the second derivative of 2*x**3/3 - 8*x**2 + 50*x. Let p(k) = 13*k. Let l be p(1). Is z(l) a multiple of 5? False Let o(u) = -u + 13. Let f be o(7). Let j(b) = 5*b + 5. Let s(l) = -9*l - 10. Let x(t) = f*s(t) + 10*j(t). Is x(-19) a multiple of 22? True Let n = 1 + 4. Suppose 3*g + 5*a + 239 = n*g, -5*g - 4*a = -548. Is 4 a factor of g? True Let k(m) be the first derivative of m**4/4 + 13*m**3/3 + m**2/2 - 22*m + 53. Is 30 a factor of k(-9)? False Suppose 42053 = 28*w - 22522 - 15393. Is w a multiple of 56? True Let t(k) = -7*k**2 + 11*k - 13. Let n be t(10). Let w = -415 - n. Is w a multiple of 23? False Suppose -1308*r = -1310*r + 1316. Does 3 divide r? False Let m(k) = -813*k - 94. Does 46 divide m(-4)? False Suppose 5*n = 9*n - 16. Suppose -4*p + 5*p + n*y - 70 = 0, -5*y = -p + 61. Suppose 3*x - p = -a - 2*a, 4*x - 48 = -2*a. Is a a multiple of 14? False Let y(f) = f**3 + 15*f**2 - 4*f - 21. Suppose 12 = -4*x, -3*k + 2*x + 3*x = -27. Suppose -2*q = k*l - 6 + 20, l = 2*q + 34. Does 13 divide y(q)? True Let q(f) = -f**2 - 43*f - 84. Let y be q(-15). Suppose -3*i - y = -6*i. Is 16 a factor of i? True Suppose 0 = -2*a + 10, 5*o = a + 30018 + 14022. Is o a multiple of 21? False Let k(u) = 4*u**2 - 3*u - 108. Is k(-18) a multiple of 69? True Suppose 37*m - 248234 = 3*m - 0*m. Does 49 divide m? True Suppose 2*o = 4*o - 4*l - 8, -3*l = o + 1. Suppose -2*h + 1312 = 3*c, 2*c - o*h - 659 - 209 = 0. Is c a multiple of 19? False Let i be 1 - (-4)/(3 + 1). Let y(c) = 2*c**2 - 7*c**2 - 2*c**i - 16 + 9*c + 2*c**3. Does 13 divide y(5)? True Suppose 0*l - 3*l + 615 = 0. Suppose -2*p - 5*x + 84 = -15, -3*x + l = 4*p. Is 13 a factor of p? True Let t = -132 - -179. Suppose -13 = -3*o + t. Does 6 divide o? False Does 87 divide (-44)/6 + (-8)/(-24) - -2965? True Suppose 17*x - 79200 = -42*x + 34*x. Does 12 divide x? True Is 51 a factor of (-2)/31 - (-2066236)/1333? False Let g(f) = -276*f + 138. Let n(z) = 69*z - 34. Let x(s) = -4*g(s) - 15*n(s). Is x(7) a multiple of 13? False Suppose 0 = 4*i - 5*o - 8, i - 7*o + 3*o - 13 = 0. Let s be (-24)/(-5) - (-2)/(-30)*i. Suppose 0*n = s*n - 35. Does 2 divide n? False Suppose -3*l + 6 = 0, -6*m - 2*l = -m + 5481. Let p = -777 - m. Is p a multiple of 40? True Does 10 divide 4/10 - (11206/(-10) - -1 - 0)? True Suppose -3937 = -3*x - 18*n + 16*n, -3*x - 4*n + 3929 = 0. Does 30 divide x? False Suppose 0 = 6*g - g - 10. Suppose -3*a + n + 452 = 0, -g*a - 2*a + 2*n = -600. Is a a multiple of 19? True Let b(r) = 6*r**2 - 11*r + 21. Let i be b(2). Suppose -i*u - 451 = -1969. Does 4 divide u? False Let s = 4883 - 2896. Suppose 3*n + 2*o - s + 389 = 0, 5*n = -3*o + 2663. Is 14 a factor of n? True Suppose -78619 = -91*q - 29752 + 41405. Does 21 divide q? False Let w(d) = 2*d**2 - 14*d - 18. Suppose 3*v + 4*a = -16, -7*v - 7 = -6*v + 3*a. Does 5 divide w(v)? True Let s = -3 - -1. Let j = -989 - -994. Let g = j - s. Is g a multiple of 3? False Let b = -994 + 1570. Suppose 5*h + b = 8*h. Is 32 a factor of h? True Let c = -3708 + 4024. Does 158 divide c? True Let v(o) = -o**2 + 12*o. Let c be v(12). Suppose z - 2 + 8 = c. Let j(u) = -u**3 - 4*u**2 + 6*u - 2. Is 34 a factor of j(z)? True Let i = 1701 - 1260. Does 41 divide i? False Suppose 3*a + 2*h - 15 = 0, -a + 2*a - 4*h = -9. Suppose 2*i + 4*g = 664, a*i + 0*g = -g + 1021. Is 38 a factor of i? True Let a = 3786 - 1506. Does 6 divide a? True Suppose -26*w + 1165 + 7525 = -21*w. Does 14 divide w? False Let o(x) = 2*x**3 + 33*x**2 - 19*x - 30. Let j be o(-17). Is 18 a factor of (-66)/j*306/(-27)? False Let m(s) = s**3 + 10*s**2 + 14*s + 5. Let v be m(-8). Let j(t) = 8*t - 84. Is 42 a factor of j(v)? True Suppose 4*x = n - 4, -2*n + 0*x = -4*x - 20. Suppose 0 = -n*d + 2*d + 980. Does 14 divide d? True Let g be 7 - 10 - (2 - 190). Suppose 189 = v + 5*l, 0 = 3*v - 3*l - 292 - g. Suppose -11*n + v = -199. Is n a multiple of 5? False Let b = 1142 - 405. Suppose -4*u + 5*m + b = 0, -2*u + 7*u + 5*m - 955 = 0. Suppose 6*x - 148 = u. Is 29 a factor of x? False Suppose 2*p + 3*p + 4*q - 2980 = 0, 0 = -3*p - 5*q + 1775. Is p a multiple of 8? True Let w be (-9)/(-18)*(-36)/2. Let x = w + -8. Let u = x + 33. Does 4 divide u? True Let j = -8871 - -14519. Is 16 a factor of j? True Suppose -5*d + 3*r + 7 = 2, -5 = -5*d - 5*r. Let m be (d - 1)/(-11 - -12). Suppose 2*c - 55 = -3*c + k, m = 2*c + k - 15. Is c a multiple of 5? True Is 128 a factor of 3977 - (-18)/8*-4? True Suppose 0 = 3*l - 729 + 11448. Let p be l/(-15) + -5 + 2/(-10). Suppose -p = -8*t + 519. Does 36 divide t? False Let w(p) = -15*p - 21. Let z be w(-3). Suppose 17*f = z*f - 35. Is 5 a factor of f? True Let h be 2211/(-9)*(14 - 17). Let u = h - 425. Is u a multiple of 39? True Let c(d) = 10*d**2 - 54*d + 54. Is 21 a factor of c(-12)? True Suppose 2*q - 6*q = 3*f - 51, 3*f + 9 = 0. Suppose 14*h - q*h = -9. Is 9 a factor of h? True Suppose 72*q = 30*q + 18*q + 50760. Is 47 a factor of q? True Let y be (-50)/((78/744)/(-13)). Suppose 0 = -8*h - 12*h + y. Is h a multiple of 62? True Suppose -r + 2715 = 2*f, 16*r = -2*f + 20*r + 2730. Is f a multiple of 12? False Let a(c) be the first derivative of c**3/3 - 15*c**2/2 + 7*c + 7. Let y be a(15). Does 5 divide 35 + (y + -4 - -1)? False Let p(c) = -4*c + 47. Let d be p(11). Suppose 977 = d*a + 5*q, a + 2*q = -0*a + 327. Is 29 a factor of a? True Suppose 4591 + 2010 = 38*b - 5407. Is 19 a factor of b? False Suppose -113*j - 57063 = -136*j. Is 31 a factor of j? False Let o = 479 - -509. Let r(d) = -4*d - 6. Let m be r(-4). Does 9 divide o/28 - m/35? False Let j(b) = 115*b**2 + 8. Let c be j(4). Suppose 2*r = -10*r + c. Is 14 a factor of r? True Let b(p) = 7*p**3 - 182*p**2 - 39*p + 42. Is b(27) a multiple of 7? False Let x = 37 + 144. Let w = 208 - x. Does 7 divide w? False Let z be (9/(-1))/3 + 5. Let i(o) = 25*o**2 - 4*o - 1. Is 4 a factor of i(z)? False Let r = -164 - -307. Let c = 221 - r. Does 13 divide c? True Let y = -225 - 9. Let o = y + 367. Is 33 a factor of o? False Let c(a) = -14*a + 25. Let r(w) = 5*w - 8. Let z(d) = -3*c(d) - 8*r(d). Let s be z(5). Does 11 divide 442/6 + s/(-3) - -2? False Let z be ((-276)/10)/(-7 - (-36)/5). Let o = z + 222. Is 12 a factor of o? True Suppose 0 = -3*n + 6633 + 11069 - 1973. Does 107 divide n? True Suppose -57*n + 117869 = -102721. Is n a multiple of 9? True Suppose 14 = 3*r - 1. Suppose -2*o + o = -4*t - 16, -2*o + 4 = -t. Suppose r*x - 374 = -3*f, -x + f + o = -70. Is 20 a factor of x? False Let s(c) = c**3 - 3*c**2 + 5*c. Let w = 19 - 15. Suppose 4*y - 2*n - 22 = y, w*n + 36 = 4*y. Does 5 divide s(y)? False Let j(u) = u**3 + 2*u**2 - u + 1. Suppose -5*f + 2*y = -180, 6*f - f - y = 175. Let h = 32 - f. Is 2 a factor of j(h)? False Suppose 93163 - 11971 = 12*i. Does 11 divide i? False Let d(w) = w**2 - 4*w - 4. Let h be d(5). Let s be -61*(-1*(1 - 0))/h. Let t = s + -19. Does 21 divide t? True Does 39 divide (-64978)/(-14) - ((-650)/(-70) - 9)? True Let h be (-63)/(-3) + (-18)/(-6). Let k be 12/h - (-3)/2. Suppose k*s - 3*d = 45, -2*s - 2*d = -10 - 30. Is 21 a factor of s? True Does 5 divide 3465*-1*(-7 - (-152)/24)? True Suppose 5*i + 34 = -3*o, -2*i + 3*o - 46 = 3*i. Is 1372/12 + i/(-12) a multiple of 23? True Suppose -12*r = 23*r - r - 193494. Does 113 divide r? False Let j(b) = -24*b - 68. Let q be j(-17). Suppose -s + 5*s = 3*x - q, 3*x + 2*s = 370. Does 24 divide x? True Let q(p) = 6*p**2 - 11*p - 9. Let y(x) = -x**2 + x + 1. Let z(a) = q(a) + 5*y(a). Let u = 139 - 129. Is z(u) a multiple of 19? False Suppose 0*f + 12 = 3*f. Let g(j) = 39*j**2 + f - 1 - 7. Is 38 a factor of g(-2)? True Let x(d) = -3*d**2 - 5 + 0 - 3 + 4*d**2 + 7*d. Let m be x(-8). Suppose m = -3*q + 3*l + 258, 2*l + 53 = q - 37. Is 22 a factor of q? False Suppose 0 = -7*w + 19922 - 2261. Does 13 divide w? False Let x(i) = -i**3 - 7*i**2 - 15*i + 51. Is 30 a factor of x(-13)? True Let c(y) = 4*y**2 - 3*y - 19. Let o be c(-6). Let j = o - 103. Is 11 a factor of j? False Is (35 - 11)*(315/5 - (1 - 5)) a multiple of 4? True Suppose -3*o + a + 8301 = 0, 5*o - 16720 = -4*a - 2868. Is 23 a factor of o? False Let r(v) = -v - 1. Let u(i) = 38*i + 8. Let o = 26 - 36. Let s(b) = o*r(b) - u(b). Is s(-2) a multiple of 7? False Suppose -90*z + 29*z + 26040 = -30*z. Does 28 divide z? True Let c(n) = 13*n**2 + 4*n - 2. Let r be c(1). Suppose -13*o + r*o - 148 = 0. Does 6 divide o? False Let a be (-59)/(-2)*6 - (26 - 24). Let c = a - 167. Is c a multiple of 4? True Let v(q) = -q**3 - 6*q**2 - 7*q - 6. Let i be v(-5). Let y = -1414 - -1418. Suppose -y*f = 16, -3*f + 4*f - 212 = -i*l. Is 22 a factor of l? False Let y = 28 + -16. Is 28 a factor of (-1659)/(-18) - 2/y? False Suppose n - h - 49 = 0, 4*h - 2 = 10. Let d = -47 + n. Is -1*4/d*-120 a multiple of 32? True Let y = 3072 - 2210. Is 37 a factor of y? False Let v(q) = 6*q**2 - 137*q + 12. Is 61 a factor of v(-5)? False Suppose -i + 3427 = -53 - 690. Is i a multiple of 139? True Suppose 3*j - 3*g = -0*j - 372, j - 2*g + 128 = 0. Let r = -70 - j. Does 3 divide r? False Suppose 1319 = -f + 2*f + 2*l, -3*f + 4*l + 3907 = 0. Is 75 a factor of f? False Let b = 114 - 113. Is (90/(-20))/(61/62 - b) a multiple of 9? True Let s(t) = -62*t + 7. Let y be s(1). Does 7 divide 3 - 62/22 - 1695/y? False Let x(i) = -i**3 + 5*i**2 + 5*i - 10. Suppose -4*h = h - 25. Suppose 2*g + 3*m = -h, 4*g = 3*m - 5*m + 10. Is x(g) a multiple of 7? False Let d(q) be the first derivative of -q**4 - 4*q**3 - 27*q**2/2 - 3*q - 14. Is 13 a factor of d(-4)? True Suppose 0 = -3*v + 32 + 7. Let b = 56 + v. Is b a multiple of 3? True Let m = 349 - -3107. Does 61 divide m? False Is 15 a factor of 8289/2 - (4 + -9)/10? False Suppose -164*b + 109595 = -59325. Is 32 a factor of b? False Does 126 divide ((-9)/(-6) + -1)*-540*(-84)/10? True Suppose -3*w - 1056 = w - 3*x, 0 = -4*w - 5*x - 1024. Let y be (w/27)/((-2)/(-36)). Let q = y - -312. Is q a multiple of 35? False Let f(w) = -153*w - 1645. Is f(-38) a multiple of 11? True Suppose 37545 = 13*z + 8100. Suppose 16*j = j + z. Does 11 divide j? False Suppose -9*n + 10 = -12*n - 4*o, 0 = -2*n - 5*o - 2. Does 20 divide -2 - n - 276/(-1)? True Let r be -3 - 1*(-1 - 242). Suppose -p - 5*u + r = 0, 3*u = 4*u - 3. Does 25 divide p? True Let j be 4/(-1) - (-48)/16. Is 50 a factor of j/((-1)/5)*(-2 + 52)? True Let m = 154 + -123. Suppose -39*s + m*s = -1648. Is 74 a factor of s? False Suppose -5*d + 10 = 5*f, 5*f + 6*d - 10 = 2*d. Suppose -5*s + j = -347, 4*s - f*j = 3*j + 286. Suppose -3*u = 9 - s. Does 10 divide u? True Suppose -2*m + 12 = -4*y, 4*m + 0*y - 3*y = 44. Suppose -m = 6*h + 262. Let q = h - -85. Is 13 a factor of q? True Let s(z) = 4*z**3 - 9*z**2 + 3*z + 1. Let q be s(6). Suppose -8*n = -79 + q. Let a = n + 102. Is 35 a factor of a? False Let v = 444 - -119. Suppose v - 235 = 4*z. Does 36 divide z? False Let a(j) = -j + 4. Let p be a(2). Suppose -p*n - 40 = -7*n. Does 6 divide 36/n + -4 + 110/4? False Let j(g) = 2*g**3 - 14*g**2 + 4*g. Let o be j(3). Is 27 a factor of -371*(20/o + (-4)/6)? False Let f(u) = -83*u - 750. Does 2 divide f(-10)? True Let u(p) = 8*p**3 + 7*p**2 + 10*p + 24. Let i be u(-4). Let a = -209 - i. Is a a multiple of 7? False Let u(x) = -x**2 + 13*x + 9. Let c(s) = 9*s - 7. Let r be c(2). Let i be u(r). Let l = i + -14. Is l a multiple of 3? False Suppose 59*h - 354621 = 23*h + 56283. Is h a multiple of 13? True Let j be (-4)/(-3) + 1518/9. Suppose -4*p + 2*f + j = 0, 0 = -5*p + p - 4*f + 164. Is p a multiple of 14? True Let k(w) = -210*w**2 + 3*w + 2. Let r be k(-1). Let x = r - -227. Is x a multiple of 4? True Let f(a) = 203*a**2 - 7*a + 6. Let t be f(2). Suppose -21*c + t = -15*c. Does 54 divide c? False Let p(u) = -u**2 + u - 15. Let v be p(9). Let f = 147 + v. Does 13 divide f? False Let j(z) = -z**3 + 7*z**2 - 3*z + 5. Let m(o) be the first derivative of -o**4/4 - o**3/3 - 3*o**2/2 - 4*o + 18. Let i be m(-2). Is j(i) a multiple of 4? False Let b = -2270 + 2998. Is b a multiple of 42? False Let p = 1310 + 698. Does 33 divide p? False Let h(y) = y**3 - y**2 - 3*y - 1. Let q be h(3). Suppose -4*g + 20 = -q*g, -3*d = -5*g - 238. Is 35 a factor of d? False Suppose 3*k = -4*b + 135, -11*b - 80 = -13*b - 4*k. Is b + 0/(-2) + (18 - 18) a multiple of 15? True Let y(q) = 12*q**3 - 2*q**2 - q + 10. Let i be y(3). Suppose -p - i + 1142 = 4*c, -4*c + 5*p = -847. Is 22 a factor of c? False Suppose 21*d - 1482 = 8*d. Is d/(-5 + 2 + 5) a multiple of 19? True Let k(a) = -a**3 - 19*a**2 + 19*a - 17. Let y be k(-20). Suppose 2*v = -y*v + 405. Suppose 0 = -4*o + 31 + v. Does 28 divide o? True Let q(t) = t + 2. Let y(c) = -22*c**2 - 4*c - 11. Let p(m) = -6*q(m) - y(m). Does 9 divide p(2)? False Let l be -55*(-1)/3*(-24)/4. Let s = -14 - l. Is s a multiple of 16? True Let q(h) = -h**3 - 9*h**2 - 6*h + 16. Let u be q(-8). Suppose -2*t + 82 = t + 4*o, 4*t - 5*o - 130 = u. Is t a multiple of 20? False Let c = 101 - 68. Let a = c - 26. Suppose a*k = 5*k + 146. Is k a multiple of 11? False Let y(d) = 12*d + 139. Does 40 divide y(53)? False Let d be 3/(30/(-305))*4. Does 14 divide (-3 - d) + 0 + 4? False Suppose -25 = -4*d + z - 0, -15 = -4*d - z. Suppose -d*b + 1430 + 350 = 0. Is 20 a factor of b? False Suppose 369 = h - 0*h. Let d = 517 - h. Does 39 divide d? False Let l(i) = i**3 - 16*i**2 + 21*i + 28. Let g be l(16). Suppose -2*o - 2 = -3*o, -m = 3*o - g. Is m a multiple of 21? False Suppose 2*i + 4*m - 312 = 0, -4*i - 82*m = -80*m - 636. Does 20 divide i? True Let w be 4/10 + (285/(-25) - -1). Is 5 a factor of 1346/w*-1 - 12/(-30)? True Let a(x) = 5*x**3 - 6*x**2 + x + 1. Let v be a(2). Suppose -v*y = -25*y + 1680. Is 14 a factor of y? True Is 8/(-18) - ((-2926175)/63)/23 a multiple of 11? False Suppose -3*f + 33566 = 5*c, 4*f + 8914 = -3*c + 29047. Is 17 a factor of c? True Suppose 3*z + 7*b = 4*b - 477, -b = 5*z + 787. Let l = -129 - z. Is l a multiple of 14? True Suppose 0 = 3*r - 5*n - 3, -r + 0*r + 5 = -3*n. Let c be -2 - (3 + -4) - r. Suppose 0 = j - 5*z + c - 22, -57 = -3*j + 4*z. Does 5 divide j? False Suppose 2*x - n = 4*n + 45, 3*x = -n + 93. Let j = x - 27. Suppose -j*g - 73 = -4*g. Does 17 divide g? False Let p = 1147 + -609. Does 9 divide p? False Is (4428 - -1 - (12 - 9)) + 7 a multiple of 11? True Suppose -4*s - 45 = 3*n - 16, n - 2*s = -3. Let p(k) = k**2 + 14*k + 7. Let y be p(n). Is 23 a factor of (1918/y)/(2/(-6))? False Suppose 6*d - 872 - 820 = 0. Let g = d + -125. Does 20 divide g? False Let x(z) = 2*z**2 + 24*z - 27. Let p(o) = -2*o**2 + 8*o - 5. Let a be p(5). Is x(a) a multiple of 3? True Let r(w) = -w**3 + 7*w**2 + 9*w - 8. Let h be r(8). Suppose h = 3*y + 7*y - 50. Is 5 a factor of y? True Is -3 - (-1655 + (6 - 56/4)) a multiple of 10? True Suppose 5*g - 15 = 2*g. Suppose -g*a - 2*a + 658 = 0. Suppose 2*v + 2*i - a = -3*v, -4*i = -2*v + 52. Is v a multiple of 10? True Let d = 1221 + -1113. Does 12 divide d? True Let s be 25/(-3)*(-84)/35. Does 13 divide 25/(-250) + 2*1981/s? False Let n(f) = f**3 + 56*f**2 - 36*f + 61. Is 34 a factor of n(-55)? True Let b = 98 + -61. Is b + 0 - (21 + -19) a multiple of 3? False Does 37 divide ((-4)/(-10) + 6/10)/(29/18647)? False Suppose -2*y + l - 225 + 1845 = 0, -y = 4*l - 810. Is 45 a factor of y? True Let b(n) = n + 5. Let x be b(-3). Suppose 0*s - x*s = -8*s. Is 5*12/45*(s - -102) a multiple of 39? False Does 19 divide (-414)/(-15)*(-1330)/(-42)? True Does 112 divide (4 - 275/77) + (-24756)/(-7)? False Let y(l) = 617*l - 313*l + 9*l**2 - 313*l + 6. Is y(3) a multiple of 30? True Suppose 18*p = -4*p + 40824 + 23504. Is 8 a factor of p? False Let f(a) = 21 + 3*a**2 - 8 + a + 2*a**2 - 4*a**2. Does 5 divide f(-9)? True Let a(c) = -4*c**3 - 29*c**2 + c - 4. Let t be a(-8). Suppose 0 = 4*s + 3*f - 32, -4*s + 4 = f - 20. Suppose s*i - t = -i. Does 15 divide i? True Let j(m) = -1265*m - 228. Is j(-2) a multiple of 19? False Let b be 5 + (6 + -4)*-1. Suppose -5*n + 3*u = -357, -b*n + 217 = u - 0*u. Does 6 divide n? True Suppose -86*j + 258230 = 5304. Is j a multiple of 17? True Let q be 2/(-12) + 1 + 308/(-24). Let n(r) = r**3 + 13*r**2 + 2*r + 10. Is n(q) a multiple of 10? True Let v(r) = -r + 7. Let k be v(5). Does 12 divide ((-15)/k)/((-10)/140)? False Suppose 372 = 9*a - 5*a. Let k be a + 0/2 + -3. Suppose 26 = -2*h + 3*n + k, 5*h - n = 160. Is h a multiple of 6? False Let s(x) = 4*x**2 + 4*x + 2. Let b be s(-4). Let a = -72 - -47. Let h = b - a. Does 25 divide h? True Suppose 17*o - 10755 = 482 + 14875. Is o a multiple of 8? True Let z be (-1 - 5)/(-2*1) - 0. Suppose 0 = -z*m + 241 + 143. Is (-1)/((-4)/m*1) a multiple of 8? True Let v(d) = d**3 - d**2 + 32. Let x be v(0). Is ((-1863)/(-18))/(12/x) a multiple of 46? True Let b = -34 - -39. Suppose n + 2*o = b*n + 38, 2*o = 3*n + 27. Is (n + 16)*43/5 a multiple of 10? False Let a(g) = 30*g**2 + 7*g + 45. Let p(l) = 45*l**2 + 11*l + 68. Let x(k) = 8*a(k) - 5*p(k). Is 18 a factor of x(-5)? False Let g(u) be the second derivative of 83*u**3/6 - 13*u**2/2 - 41*u. Is g(1) a multiple of 9? False Let s(u) = 18*u**2 + 2 - u + 11*u**2 + 2*u**2 - 2*u. Let x be s(1). Does 14 divide (-1)/(((-2)/2)/x)? False Let m(f) = 3*f**2 + 41*f - 8. Let u be m(-14). Let y(g) = 9*g - 2*g + g - g**2 - 8. Is 3 a factor of y(u)? False Let x(n) = -9*n**2 - n + 16. Let m be x(4). Let q = m - -178. Does 46 divide q? True Let o(h) = -5*h**2 - 15*h - 22. Let n be o(6). Let s = 432 + n. Does 14 divide s? True Suppose 7 = -46*p + 47*p. Suppose -20 = -p*y + 1. Suppose 84 = 4*r + 5*u, -y*r - 21 = 5*u - 84. Does 21 divide r? True Suppose 16 = 14*t - 12. Suppose -79 = -t*h + 2*n + 177, -2*n = 6. Does 8 divide h? False Is 12 a factor of (432/(-84))/(-2)*1113? False Suppose 2*g - 6 = 0, -2*u - 215 = g + 4*g. Is 20 a factor of (-6)/(-1)*(u/(-6) + 6)? False Suppose 4*u + 87 = 5*u. Suppose -3*o - 75 = -3*j, -u = -o + 4*o + 3*j. Let z = -20 - o. Does 2 divide z? False Suppose 20 - 14 = 2*m. Let z(f) = 19*f**2 + f + 2. Let l be z(2). Suppose l = m*q - 25. Is q a multiple of 6? False Suppose 2*j + j - 3*c - 18 = 0, -4*j = 5*c + 3. Suppose -8880 = -5*d + 6*r - r, -4*d + 7100 = -j*r. Suppose 7*o - d = -631. Is 36 a factor of o? False Let m(b) = 5 + 13 + 3*b + 4. Does 9 divide m(23)? False Suppose p - 5*a + a - 242 = 0, 0 = -4*p - 3*a + 987. Is ((20/15)/1)/(4/p) a multiple of 15? False Suppose 5*t = -18*y + 17*y + 166, -4*y + 4*t + 592 = 0. Is 3 a factor of y? False Let s(o) = -538 - 7*o + 193 + 0*o + 233. Does 14 divide s(-23)? False Let l = 778 + 466. Is 4 a factor of l? True Let n = 6154 + -3164. Is 22 a factor of n? False Let q = -238 + 216. Let x(n) = -5*n - 23. Is 6 a factor of x(q)? False Suppose 4*u - 5*m = -u, 5*u - 6 = 2*m. Let t(d) = 165*d. Let x be t(u). Let o = x - 192. Is 37 a factor of o? False Let w(r) = r**3 - 14*r**2 + 13*r + 8. Let i be w(13). Suppose i*o = 4*o + 112. Let t = 60 + o. Is 22 a factor of t? True Let s(g) = -g**3 - 17*g**2 + 50*g. Is s(-27) a multiple of 18? True Let g be (2 - -2)/(-2) - 1. Let h(o) = 2*o**2 - 12*o. Let l be h(5). Is 4 + 3/(g/l) a multiple of 4? False Suppose -33176 = -18*g + 18664. Does 15 divide g? True Is 11*231 - (-142 - -145) a multiple of 10? False Let d(m) = m - 3. Let p(b) = -b**3 + 12*b**2 + 12*b + 6. Let t be p(13). Let u be d(t). Does 5 divide (-5)/u - 35/(-2)? False Suppose 2*h + 3*g - 41 = 0, 1 = -3*g + 10. Suppose -3*l - 25 = -64. Suppose -l*y = -h*y + 72. Does 15 divide y? False Suppose -3*x + 5483 = 3*b - 2023, -3*b + 7466 = -5*x. Is b a multiple of 56? False Let j be (-3282)/8 + (-3)/(6*-2). Is 22 a factor of (j/(-20))/(1 - (-39)/(-42))? False Suppose 4*u - 4*s + 3352 - 8904 = 0, 0 = 5*s + 10. Is u a multiple of 7? True Let u(c) = 192*c**3 - c**2 + 1. Is 6 a factor of u(1)? True Let n = 1000 + -996. Suppose -172 = 2*o - 1252. Suppose -w + o = n*w. Is w a multiple of 36? True Is 10 a factor of 5559/6 + 3 + ((-60)/(-8) - 7)? True Let g(m) be the third derivative of m**6/15 - m**5/60 - m**4/6 + 4*m**3/3 + 2*m**2 - 4*m. Does 12 divide g(2)? True Suppose -18*u + 19*u - 10 = 0. Let b = 25 + u. Does 7 divide b? True Let n(h) = -10*h + 6. Let d be n(-3). Let q be d/(-3)*2/(-8). Suppose 141 = 5*f + u, 4*u - 32 = -4*f + q*f. Is 26 a factor of f? False Let h(u) = u**3 - 2*u**2 - 4*u + 5. Let l be h(5). Let v be 3/(((-5)/(-75))/(-1)). Let d = v + l. Does 2 divide d? False Suppose 21864 = 55*t - 7231. Is t a multiple of 23? True Let d = 88 - -17. Suppose -180 = d*i - 110*i. Does 6 divide i? True Let t = -328 + 199. Let a = 227 + t. Is 14 a factor of a? True Suppose 5*y = o - 11, 0 = -3*y - 4*o + 1 - 3. Is 4 a factor of (846/(-15) - 12/(-30))/y? True Let m be (1/(-2))/(7/(-37114)). Suppose -24*v = -229 - m. Does 10 divide v? True Let v be 4*(9/2 + -3). Suppose v*w - 2376 = -2*w. Is w a multiple of 28? False Let d(b) = 2*b**3 + 18*b**2 - 8*b - 5. Let q(s) = -s**2 + 16. Let x be q(-5). Does 67 divide d(x)? True Suppose 10*z - 8*z + 30 = 0. Does 3 divide ((-2)/(-4))/(z/(-990))? True Suppose -7*h + 106 = 36. Suppose h*i - 1120 = 6*i. Does 7 divide i? True Suppose 4*t + 3*i + 10235 = 44734, 3*t - 25869 = -4*i. Is t a multiple of 177? False Let s(v) = v**3 - 28*v**2 + 73*v + 62. Let g be s(25). Let t = 2 - 5. Let y = g + t. Does 9 divide y? True Suppose -287 = 4*u - 87. Suppose 0 = -4*t + 524 - 84. Let m = u + t. Is m a multiple of 20? True Let t be ((-20)/(-8))/(6/(-2100)). Let z = t - -1232. Does 17 divide z? True Let u = 2 - -1. Suppose 4*o = -u*k - o + 259, -5*k = 4*o - 436. Does 25 divide k - (7 + -4 - 0)? False Let q(g) = -g**2 + 2*g - 1. Let p(l) = l**3 + 3*l**2 - 6*l - 149. Let w(u) = -p(u) - 4*q(u). Is 76 a factor of w(0)? False Let z = 812 - -592. Does 108 divide z? True Let a be 0 - 12 - 2/1. Suppose -4*t + 20 = 0, 17*u - 2*t = 15*u + 80. Let q = u + a. Is 21 a factor of q? False Suppose 0 = 40*l + 19*l + 121600 - 524806. Is 134 a factor of l? True Let d(m) = m**2 - 15*m - 3. Let g be d(15). Is 2532/(-8)*(14/g + 4) a multiple of 33? False Let j = 3444 - 2826. Does 3 divide j? True Let c(z) = z**3 - z - 2. Let u be c(3). Suppose 5*b = u + 233. Let r = 27 + b. Is 14 a factor of r? False Let i = 37 + 25. Suppose 5*n = 0, -f + i = -2*n - 3*n. Is 8 a factor of f? False Let t be 8/(-10)*60/(-1). Let x be 72/(-16)*(-4)/6. Suppose x*w + 0*w - t = 0. Does 7 divide w? False Let s = 89 + -87. Suppose -3*x = -3*k - 51, -5*x = -s*k - 4 - 69. Is x a multiple of 4? False Let h = 571 + -329. Suppose -h = -6*l + 178. Suppose -2*u = -2*b - 0*b + l, 140 = 3*b + 4*u. Does 10 divide b? True Let c(w) = w**3 - 16*w**2 - 26*w + 26. Let u be c(18). Let v(j) = 5*j**2 + 4*j - 3. Let z be v(2). Suppose -5*k - z = 0, 2*o - 5*o - 2*k = -u. Does 9 divide o? True Suppose -2*o + 5418 - 55 = -a, 8034 = 3*o - 5*a. Does 24 divide o? False Let r = 415 + -255. Let y be (9/4)/((-5)/r). Let j = y + 126. Does 18 divide j? True Suppose -13*j + 12*j + 5*h + 432 = 0, -4*h = -3*j + 1263. Suppose -202 = c + 2*r - 617, c + r - j = 0. Is 44 a factor of c? False Let u = -3276 + 3062. Let n be (-3)/(-2)*(-2 + 0). Does 18 divide 0 + u/n - (-8)/12? True Let f be ((-13)/(-65) - 36/5)*-22. Let n = 193 - f. Is n a multiple of 13? True Suppose 0 = -22*a + 3702 + 1578. Does 3 divide a? True Suppose -31*h - 14*h - 20267 + 460547 = 0. Is h a multiple of 86? False Let j(n) = 28*n - 1. Let a be j(-3). Let h = a + 144. Suppose -12 = t + i - 79, -t + h = 5*i. Does 28 divide t? False Let m be (6/6 - -5) + 0. Suppose t = -3*a + 55, -3*t + t + 115 = 5*a. Suppose m*w = 11*w - t. Is 2 a factor of w? True Let k(l) = l**3 + 22*l**2 + l - 31. Is 7 a factor of k(-20)? True Is (43/(-3)*-1)/(218/32046) + 4 a multiple of 5? False Suppose 0 = 2*r - 4*v - 576, 0 = -2*r - 2*v + 175 + 425. Is 37 a factor of r? True Let o = 8 - 3. Suppose j + 229 = o*a, 4*j - 70 = -2*a - j. Is 9 a factor of a? True Is -150*((-12)/(-4) - 6) even? True Suppose -111*y = -83*y - 46200. Is y a multiple of 75? True Is 12/(42/(-42) + 1070/1064) a multiple of 8? True Let a = -5 + 10. Suppose 3*t + 4*m - 16 = a*m, -4*m + 8 = 0. Suppose 156 = 2*d - 3*h - 2*h, t = -3*h. Does 10 divide d? False Suppose 3*u - 150 = -5*i + 5*u, 4*i - u - 117 = 0. Let q be (-6)/(-4) + 70/i. Is 10 a factor of (-6 + q)/(2/(-10))? True Let s = -59 - -58. Let u(k) = -332*k**3 + 2*k**2 - k - 2. Is u(s) a multiple of 37? True Let z = -1711 - -3741. Is z a multiple of 70? True Does 26 divide 2/((-4)/39)*((-4 - 166) + 18)? True Let k(o) = 16*o**2 - 11*o + 7. Suppose 0 = 4*w - 3*p + 5*p + 24, 0 = -4*w + 4*p - 12. Let u be k(w). Suppose -11*g = -4*g - u. Is g a multiple of 22? True Suppose -2*d - 50*t + 4604 = -54*t, 2*d + t - 4589 = 0. Is 164 a factor of d? True Let v(t) = -534*t**3 + 8*t**2 + 16*t - 2. Does 122 divide v(-2)? True Let j(b) = -b**3 - 3*b**2 + 9*b - 5. Let u be j(-5). Suppose u = 3*l - 2*t + 4 - 26, 0 = 4*l - 5*t - 27. Is 88*((-6)/l - -2) a multiple of 27? False Suppose -40*f + 13*f + 81 = 0. Suppose 120 = 3*m - f*d, 5 = 5*d - 4*d. Is 9 a factor of m? True Let h(f) = 69*f. Let d be h(-1). Let s(a) = a**3 - 8*a**2 - 7*a - 7. Let q be s(10). Let r = d + q. Is r a multiple of 9? True Let m = 16183 - 10675. Is m a multiple of 81? True Let c be ((-30)/5*1)/(2/(-1)). Suppose -r = -3*t - 2*t - 273, 801 = c*r + 3*t. Does 67 divide r? True Suppose 6*q + 56 - 14 = 0. Let w(z) = 6*z**2 + 13*z - 13. Is w(q) a multiple of 10? True Suppose -261 + 2670 = -11*w. Let n = -163 - w. Is n a multiple of 14? True Let m be (-11 + 1)*((-20)/8 + -2). Does 6 divide 51 - (m/30)/((-1)/2)? True Suppose -2*c - s - 402 = 0, -4*s + 3*s + 4 = 0. Let h = c - -423. Is h a multiple of 27? False Suppose -9*h + 24 = -h. Suppose -5*i - 5 = n, 7 = n + h*i - i. Does 19 divide (n/(-4))/((-1)/28)? False Let x(b) = b**3 - 4*b**2 + 4. Let y be x(4). Suppose -4*u = l + 2*l - 1, 5*u = -y*l. Suppose 6 = t - u. Is 5 a factor of t? True Let g = 23 + -25. Let f be 1 + 6/g + 2. Suppose -a = -4*k - 46, -2*a - 5*k + 141 - 36 = f. Does 10 divide a? True Is (-13 + -2)*(-17)/(-51) + 5675 a multiple of 10? True Suppose 3*j - 121 = 3*r - 8*r, -4*r = -5*j - 119. Let k = 305 - r. Suppose -k = -4*f + v, 0 = v - 2 + 1. Is f a multiple of 10? True Is 60 a factor of (1/12)/(2/16)*(6718 + -1)? False Let r(p) = 4*p**2 - 398*p + 180. Does 10 divide r(100)? True Let y(g) = 2*g**2 + 10*g + 5. Let c be y(-5). Suppose 5 = c*p - 5. Suppose -j + p*j = 28. Does 13 divide j? False Let y(l) = 283*l - 97. Is y(12) a multiple of 50? False Let h(s) = -2*s**3 - 8*s**2 + 2*s - 9. Let i be h(-6). Suppose 0 = -6*q + 75 + i. Suppose -q = -2*x + 21. Is 27 a factor of x? True Let a(h) = 25*h**3 - h**2 - 2*h - 2. Let q be a(-1). Let w be q/(-4) - (-9)/(-6). Suppose -w*l - 434 = -3*c + 245, -l - 894 = -4*c. Is 45 a factor of c? False Suppose 3*l = 5*k + 727, 0*l - 2*l = -5*k - 493. Let d be l - (-3 + 3 - 2). Suppose -d = -4*c + 24. Does 9 divide c? False Suppose 20*x - 9539 = 13*x + 15689. Is x a multiple of 53? True Suppose -4*r = -18*l + 21*l - 17346, 2*r + 4*l = 8678. Is 15 a factor of r? True Does 159 divide (1 + -6)/(1 + -4) + 1831080/360? True Let n(h) = h**2 - 13*h - 489. Let i be n(32). Let m be 167/(1 + 0/2). Let q = m - i. Is q a multiple of 16? True Let n be 3/(-2)*(-8)/(-6). Let q = 1 - n. Does 8 divide (0 - 0 - 54)/(q/(-3))? False Suppose -1763*d + 1756*d + 6981 = -42299. Is d a multiple of 110? True Suppose -476 = -3*l - x, 94 + 48 = l - 3*x. Is l a multiple of 13? False Let j be 12/(-2)*(0 + (-4)/6). Suppose 2*v = -j*v + 30. Suppose i + 3*i + v*s = 281, -i + 62 = 4*s. Is i a multiple of 10? False Suppose 0 = -5*v - 4*g + 400 - 32, v + 3*g = 67. Let m be (-3)/(3 - 234/v). Suppose -12*f + m = -10*f. Is 6 a factor of f? False Let m(o) = 5*o**2 + 13*o - 5. Let l be (2 - (6 + -4))/(-2 - -1). Let x be (3 - (11 - l)) + 4. Does 10 divide m(x)? False Let s(i) = i**3 + 5*i**2 + 3. Let j be s(-5). Let x = -2521 - -2630. Suppose j*f - 128 = x. Is f a multiple of 15? False Let w = 135 + -93. Suppose s - 142 = -w. Is s a multiple of 19? False Suppose 0 = -3*z - z - 4*h + 84, -132 = -5*z + 4*h. Suppose 21*n = z*n + 6. Is 24 a factor of 2/(-4) - 3/n - -71? True Suppose -2465*j + 6808 = -2461*j. Does 37 divide j? True Let b(w) = -w**3 - w**2 + 2*w + 4. Let n be 4/(-18) - 8/108*-3. Let z be b(n). Is -2*(-1 - 63) - z/(-2) a multiple of 26? True Let c(i) = -3*i - 13. Let q be c(-22). Let s = -48 + q. Suppose -2*h + 250 = -2*d, s*h + 2*d - 315 = 282. Does 37 divide h? False Let m = 20 - 16. Suppose m*n = -3*j + 39, -42 = -3*j - 0*n - 5*n. Is (2 - -28)*30/j a multiple of 17? False Let p(t) = 2*t - 2. Let v be p(7). Suppose 5*g = 5*d + 35, 5*d = -8 - v. Suppose 0 = -5*h + 5*l + 538 - 53, g*l + 475 = 5*h. Does 9 divide h? False Let q(w) = w**3 + 9*w**2 + 3*w + 11. Suppose 5*t = -3*y - 34 + 109, 27 = t + 3*y. Let o(g) = g - 20. Let p be o(t). Does 8 divide q(p)? False Is (150/9)/((-12)/(-666)) a multiple of 37? True Let f(q) = q**3 - 2*q**2 - 19*q - 160. Does 12 divide f(13)? True Suppose 11*q - 3568 = 13*q. Let f be (q/6)/(10/30). Is f/(-14) + (26/(-7) - -4) a multiple of 27? False Suppose -5*g = 5*b - 15, -2*b - 9 = -3*g + 2*b. Suppose -g*w + 2 = 4*c - 2, c - 16 = 3*w. Suppose d - 22 = 5*q, 30 = d + c*q - 7*q. Is d a multiple of 13? False Suppose 2 = 4*w - 4*r + 22, 2*r = w + 2. Let h(m) = -m**3 - 10*m**2 - 14*m + 13. Let l be h(w). Is 152/(-12)*(-1)/((-2)/l) a multiple of 9? False Let s = -58 + 478. Suppose -s = -4*w - 8*w. Is w a multiple of 7? True Is 13 a factor of (10 + -3)*6/21*(-4771)/(-26)? False Let h(m) = m**2 + 8*m + 2. Let u be h(-6). Suppose 9*c = 5*c + 424. Is 29 a factor of (-30)/(-12)*(1 - c/u)? True Let g(i) = 17*i**2 + 20*i + 245. Is g(15) a multiple of 10? True Let g = 26 + -29. Let j be -2 - ((g - 9) + 3). Suppose 0*u = -j*u + 826. Does 21 divide u? False Suppose -15 = 2*g + 5*m, 3 = 4*g + 2*m - 7. Let o = 7 - 5. Suppose -5*z = -g*p - 85, -z + 52 = 2*z - o*p. Is z a multiple of 16? False Suppose -3*y = -4*p - 5952, 5*y - 16859 = 4*p - 6947. Does 10 divide y? True Suppose 2*v + 3*t - 97 = -0*v, 4*v = t + 173. Suppose g - 3*q = -52, -19*g = -15*g + q + 143. Let p = v - g. Is 21 a factor of p? False Is -6 + (3070 - -9) - 12 a multiple of 5? False Let u be ((-13)/(-39))/(2/6). Let g be (u + 11)*(8/(-6) - -2). Suppose 3*c + 550 = g*c. Does 12 divide c? False Let h be (0 + 3/6)/(2/(-28)). Let k = 502 - 355. Is 12 a factor of k/(-6)*24/h? True Suppose 3*z = 8*z + 35. Let q(k) = -k**3 - 8*k**2 - k - 2. Let u be q(z). Let h = u + 116. Does 9 divide h? True Let g be (-368)/(-3) - ((-15)/(-9) - 2). Suppose 58 = -5*y + g. Is 7 a factor of y? False Let o(i) = 137*i - 1020. Is 11 a factor of o(10)? False Suppose -106*f + 241387 + 95927 + 185160 = 0. Is 31 a factor of f? True Let p(t) = t**3 + 36*t**2 - 74*t + 42. Is p(-19) a multiple of 42? False Let h(n) = 6*n + 34. Let r be h(14). Let k = 194 + r. Suppose -i - 5*i + k = 0. Is 13 a factor of i? True Is 3/8 - (881802/(-144) - -8) a multiple of 22? True Suppose 165 = -35*j + 38*j. Let q = 100 + j. Is q a multiple of 11? False Let t(x) = x - 1. Let l be t(0). Let h(p) = -80*p**2 - 4*p + 5. Let m(f) = -159*f**2 - 9*f + 11. Let v(r) = -9*h(r) + 4*m(r). Is v(l) a multiple of 18? False Let u(p) = 1 - 17 + p - 2*p + 2. Let h be u(9). Let k(g) = -g**3 - 23*g**2 - g - 19. Is k(h) a multiple of 3? False Suppose -8*o + 4805 = -q - 1455, 0 = 5*o + q - 3919. Is 92 a factor of o? False Let c = -3298 + 3903. Does 11 divide c? True Let h(u) = -65*u**2 + 14*u + 51. Let t be h(-6). Is 24 a factor of t/(-9) - 11/(-33)? True Let g(h) = -3*h - 16. Let r(x) = 6*x + 16. Let t be r(4). Suppose -5*f = t + 20. Is 5 a factor of g(f)? True Suppose -29*k + n = -25*k - 17721, -2*k + 8868 = -2*n. Is 89 a factor of k? False Suppose 15*z = 6*z - 135. Let j(k) = 2*k**2 + 21*k + 26. Does 10 divide j(z)? False Let u = 167 - 92. Suppose -4*n = 27 - u. Does 4 divide n? True Let i = 2480 + -1935. Is 6 a factor of i? False Suppose 5*s + 2*a = 2479, -4*s - 6*a + 1979 = -3*a. Suppose s - 92 = 5*f. Is f a multiple of 23? False Suppose -8*u + 19 = 3. Does 13 divide -195*(-2)/(u - 0)? True Let o = -4924 - -2629. Is 51 a factor of 42/(-5)*o/54? True Let q be 4/(-1 + 2) - -5. Let k(v) = -v**2 + 7*v + 22. Let g be k(q). Suppose -3*l + g*c + 6 + 36 = 0, l = -3*c + 1. Is 5 a factor of l? True Suppose 10*m + 1299 - 4569 = 0. Is m a multiple of 5? False Suppose -3*k + 4*k + 25 = 5*y, 0 = 4*k + y + 16. Is 15 a factor of 10/4*(-596)/k? False Let q(p) = 24*p**2 - p - 108. Is 27 a factor of q(-11)? False Let l = 2082 - 1230. Is l a multiple of 12? True Let m(z) = -z**3 - 9*z**2 + 11*z + 10. Let a be m(-10). Does 27 divide -1*((-4557)/21 - (-1 + a))? True Does 7 divide 100/25 + 2305 + -1? False Let p = 194 - 192. Suppose 0 = -p*t + 620 + 368. Is t a multiple of 26? True Suppose -10*l + 5567 = -12373. Is 26 a factor of l? True Let c(r) = 3*r**3 - 20*r**2 + 34*r - 27. Does 5 divide c(11)? True Suppose -8*b + 10*b - 78 = 0. Let x = 102 - b. Does 9 divide x? True Let j = -24 + 32. Suppose j*n + 0*n = 920. Is 5 a factor of n? True Let f = -2316 + 4962. Is f a multiple of 21? True Let z(v) = v**2 - 12*v - 17. Let p be z(13). Does 11 divide (-30)/p*(-19)/((-209)/242)? True Let f(r) = -r**3 - 9*r**2 - 9*r + 22. Let z be f(-9). Let k = z - 21. Suppose -j - 3 = -k. Does 10 divide j? False Let d(m) = -m**2 + 13*m - 33. Let r be d(4). Suppose 4*u + 258 - 102 = 3*s, -r*s = -u - 156. Is s a multiple of 13? True Let c = 536 + 901. Suppose c = 16*r - 1251. Is 12 a factor of r? True Let k(d) be the second derivative of d**4 + 4*d**3/3 - 17*d**2/2 - d + 20. Does 7 divide k(3)? False Suppose -4*u = -19 - 1. Suppose u*h + 124 = 524. Suppose -2*t + 3*d - 8*d + h = 0, 4*t - 160 = 3*d. Is 7 a factor of t? False Suppose 4*h + 8 = 0, 20*q - 17*q + 3*h - 183 = 0. Does 21 divide q? True Let b(t) = -t**2 + t. Let a be b(1). Suppose a = -j - 3, -6*j + j = 2*l - 147. Let i = -55 + l. Is 16 a factor of i? False Suppose -4*w + 3*v = -4038, -2*w - 15*v + 2006 = -10*v. Is 7 a factor of w? True Suppose 4*v + 5*c = -233, 2*c = -0*c - 10. Let d = 172 + v. Does 6 divide d? True Let s(a) = -a**3 - 5*a**2 + 5*a - 4. Let r(d) = -5*d + 4. Let v be r(2). Let j be s(v). Suppose 0 = 2*i - 3*l - 0*l - 63, -68 = -j*i - 2*l. Is 8 a factor of i? False Let o(r) = 168*r**2 - 2*r - 2. Let n(g) = -5*g + 79. Let l be n(16). Is o(l) a multiple of 14? True Let a = 281 - 191. Suppose 3*q = 12*q + a. Is 5 a factor of (4*2/20)/(q/(-150))? False Let s(j) = j**2 - 10*j + 6. Let o be s(10). Does 9 divide -9 - -138 - (o + -3)? True Does 55 divide (-26)/(-16) + -2 + (-152185)/(-88) + 11? False Let i = 157 + -146. Is 13 a factor of (i + -1)*(-18)/45 - -368? True Suppose 13*s + 470 = 15*s. Suppose -7*z + s = -255. Is 5 a factor of z? True Let f = 46 + -37. Let p be ((-93)/f)/((-2)/48). Let u = p - 175. Is u a multiple of 10? False Let b = -3296 - -3810. Does 4 divide b? False Let h(v) = v**3 + 60*v**2 + 182*v - 92. Is 63 a factor of h(-54)? False Let i(h) = -1587*h - 959. Does 89 divide i(-5)? False Let d(v) = -2*v**2 + 6*v. Let b be d(4). Let n(k) = -45*k - 136. Is 14 a factor of n(b)? True Let u = -79 + 47. Let o = u - -34. Suppose o*w + 336 = 8*w. Is w a multiple of 23? False Suppose 72518 - 14040 = 14*x. Is 28 a factor of x? False Is 2130 - (7/(-9) - (20/9 - 2)) a multiple of 14? False Let g(u) = 62*u**2 + 107*u + 861. Is g(-8) a multiple of 29? True Suppose 0 = -5*o + 11 + 39. Suppose 3*q + 2 + o = 0. Is 14 a factor of (10/2 + q)*43? False Let c(l) = 5 - 6 + l + 2 - l**2. Let i be c(0). Does 7 divide 0/43 + (23 - (1 - i))? False Let l(o) = o**3 + 45*o**2 + 82*o - 101. Let m be l(-43). Let q be (-254)/(-3 + 1) + 0. Let z = q - m. Does 8 divide z? True Suppose -3*z = 20*z + 230. Is 19 a factor of (-18792)/(-120) - 4/z? False Let k be 24*1 + -2*(-16)/(-8). Suppose k*j = 17*j + 756. Is j a multiple of 26? False Let v be (3 - 21/6)*-284. Let z = v - 20. Suppose 2*j - z = 2*q, 52 + 252 = 5*j - 4*q. Does 6 divide j? True Suppose 3*v = 5*v + 34. Let r(w) be the first derivative of w**4/4 + 6*w**3 + 17*w**2/2 + 20*w - 69. Does 20 divide r(v)? True Is 21 a factor of 2/5 - 312/20*(-304)/114? True Is 4 a factor of -1 + 1 - (-2107 - 34)? False Let b = -15 - 13. Let n = b - -33. Suppose -10 = n*v - 35. Is v a multiple of 2? False Let d = 12116 - 8372. Is 36 a factor of d? True Let p = 3361 + -2069. Is p a multiple of 44? False Suppose -125*s + 166*s - 255430 = 0. Is s a multiple of 14? True Let z(b) = 4*b**3 + b - 2. Let h be z(-3). Let f = -17 - h. Does 8 divide f? True Is 4 a factor of 8/6 + (-106)/(-6) + 1? True Is (-6)/4 - 773844/(-472) a multiple of 14? True Let f be -2 - -2 - (0 + -3). Suppose 4*z + 0*y = -y - 166, -f*z = -3*y + 117. Let k = 71 + z. Is k a multiple of 8? False Suppose 30*q + 41791 - 51491 = 51800. Is 14 a factor of q? False Suppose -r - 20413 = -4*s + 10666, 4*s - 31091 = 5*r. Is s a multiple of 31? False Suppose 5 = 2*s - g, -3*s = -2*s + 2*g - 5. Suppose 3*p - 2*x = -93, p + x - 63 = s*p. Let h = p + 64. Does 25 divide h? False Let v = -31 - -26. Let h(b) = -6*b + 20. Let p be h(v). Let q = p - 4. Does 7 divide q? False Let y be ((-7)/3 - -1)*(-108)/(-8). Let h be (18/4)/((-3)/y). Suppose 15 + h = 2*t - 5*b, 0 = -3*t + 2*b + 41. Is 11 a factor of t? True Is 11 a factor of (24/96 + -16)/(2/(-264))? True Suppose 4*h - 3*m - 3777 = 0, 26*m - 21*m - 25 = 0. Is h a multiple of 12? True Let s(b) = 10*b**2 + 24*b + 480. Does 10 divide s(-20)? True Suppose 3*i = -0*i + 4*h + 5658, 9444 = 5*i - 2*h. Is 46 a factor of ((-4)/10)/((-3)/i)? False Suppose -3*a = 3, 4*x - 8*a - 15945 = -3*a. Does 21 divide x/10 + (-5)/(-10)? True Let t = 275 + -151. Let s(q) = -q**2 + 7*q - 8. Let h be s(4). Suppose 52 = 2*i + h*p, -5*i + i = -2*p - t. Is 16 a factor of i? False Let a(g) = -g**2 - 2*g + 26. Let c be a(-6). Is 33/22 - (-37)/c a multiple of 11? False Suppose 26562 = 8*r - 5*r - 3*o, 5*r - 44242 = -2*o. Does 25 divide r? True Suppose -2*c + 2*g = -0*c - 6490, -3*c + 2*g = -9738. Is c a multiple of 5? False Let y = -24 - -27. Suppose -y*m + 13 = x, 2*m = -x - 2*m + 10. Suppose -3*f = 2*r - 25, -5*f + 3*f + x = 4*r. Is 3 a factor of f? False Let m be (-63)/42*(-3)/(18/(-8)). Let q(p) = 96*p**2 + 5*p + 4. Does 18 divide q(m)? True Let b(o) = 4*o**2 + 3*o + 2. Let a be b(-2). Let d(r) = 2*r**2 - 24*r + 2. Let h be d(a). Let c(q) = 27*q - 2. Is c(h) a multiple of 9? False Let h be ((-44)/12 + 4)*9. Suppose -h*t = -4*t - 0*t. Suppose -f + 49 = -t*f. Is 13 a factor of f? False Let q(b) = 4*b**3 + 2*b**2 + 4*b - 17. Let o be q(-4). Let m = -193 - o. Does 16 divide m? True Suppose 4*z + 3*q + 3 = 6, -2*z - 4*q = 6. Let m(u) = -20*u + 5. Let s be m(-2). Suppose -s = -z*x + 3. Is x a multiple of 12? False Suppose 0 = 2*k - 471 - 7. Suppose -4*t - i = -0*i + k, -4*i = -5*t - 304. Is 8 a factor of (t/(-9))/((-1)/(-6))? True Let i = 363 + 10. Suppose -3*m + 4*l = -0*m - i, -3*m - l = -398. Suppose -3*f - 35 + m = 0. Is f a multiple of 8? True Let p be -141*(7/28)/((-2)/8). Suppose -3*u + 12 = -p. Is 7 a factor of u? False Let q = 40 + -33. Let c(b) = -b**3 + 6*b**2 + 7. Let l be c(q). Is l/(-4)*(15/7 + 3) a multiple of 19? False Let d = 5130 - 3090. Is d a multiple of 40? True Suppose 0*c - 12 = -3*c. Suppose 3*t - 3*m = 54, 2*t + 9*m - 64 = c*m. Let f = 34 - t. Is 8 a factor of f? False Let l = 15611 - 10151. Is l a multiple of 91? True Let g(q) = -16*q + 880. Is 13 a factor of g(-29)? False Suppose -68 = -4*y + 2*c, 5*y - 86 = -3*c + 5*c. Suppose -2*g = -6 - y. Let d = 37 + g. Does 8 divide d? False Does 97 divide -12 - 1*18*-248? False Let m(h) = -5*h**3 - h**2 - 5*h + 1232. Is 11 a factor of m(0)? True Let x(b) = 4*b + 2. Let r be x(-1). Is 21 a factor of 191 - (-7 - r - -6)? False Suppose 15*f - 264 = 3*f. Suppose -1540 = -f*n + 11*n. Does 7 divide n? True Let w(i) = 48*i + 979. Let a be w(-21). Let g be (3*-1)/(2/(-26)). Let m = a + g. Is m a multiple of 2? True Does 30 divide ((-45)/90)/(3 + 31861/(-10620))? True Let z = 3609 + -296. Is z a multiple of 52? False Let b = -85 - -263. Let f = 319 + b. Is f a multiple of 18? False Let m(f) be the first derivative of f**4/4 - f**3/3 + 16. Let c(s) = -s**3 + 6*s + 5. Let b(t) = c(t) + 2*m(t). Does 30 divide b(4)? False Suppose 79*o - 454818 = -44*o - 24*o. Is 14 a factor of o? True Suppose 0 = -5*b + 34 + 36. Suppose s - b*s = -312. Is 6 a factor of s? True Let o be (19 - 2) + (2 - (-1 - -2)). Let j be (-816)/o*(-6)/4. Let g = 133 - j. Is g a multiple of 13? True Let b(q) = -q - 3. Let t(h) = -5*h - 13. Let w(l) = 9*b(l) - 2*t(l). Let f be w(4). Suppose -f = u, -u - 2 = -2*y + 137. Does 16 divide y? False Let f = -9 + 23. Let n be f/4 + (-5)/10. Suppose 5*r - 4*i - 170 = 0, -3*i - 2*i = -n*r + 115. Is 5 a factor of r? True Suppose 284*d - 289*d - 14548 = -4*u, 5*d + 18185 = 5*u. Is 129 a factor of u? False Let y be (-20)/(-3)*2457/78. Suppose 2*d - y = -4*s + 4*d, 0 = 3*s - 4*d - 150. Is s a multiple of 6? True Let s(p) = 0 + 19*p**2 + 2*p + 1 - 3 + 90*p**2. Suppose -u - 2 = -3. Is 34 a factor of s(u)? False Let p(r) = 3*r**2 - 12*r - 3. Let h be p(5). Suppose 0 = 4*w + 4*z - 9*z - 424, 0 = 3*z + h. Does 19 divide w? False Let h(j) = 5*j**3 - 8*j**2 - 4*j - 1. Let s be h(6). Suppose 3*t - 5*n = s - 40, -3*t = 4*n - 709. Does 17 divide t? False Suppose 157*u = 159*u - 18. Suppose u*w - 1091 - 1969 = 0. Is 20 a factor of w? True Suppose 4*q - 13872 = -12104. Is 13 a factor of q? True Let v = 169 + -222. Let o = -17 - v. Is o a multiple of 9? True Suppose -2*d + 4190 + 2454 = 0. Does 50 divide d? False Let l be 92 + -1 + 1 + (-93 - -90). Suppose 0 = 2*g - 2 - 0. Suppose -2*n = -g - l. Does 15 divide n? True Let u be -3 + -3 + 3 + 6. Suppose 2*v - 506 = 258. Suppose -5*i = u*q - 386, -4*q + q - i = -v. Does 12 divide q? False Suppose 17*p + 21*p - 176574 = -63486. Is 30 a factor of p? False Let a = 249 - 44. Is 12 a factor of ((-8)/4)/2*(1 - a)? True Let j(k) = k**2 + 7*k + 38. Let r be j(-7). Let g = 157 - r. Is g a multiple of 5? False Let k = -880 - -1674. Let r = 1202 - k. Is r a multiple of 16? False Let s(p) = -4*p**2 - 231*p - 113. Is s(-45) a multiple of 53? False Suppose -6*i + 2*i = -5*c - 260, 3*i + 3*c = 168. Is 9 a factor of 7*17/(238/i)? False Let y = -1898 - -2012. Does 38 divide y? True Let l be (-27)/6*(-8)/12. Suppose c = 3*p - 1195, -p + l*c + 390 = c. Is 25 a factor of p? True Suppose 4*w + 1232 = 5*q + 3174, 5*w = 4*q + 2423. Does 21 divide w? True Let u(v) = v**2 - 16*v + 21. Let n be u(15). Let i be -1 + -1 - (-20 + n) - 0. Does 16 divide 4/(i/105) + -4? False Let f = 3662 - 2292. Is 19 a factor of f? False Let z(k) = 627*k + 480. Does 18 divide z(4)? True Let v(m) = -m**3 + 44*m**2 - 104*m + 137. Does 4 divide v(41)? True Suppose 23*s - 43056 = -0*s. Is s a multiple of 8? True Suppose -6*h + 3*h + 9 = 0. Suppose -8*s + h*s = 20. Is -29*-2*-3*s/24 a multiple of 5? False Suppose 0 = 2*o - 8, -3*v + 3*o - 285 = -6*v. Suppose 94*m - 246 = v*m. Is m a multiple of 10? False Let x(t) = 158*t + 118. Does 10 divide x(4)? True Let x be 0 + (-60)/(-4) + 2. Let g(t) = 2*t + 14. Let p be g(0). Let o = x - p. Is o a multiple of 3? True Let r(w) be the second derivative of w**4/4 + w**3/3 - w**2 + 7*w. Let b be r(-2). Let x(h) = 4*h - 14. Is x(b) a multiple of 4? False Let t(p) = -p**3 - 8*p**2 + 3*p + 22. Let l be t(-10). Suppose -12*i + 1380 = l. Is i a multiple of 8? False Suppose -14 = -3*w - 8. Suppose -w*t = -0*t + 5*m - 21, 3*t - 3*m = 0. Suppose 7*h + u - 325 = 2*h, -t*h - 2*u = -188. Is 33 a factor of h? True Suppose -n - 5 = 4*m, -m + n + 5 = m. Does 30 divide (2 - m) + -1 + -5 + 334? True Let t be (-104 - -3)/(7 - 6). Let c = t + 170. Is 6 a factor of c? False Suppose -26033 - 10107 = -10*i. Is 11 a factor of i? False Let c(z) = z**2 - 2*z + 3. Let a be c(3). Does 3 divide 9/a*(0 - 784/(-12))? False Suppose f = -4*w + 1978 - 338, -4*w - 6520 = -4*f. Is 6 a factor of f? True Suppose -3*u = -20 + 11. Suppose 5*z - 10 = -3*q, -3*q = u*z + q - 6. Suppose -z*y - 54 = -11*y. Is y a multiple of 3? True Let k(j) be the second derivative of j**4/3 + j**3/6 - j**2 + 16*j. Is 2 a factor of k(-2)? True Suppose -4*t - 3*m + 3072 = 0, 7*t + m = 6*t + 768. Is t a multiple of 4? True Let l be 41/5*(-6)/(-6)*5. Let w(n) = 11*n. Let o be w(1). Suppose -o = -a + l. Is a a multiple of 13? True Let j be (250/7)/(1/7). Let p = j - -143. Is 12 a factor of p? False Suppose -27 = -4*b + 3*o, 0 = 2*b + 4*o - 3*o - 11. Suppose d + n = -3, d = 3*d - n - b. Let c(g) = 42*g + 3. Is 17 a factor of c(d)? False Suppose -l + 51515 = 4*h - 2*l, -5*h = -l - 64395. Is 18 a factor of h/65 + 3/(39/(-2))? True Suppose -2*j + 0*j + 4 = 0, 3*j = -3*n + 36. Suppose m - n = -5. Suppose 0 = 2*v - 8, 0 = w + 4*w + m*v - 80. Is 6 a factor of w? True Let v(c) = -c**3 - 2*c**2 - 2*c - 2. Let y be v(-2). Suppose 4*s = -n + 24, 2 = -y*n - 3*s + 25. Suppose t + 5*m = 3, 3*m + 2 + n = 0. Is 6 a factor of t? False Let t be ((-3)/(-3) - -1)*1449/42. Suppose 1476 = -t*g + 72*g. Is g a multiple of 12? True Suppose -63*v - 15613 = -23*v - 51813. Is v a multiple of 3? False Suppose -5*z - 36 = -8*z. Suppose -3*v + 3 = -5*a + z, 5*a - 4*v = 7. Is 18 a factor of (-2)/1 - 80/(-12)*a? True Suppose 3*v = k - 888, -3538 = -4*k + 2*v - 4*v. Does 59 divide k? True Let p(x) = -2*x**3 - 6*x**2 + 14*x - 12. Let m be p(3). Let d = m + 222. Is d a multiple of 18? True Let m(y) = 5*y + 993. Is m(55) a multiple of 30? False Suppose -2936 = -310*l + 309*l. Does 14 divide l? False Let f = 22 + -4. Suppose 3*o - f = -6. Suppose k - 5*c - 46 = 13, -2*k + 94 = -o*c. Does 13 divide k? True Let q be -209 + 2/(6/(-3)). Let u = -5 - q. Does 5 divide u? True Let s(n) = 60*n**3 - 2*n**2 + 2*n - 15. Does 27 divide s(3)? True Suppose 24*s - 7*s = -21*s + 235106. Is 17 a factor of s? False Suppose 8627 = 5*u + n, u - 8629 = -4*u - 2*n. Is u a multiple of 69? True Let a(u) = 121*u - 1307. Does 75 divide a(17)? True Suppose 76*l - 121480 = -1861 + 190613. Is l a multiple of 62? False Suppose -1759 - 11107 = -7*c. Is 8 a factor of (-57)/15 + 4 + c/10? True Let m = -26 + 30. Let s be (9/12)/(m/16). Suppose 0 = 2*d + 3*g - 285, 0*g + 435 = 3*d - s*g. Is d a multiple of 14? False Suppose -m - 3*i - 9 = 0, -5*m - 4*i + 6 = -6*i. Suppose m*d = 4*d + 16, 2*d = x - 84. Is (6/(-1))/((-6)/x) a multiple of 8? False Let c = 43 + -44. Is -24*c/(20/235) a multiple of 47? True Suppose x - 5 = y, -4*x = -7*x - 3*y + 21. Suppose 14 = -x*g + 38. Suppose -g*s - 3*d + 49 = 0, s - 11 - 5 = 3*d. Is s a multiple of 13? True Let b be 4 + (-5 - -4 - 21). Let c = -16 - b. Is (1 - 2)*111*c/(-3) a multiple of 16? False Let l(w) = 124*w**2 + 30*w - 10. Does 13 divide l(3)? True Let a = -22 - -80. Suppose -2*r - 2*r + 4*q = -32, -5*r - q + 16 = 0. Suppose 0 = r*o + a - 306. Does 7 divide o? False Let v = 7056 + -4111. Does 31 divide v? True Let k(b) = -b**2 - 5*b + 23. Let p be k(-8). Suppose 4*g = 5*s - 224, 3 = s - 1. Let t = p - g. Does 8 divide t? False Suppose -116*c = -38*c - 295699 - 240473. Is 35 a factor of c? False Let j(n) = -9*n**2 - 2*n**3 - 13 - 14*n - 6*n**2 + 1. Is j(-7) a multiple of 16? False Let n = -6559 - -9907. Does 12 divide n? True Let k(j) = -5*j + 27. Let f be k(5). Suppose 0 = -2*x - 4*z + 4, 5*z = -f*x - 2 + 6. Suppose -l + 57 = x*i - 10, 93 = 3*i + 3*l. Is i a multiple of 7? False Let k(d) = -915*d - 1744. Does 76 divide k(-7)? False Is 7 a factor of 345738/58 + -6 + 2? True Suppose -5*p + 98*k = 102*k - 7158, 0 = 3*p + 4*k - 4290. Is p a multiple of 10? False Let v(f) = f**2 + 2*f + 1. Let k = 20 + -18. Let a be v(k). Suppose 0 = -a*b + 413 + 397. Is b a multiple of 18? True Suppose 11*h - 20*h + 4788 = 0. Suppose -3*c + 6*c = -4*t + h, 20 = 5*t. Does 9 divide c? False Let k = -121 - -128. Is 16 a factor of (k + 121)/(2 - 0)? True Suppose -219109 = 45*z + 26*z - 723493. Is z a multiple of 96? True Let p be (333/15)/(2/(-10)). Let q be (0 - 4/(-1))*40. Let n = q + p. Is 6 a factor of n? False Let o(f) = 4*f**3 - 4*f**2 + 34*f - 92. Is 14 a factor of o(8)? False Suppose 24669 = 18*k - 81531. Does 118 divide k? True Let u be ((-8)/20)/((-8)/10)*46. Is ((-41)/(-4))/(u/92) a multiple of 6? False Let v(s) = -12*s - 33. Let r be v(-3). Suppose r*p - 1037 = 2*a, 0*p + 2*a + 690 = 2*p. Is 22 a factor of p? False Let y = -14 + -6. Let m = -20 - y. Suppose -l + 3*g + 85 = m, -2*g + 158 = 4*l - 210. Is l a multiple of 18? False Suppose 5*n - n = -652. Let i = -805 + 510. Let k = n - i. Does 20 divide k? False Suppose o - 4656 = -4*z + 3*o - 3*o, -2*o = 0. Does 50 divide z? False Suppose s - 1442 = -4*k, -718 = -3*k - 5*s + 372. Is k a multiple of 120? True Let t(d) be the first derivative of -173 + 184 + 0*d + 0*d - 2*d**2. Does 12 divide t(-3)? True Let c = 137 + -135. Suppose -c*u - 1760 = -18*u. Does 14 divide u? False Is -92*90/(-16)*11*(-4)/(-22) a multiple of 24? False Suppose 0 = 5*q - 0*q - 275. Let z = 190 + -142. Let o = q - z. Is o a multiple of 5? False Suppose 78*p - 15902 - 63190 = 0. Is 3 a factor of p? True Let b = 27 + -5. Suppose 3*s = -62 - b. Is 4 a factor of 12*(-2 - s/6)? True Is (1 - 52/(-5))/((-252)/(-103320)) a multiple of 123? True Let x = -666 - -1550. Is 17 a factor of x? True Let a(r) = -r**2 + 11*r - 13. Let o be a(2). Let h = -71 - -168. Suppose -f = -5*b - 10 - h, 0 = -o*f - 3*b + 507. Is 15 a factor of f? False Let r = 219 + -281. Let f = 15 - r. Is f a multiple of 10? False Suppose -5*z - 5*b + 350 = 0, -3*z + 188 = b - 18. Let w = 83 - z. Does 15 divide w? True Let l be ((-4)/2 - -2) + 146. Let m be 120/50 + 2/(-5). Suppose m*y = 4*y - l. Is y a multiple of 11? False Suppose 25 = 2*w + 21. Does 6 divide (27/w)/((-6)/(-80))? True Let v be 0 + 0 + (-1650)/10. Let l = v + 389. Is 32 a factor of l? True Let i = 14 + -12. Let v be (-33)/(-88) + 1786/16. Suppose -i*f + v = -f. Does 28 divide f? True Suppose 3*l - 1109 - 3122 - 359 = 0. Is 18 a factor of l? True Suppose 11 = -p + 13. Suppose -g + 3*t + 42 = 0, -p*g + 152 = g + 4*t. Is 4 a factor of g? True Let y be 3 + (-5 - -6 - (-4)/(-2)). Suppose -y*k = -7*k + 945. Is 21 a factor of k? True Suppose 3*q = -4*n + 2078, 2*q = -2*n + 528 + 854. Let m = q + -326. Does 34 divide m? False Suppose 415066 = -5*c + 42*c. Is c a multiple of 15? False Let a(s) = 3*s - 18. Let m be a(8). Let v(c) = 4*c - 10. Let q be v(m). Let t(z) = 4*z - 24. Is t(q) a multiple of 32? True Let j be (-13 + 4)/(3/(-129)). Let h = j + -259. Is 32 a factor of h? True Suppose -5*h + 3 = -12. Suppose h*i + 0*p + p + 5 = 0, 0 = -5*i - p - 5. Does 4 divide 4 + (i - 2) + 38? True Suppose 20 = -4*u, 4*u + 2385 = 5*o + 735. Does 4 divide o? False Suppose -41*f = -39*f - 1028. Let s = f - 192. Does 16 divide s? False Suppose 18*y = 428 + 382. Does 8 divide 2/(-36)*4 - (-2035)/y? False Is 2 a factor of (-2 - (-8 - -7))*(-1 + 2 + -847)? True Let u(j) = 3*j**2 - j - 9. Let q(d) = -4*d - 24. Let p be q(-16). Let c = -34 + p. Is 31 a factor of u(c)? True Let l = -5968 - -9436. Does 102 divide l? True Suppose x + 18 + 13 = 0. Let d = x - -31. Suppose -2 + d = -2*i, -i - 447 = -4*q. Does 28 divide q? True Suppose 1120*i - o - 2240 = 1116*i, 5*o = -4*i + 2240. Does 7 divide i? True Let b be (82/(-4))/(7*(-13)/182). Suppose -5*c + 33 = 2*y, 4*c = y - 0*y + 16. Let h = b - c. Does 6 divide h? True Suppose 0*p + 7726 = 3*p + 2*o, 2575 = p + o. Is 16 a factor of p? True Suppose -j - 46 = 53. Let n = -20 - j. Is 24 a factor of n? False Let d = 64 + -54. Let s(i) = 3*i**2 - i + 3. Is s(d) a multiple of 17? False Suppose 0 = -x + 3*b + 8, -5*x + 3*b + 8 = 4*b. Suppose 5*d - 99 = -n, -3*n = d + x*d - 261. Is 12 a factor of n? True Let c(u) = 6*u**2 + 7*u + 1. Let j be c(-3). Let v = j - 49. Let a(z) = z**3 + 15*z**2 - 6*z - 30. Does 20 divide a(v)? True Suppose 4*u - p + 932 = 0, 3*u = 5*p - 227 - 472. Let c = 474 + u. Is c a multiple of 31? False Suppose -c = -j - 6, -1 = c + 3*j - 19. Let u(n) = 8*n - 65. Does 2 divide u(c)? False Let g = 944 + -638. Let c = 254 - 448. Let k = g + c. Does 38 divide k? False Suppose -12 = -3*n + 9*n. Let g = 13 - n. Is g a multiple of 7? False Suppose -101 = 2*m - a - 617, 258 = m - 5*a. Let r = m - 233. Is r a multiple of 5? True Suppose 0 = d - v - 11, 4*v = -6*d + 3*d - 2. Suppose -168 = d*z - 1506. Is z a multiple of 19? False Let n(b) = -b**3 - 53*b**2 - 115*b - 25. Is 182 a factor of n(-51)? False Let b = 1323 + -311. Is 8 a factor of b? False Is 28 a factor of (3 - 5)*(3 + (-1)/(4/7348))? True Let a(g) = g**3 + 29*g**2 + 72*g + 30. Does 13 divide a(-18)? False Let c be 3*((0 - -3) + (-40)/(-15)). Suppose c*v - 4800 = 2*v. Is 40 a factor of v? True Let h(b) = -2*b + 8. Let w(k) = -k**3 + 18*k**2 - 17*k + 4. Let l be w(17). Suppose 2*p = a + 16, p = -a + l - 5. Does 10 divide h(a)? True Let b = 16 - 39. Let c = -22 - b. Does 29 divide 2/2*94/c? False Let x(h) = 41*h**2 + 12*h - 19. Let l(t) = -t + 17. Let b be l(15). Does 8 divide x(b)? False Is 6 a factor of (-16)/(-10) + 2343264/660? True Suppose -5*f - 239 = -2489. Let k = 633 - f. Is 20 a factor of k? False Suppose 5*o - 9935 = -4*w, -2*w + 8*o + 4948 = 4*o. Does 20 divide w? True Suppose 0 = -10*o + o + 33084. Does 19 divide o? False Let s(d) = 4*d**2 + 4*d + 115. Let j be s(14). Suppose 2*u = -3*l + j, -5*l - 2*u = u - 1591. Does 24 divide l? False Suppose -2*j + 17 + 105 = 2*u, -j + u + 67 = 0. Suppose -5*p + 216 + j = 0. Is p a multiple of 8? True Suppose -28*l + 23*l - 1430 = 0. Let r = 422 + l. Is r a multiple of 11? False Let p = 4916 - 4700. Is p a multiple of 24? True Suppose -25*v = -28*v - 5*j + 7521, -j = -3*v + 7539. Is v a multiple of 68? False Suppose -3*x + 4007 = -174*b + 169*b, 5*x + 3*b = 6667. Is x a multiple of 21? False Let s be (-6)/(-4)*32/12. Let o be 267/6 + 2/s. Does 5 divide 12*(o/(-18))/((-3)/4)? True Suppose z + 2*l - 18 = 6*l, -3*z = -4*l - 22. Suppose -z*i - 2*i + 1872 = 0. Is i a multiple of 39? True Let p(y) = 12*y**3 + 6*y**2 + 6*y - 62. Is p(4) a multiple of 118? True Let w(l) = 50*l**3 + 2*l**2 + 2*l - 3. Is 129 a factor of w(4)? False Let l(g) = -3*g**3 + 2*g**2 + 9*g + 7. Let u(r) = -7*r**3 + 4*r**2 + 19*r + 14. Let x(v) = 5*l(v) - 2*u(v). Does 21 divide x(-5)? True Let f = 7101 - 1245. Is 48 a factor of f? True Let s(b) = b**2 - 12*b + 17. Let o be s(5). Let q be -4*1 - (o - -10). Suppose -q*j = -159 - 21. Does 15 divide j? True Suppose -y - 130 = 4*y. Let i = 24 + y. Let l(r) = 7*r**2 - r - 1. Is l(i) a multiple of 18? False Let t be 0/((5 - -3)/(-4)). Suppose 0*w - w = t. Suppose w = -b - 0*b + 162. Does 46 divide b? False Suppose -4*u = -4*z - 84, -u + 2*z + 2 = -22. Let f = 174 + u. Does 24 divide f? True Suppose 46*c - 45*c + 6842 = 0. Does 23 divide (10/6)/(c/(-759) + -9)? True Let l be (-12)/90 - (-444)/(-45). Let i be (-4)/(-10) - 16/l. Suppose -x + 0*u = -u - 146, i*x - 304 = -u. Does 30 divide x? True Let g be 425/(-5)*(-6)/(-15). Let k = g - -37. Suppose k*n - 161 = 130. Is 11 a factor of n? False Let u(t) = t**3 - 12*t**2 - 16*t + 86. Let l be u(14). Let v = l + -131. Is v a multiple of 34? False Suppose t + 0 = -1. Let k(u) = u**2 - 16*u + 9. Let r be k(15). Does 15 divide -3*9*(t - r/(-9))? True Let y(v) = 13*v**3 - 21*v**2 + 18*v + 18. Does 94 divide y(9)? False Is (92505/(-45))/(-7)*(8 + -2) a multiple of 2? True Let l = -1857 + 5499. Is 9 a factor of l? False Suppose -109 = -2*f + 5*q, 5*q = -4*f + 2*f + 59. Does 21 divide f? True Let u(x) be the second derivative of x**5/20 - x**4/12 - x**3/3 + 120*x**2 - 7*x + 6. Is 30 a factor of u(0)? True Suppose o + 3*a - 1597 = 0, -36*a + 37*a = -2*o + 3219. Is o a multiple of 26? True Suppose -6 = -2*b - 0*z + z, -4*b + 8 = -3*z. Is (-3)/3*b - -20 even? False Let r(l) = 10*l**3 + 4*l**2 - 44. Does 4 divide r(6)? True Let n(i) = -1092*i + 291. Does 99 divide n(-2)? True Let s = 112 - 110. Does 52 divide (509/(-5)*s)/(38/(-95))? False Suppose -37 = -5*y - 17. Let c be -5 + y + 6 + -2. Suppose n + c*t - 28 = 0, -4*n - 2*t + 74 = -18. Is n a multiple of 11? True Let d(x) be the first derivative of 39*x**4/2 + x**3/3 - x + 8. Does 6 divide d(1)? True Let z(w) = 17*w**3 + 1. Let q be z(1). Suppose 4*x + q = -2*c, -5*x - 3*c - 35 = 2*c. Does 9 divide (0 + 1)/(1/53) + x? False Let t(d) = 1299*d**2 - 2*d - 1. Let r be t(-1). Suppose -101*s = -105*s + r. Is s a multiple of 13? True Suppose -5*i + 3*l + 34 = 9, 5*i = 4*l + 30. Suppose i*x - 244 = 2*n, 5*x - n = 10*x - 604. Is x a multiple of 22? False Let s = -813 + 371. Let x = 917 + s. Does 19 divide x? True Let p = 259 + -145. Let f = p - 81. Is f a multiple of 33? True Suppose 0 = -10*a + 72 + 138. Suppose -4*d + 361 - a = -3*u, d - 5*u - 85 = 0. Does 15 divide d? False Suppose -34*f = 2*w - 30*f - 836, 4*f = -4*w + 1668. Does 13 divide w? True Suppose 73*a - 69 = 50*a. Let u(f) = -f + 12. Let b be u(9). Suppose -54 = -a*d - b*i, 5*d - 2*d = 2*i + 29. Does 3 divide d? False Let q = 2 - -7. Let j be 18/q - (0 - 129). Let n = -76 + j. Does 11 divide n? True Let t(k) be the third derivative of k**4/6 - 7*k**3/3 - 2*k**2 + 13*k. Is t(35) a multiple of 22? False Suppose -535953 = -171*x - 95736 + 25245. Does 9 divide x? False Suppose -2*v - 25 = 5*c - 0*v, 2*c = -3*v - 21. Let u = c - -4. Does 15 divide -782*u/(-6) - (-3)/(-9)? False Suppose 0 = -v - 3 + 51. Let c = v - 34. Suppose -64 = -5*p - c. Does 5 divide p? True Suppose 127*x - 374352 = 605326. Does 19 divide x? True Is 8/(-10)*((-48)/(-32) - (-1 + 2465)) a multiple of 10? True Let s be (4*-3 - -1)*1. Let d = s + 15. Suppose -p = -d*a + 616, -161 = -a - p + 3*p. Does 33 divide a? False Suppose 17*f - 31*f + 56 = 0. Suppose 5*z - 10*d = -9*d + 320, f*z = -2*d + 242. Does 7 divide z? True Let t = -215 + 105. Let s = t + 268. Is 12 a factor of s? False Let p(f) = 49*f**3 - f**2 + 16*f - 23. Does 12 divide p(2)? False Suppose -1259*f + 1248*f + 7315 = 0. Is 19 a factor of f? True Suppose 625*b = 664*b - 62790. Is 32 a factor of b? False Let d(m) = m**2 + 5*m + 28. Suppose 0 = -5*s + 2*y + 25, 5*s = -17*y + 12*y + 60. Is 7 a factor of d(s)? True Does 87 divide 62/14 + -4 + 25515/147? True Let x(v) = -v**2 - 11*v - 18. Let j(m) = -m**2 - 10*m - 17. Let f(s) = -6*j(s) + 5*x(s). Suppose 2*i = -6 - 4. Is 6 a factor of f(i)? True Let w be (-1757)/21*(0 + 3 - 0). Does 16 divide ((-2)/2)/((-1)/(-1))*w? False Suppose -6687 = 21*f + 47*f - 71287. Is 11 a factor of f? False Let n = 13000 - 7384. Does 39 divide n? True Let v(u) = 2*u - 6. Let z be v(4). Suppose -4*b = -3*g + 7*g - 300, 3*g - 255 = 3*b. Suppose 2*t = q - g, -4*q + 7*t = z*t - 311. Does 15 divide q? False Let b be (9 + -14)*-3*1. Suppose -2*t + 5*s = -b, 0 = -5*t - 3*s + 5*s + 6. Suppose 0 = -2*l + d + 4*d + 34, -d = t. Is 3 a factor of l? False Let g = 36866 + -24857. Is g a multiple of 13? False Let p(x) = -9*x - 14 - 6*x - 3*x + 24*x**2 + x**3. Is p(-24) a multiple of 26? False Suppose -f + 127 = 3*n - 112, -4*f - 5*n = -970. Suppose -5*u + 245 = -f. Does 8 divide u? False Suppose -3199 + 703 = -12*k. Suppose 0 = -12*l + 8*l + k. Is l a multiple of 26? True Let j(g) = g**3 - 21*g**2 + 39*g - 26. Is 21 a factor of j(26)? True Let q = -4050 + 4750. Is q a multiple of 14? True Suppose -31 = -u - 26, 4*u - 9290 = -5*q. Is q a multiple of 103? True Let y be (-3 + -1)*(-25 + 22). Let l be 3/((-14)/15 - -1). Let v = l + y. Does 29 divide v? False Let z(m) = -59*m**3 + 7*m**2 + 33*m - 2. Does 12 divide z(-4)? False Let q be 8/(((-3)/9)/(-6 + 2)). Suppose -26*l - q = -27*l. Is 12 a factor of l? True Suppose 5*x = 20, 0 = -o + 3*o + x - 3788. Is o a multiple of 3? False Let b be 2*5*5/(5 + 0). Suppose -b*s + 96 = -84. Does 3 divide s? True Let q = -1182 - -2029. Is 121 a factor of q? True Suppose 0 = 3*g + 3*f - 1059, 216 = 3*g - f - 831. Is g a multiple of 50? True Let v(i) be the first derivative of 146*i**3/3 - 5*i**2/2 + 3*i - 63. Is 18 a factor of v(1)? True Let i(n) = 34*n + 41*n + 57 - 70*n. Is 5 a factor of i(0)? False Let m(u) = 10*u - 16. Let f be (0 - -5)/((-2)/(-2)). Suppose -f*d = -7*d + 18. Is m(d) a multiple of 16? False Suppose 7*a - 822 = 11568 + 364. Is a a multiple of 88? False Let n = 15 - 11. Let o(d) = -6*d + 20*d - n + d**2 - 9*d. Is o(5) a multiple of 8? False Let w(o) = 51*o**3 + 42*o**3 - 2 + 286*o**3 - 3*o + 4*o**2. Let k be w(-2). Is 41 a factor of -4 + k/(-26) + 2/13? False Let w be 0 - -1*8 - (-20)/(-20). Suppose w*k + 12 = 11*k. Suppose -3*t = 3*y - 132, -4*y + 7*t = k*t - 184. Is 9 a factor of y? True Suppose -g - 5036 = -3*p, -3*p + 4*g + 3142 + 1891 = 0. Is 23 a factor of p? True Suppose 0 = 4*c - 4*i - 228, 0 = -3*c - 5*i + 6*i + 179. Let y = 105 - c. Does 6 divide y? False Let o(z) = 6*z - 58. Let u be o(10). Suppose 4*q + u*h = 102, -2*h = 5*q - 3*q - 56. Does 23 divide q? True Suppose u - f = -2, 2*f - 14 = -5*u + 2*u. Let n = 1243 + -1179. Is (n - u)*1 - -4 a multiple of 28? False Suppose -5*z - q = -5, 4*z - 3*z - 7 = q. Suppose -z*a + 11*a = 36. Suppose 3*y - a*y + 62 = 0. Is 12 a factor of y? False Let t = -1101 - -1731. Let m = t - 300. Is m a multiple of 15? True Suppose 95*m - 106*m + 2207 = -2259. Is 184 a factor of m? False Let d(k) be the first derivative of -97*k**2 - 14*k + 68. Does 30 divide d(-1)? True Let k(n) = -32*n - 30*n - 35*n + 107*n - 26. Let c = -2 - -13. Is 21 a factor of k(c)? True Suppose -256 = -5*i - 5*v + v, 4*i = -v + 196. Is (-210)/9*i/(-10) a multiple of 7? True Suppose 0 = 12*l - 46604 + 18836. Does 89 divide l? True Let a(d) = -d**3 + 17*d**2 + 43*d - 2. Let k be a(19). Let y = k + -85. Is y a multiple of 8? True Is (2 - 1)*(1209 - 10) a multiple of 11? True Let h be -5*(-6 - 7/(-5)). Suppose -u = -60 - h. Does 31 divide u? False Let m(x) = -3*x**3 - 7*x**2 - 6*x + 7. Let k be m(-6). Let p = -160 + k. Does 17 divide p? False Let p = 2 + -1. Let r(v) be the second derivative of 21*v**5/5 - v**2/2 - 8*v + 7. Is r(p) a multiple of 17? False Suppose 6*b - 3*n = 7*b - 133, 4*b - n - 545 = 0. Is 17 a factor of b? True Let s be (-1)/(1/13)*-1. Let o = 17 + -16. Suppose -o + s = 4*g. Is g even? False Let x(u) = -12*u + 31. Let k be x(9). Let i be (k/(-4))/(2 - 9/4). Does 15 divide i/(-5) - (12/15)/2? True Is ((-14040)/100)/(6/(-75)) a multiple of 9? True Let i(o) = 6*o**2 + 5*o - 678. Does 103 divide i(-29)? True Let n(u) = 418*u**2 - 8*u - 22. Is n(-4) a multiple of 22? False Suppose 184669 - 44410 = 21*f. Does 67 divide f? False Let w be (-817)/5 - (-10)/25. Let r(v) = v**2 - 25*v + 35. Let d be r(9). Let x = d - w. Does 13 divide x? False Let w = -24 - -23. Let q be (-1 + 5 - 4) + w. Let p(o) = -110*o**3 + 2*o. Does 18 divide p(q)? True Let b be (-2717)/(-15) - (8/60)/1. Let t = b + -168. Is t a multiple of 4? False Let o(c) be the second derivative of c**5/20 + 13*c**4/12 + c**3/3 - 8*c**2 + 2*c - 21. Does 12 divide o(-8)? True Let l = -40 + 391. Is l a multiple of 4? False Suppose -7*d + 19*d = 11724. Suppose -4*h = 5*n - d, -225 = -h + 3*n - 2. Is 34 a factor of h? True Does 11 divide ((-52668)/(-54))/(1/(-6)*(-5 - -3))? True Is 3 a factor of (824/(-20) - -5)*-5 - (5 + -5)? False Let h(i) be the first derivative of -i**3/3 - 5*i**2 - 5*i + 4. Let y be h(-9). Suppose 3*c - 149 = y*v, c - 4*v - 39 = -0*c. Is 11 a factor of c? True Suppose 72*k - 71*k - 1009 = 0. Suppose -5*h + k = -11. Is 64 a factor of h? False Suppose -32*h = -37*h + 21625. Is h a multiple of 97? False Suppose -b = 3*f - 4608, -5*b - 16*f + 18*f = -23040. Is 64 a factor of b? True Let i(w) be the third derivative of -17*w**7/2520 - 11*w**6/360 - 4*w**5/15 + 13*w**2. Let q(r) be the third derivative of i(r). Is 25 a factor of q(-4)? False Let g = 16 + -14. Suppose -g*i + 6 = 2*x, x - 4*i + 2 = -0*i. Does 13 divide 1 - -13 - (-1 + (x - 2))? False Suppose -3*u = -5*y + 21, -3 = -4*y + 3*y + u. Let j(n) = -5*n**2 - 22*n + 6. Let c(v) = 2*v**2 + 7*v - 2. Let k(x) = 11*c(x) + 4*j(x). Does 8 divide k(y)? True Suppose 12*d - 75 = 9*d. Suppose -2*w = -121 + d. Does 26 divide w? False Suppose 15*p + 94039 - 23749 = 26*p. Is p a multiple of 15? True Suppose w - 7 = -v, 2*v - v - 11 = -3*w. Suppose 3*p + 295 = -v*f, f + p = -3*p - 76. Does 19 divide (f/12 + 6)*(-117)/(-2)? False Let q = -1959 - -6330. Is 31 a factor of q? True Let h(r) = -47*r + 106. Let p be h(-10). Suppose 22*z - 16*z = p. Is 32 a factor of z? True Suppose 13*c - 67412 = 2021. Does 93 divide c? False Suppose 0*j + 122 = 3*j - 4*d, j + d = 36. Let g = -5 + j. Let q = g + -11. Is q a multiple of 11? True Let u be (2 - (-6)/(-12))*370. Let d = -323 + u. Does 29 divide d? True Let w be (2495/(-15))/((-3)/9). Suppose -w + 4490 = 13*a. Is 8 a factor of a? False Let d(q) = -2*q**3 - 4*q**2 - 4*q - 4. Let x be d(-2). Let u be 3 - -1*(x + -4). Suppose u*a - 744 = -5*a. Does 31 divide a? True Let p = 195 - 189. Suppose -p*o = 2*x - 9*o - 666, -2*x - 4*o = -666. Is 17 a factor of x? False Is -4*343*8/32*-4 a multiple of 98? True Let k be (-2)/(-2 + 8/6). Suppose -2*u = -2*y - 690, 2*u = k*u + 3*y - 345. Is u a multiple of 23? True Suppose 2*k - 108 = 320. Let r = -39 + k. Suppose 56 = 7*m - r. Is 11 a factor of m? True Suppose -4*s + 8*s - 16 = 0. Let p = s + -1. Suppose 3*a = p*l + 213, -a - 6*l = -l - 59. Is 12 a factor of a? False Let r(i) = -i**2 + 10*i + 8. Let g = 60 - 49. Let m be r(g). Is 6 a factor of ((-204)/(-8))/(m/(-6))? False Suppose 2*i + 2*i = 0, -k + 5*i = 30. Is 29 a factor of 3*5/k + (-1806)/(-4)? False Let d(n) be the first derivative of -2*n**5/5 + n**4/6 - n**3/3 - n**2/2 - 13*n - 15. Let x(o) be the first derivative of d(o). Is x(-2) a multiple of 25? True Let m be 42/7 + -31 + 0 + 1. Is ((-330)/(-4))/(-11)*m a multiple of 18? True Let t be 2/3*(-54)/(-3). Suppose t*a + s - 1550 = 7*a, -15 = -3*s. Is 23 a factor of a? False Suppose 38818 = 5*j - 3*a + 6*a, 0 = 3*j + 5*a - 23294. Is 18 a factor of j? False Is 28 a factor of (-56555)/(-10) - ((-12)/8 + 1)? True Let f = 2248 - -104. Is f a multiple of 42? True Let x be ((-7)/(-4))/(3/12). Suppose 0 = -3*v - 3, 0 = -38*s + 42*s - v - 9. Suppose x*h = s*h + 450. Is h a multiple of 18? True Suppose 3*j - 4*j + 3*a + 29 = 0, 5*j - 2*a = 119. Let h = 5 + j. Is 2 a factor of h? True Let l(n) = 49*n - 19. Let a(o) = -31 + 22 + 17*o + 7*o. Let v(x) = 5*a(x) - 2*l(x). Is 16 a factor of v(2)? False Suppose 20*d + 5*d = 125. Suppose -t - d*r + 79 = 0, 0 = r + 1 + 3. Is 9 a factor of t? True Suppose -3*d + 5*k + 667 = 0, d - 209 = -0*d - k. Let c = 332 - d. Does 30 divide c? False Suppose 12*t = 8*t + 1376. Suppose 5*l + t = 104. Does 20 divide (-1)/(-2) - (-6)/(l/(-260))? False Suppose 6281 = w - 5*n, -13*n + 17*n = 3*w - 18876. Does 53 divide w? False Let s(c) = 4 - 11*c**2 + 13*c**2 + 0. Let x = -376 - -371. Does 18 divide s(x)? True Let z be (-6)/27 + 366/(-54). Let n be 25/z + 36/(-84). Let s = 16 - n. Is s a multiple of 3? False Is (2290/(-4))/(65/(-260)) a multiple of 10? True Suppose -4*b + 3*r = 4, r = 2*r - 4. Does 11 divide -2 + 56*(b + 2)/2? True Let j = 61 - 73. Is (90/2)/((-3)/j) a multiple of 36? True Suppose -5696 = 3*j + 2*l - 22222, 0 = -5*j - 5*l + 27545. Is 27 a factor of j? True Suppose -5*l = -5*d + 15, 2*l + l = d - 15. Suppose 0 = z + 4*z - 25, -2*i + z = 19. Is (i/(-2))/(1*(-3)/l) a multiple of 7? True Let w(o) = o**3 - 12*o**2 + 36*o - 76. Is 6 a factor of w(16)? True Let b = 69 + -48. Suppose -b + 91 = 7*y. Is y*1*(-91)/(-14) - -3 a multiple of 17? True Suppose 67*l = 90*l - 71162. Is l a multiple of 17? True Suppose 35*y - 33*y + 4 = 0, 3*z - 136 = 5*y. Suppose -4*s + 128 = 4*q, 161 = 4*q + 2*s + 27. Let k = z - q. Is k a multiple of 4? False Suppose 31*f + 6093 = -30*f + 17927. Is 10 a factor of f? False Let u(k) = -k - 28. Let a be u(-18). Let s(i) = -i**2 - 12*i - 16. Let o be s(a). Let t = o - -6. Is 10 a factor of t? True Suppose 13698 - 1708 = 55*j. Does 3 divide j? False Let q(f) = 4*f**3 + 2*f**2 - 12*f + 9. Let m(i) = 12*i**3 + 5*i**2 - 36*i + 26. Let n(v) = 3*m(v) - 8*q(v). Is n(3) a multiple of 9? False Let o = 80 + -76. Suppose -o*v + 138 = 3*c, 6*v - 176 = v - 2*c. Does 18 divide v? True Suppose 0 = 15*q + 29*q + 9910 - 97250. Is 5 a factor of q? True Suppose 7*v - 282 + 852 = 9*v. Is 17 a factor of v? False Let o(c) = 406*c - 6. Suppose 9 = 3*w + 6*w. Does 25 divide o(w)? True Let n be (-3)/(-7) - (-1892)/77. Suppose 0 = 2*v + 25 + n. Does 13 divide (v - 1)/(3 - 5)? True Let i(v) = -v**3 - v**2 + 2*v. Let r(q) = -q**2 + 2*q + 1. Let d be r(-1). Let j be i(d). Suppose s - 72 = -j*s. Is 24 a factor of s? True Let y(s) be the first derivative of 3*s**4/4 - 4*s**3 + 5*s**2/2 - 8*s - 78. Is y(4) a multiple of 12? True Let c(u) = 71*u**2 + u. Let v be ((-15)/6)/5*(-2 + 0). Does 8 divide c(v)? True Let z = -220 + 219. Is 17 a factor of (-3)/18 + 3614/12 + z? False Suppose -3*t - 60 = i, -3*i - 60 = -2*i + 2*t. Suppose 7*v = -890 + 2444. Let m = v + i. Is m a multiple of 33? False Suppose -56*v - 30 = -61*v. Is -3*(-692)/v - (-28)/7 a multiple of 14? True Suppose -15*t + 9272 + 6688 = 0. Is t a multiple of 8? True Let j(f) be the second derivative of 13*f**3/6 - 48*f**2 - 4*f - 1. Is 25 a factor of j(17)? True Let i(h) = -38*h + 73. Let v be i(-14). Suppose -206*t + 201*t + v = 0. Is 10 a factor of t? False Suppose 0 = u - 6*u + 135. Suppose u - 42 = -3*z. Suppose 0 = 3*r - 4*l - 245 - 60, -r = -z*l - 87. Does 31 divide r? False Suppose -4*d - g + 0*g = 1429, -2*g = 2. Let i = 597 + d. Suppose 4*f - i = -f. Is f a multiple of 17? False Let z be -2*8*(-2)/4. Suppose 8*n - 4*n - z = 0. Suppose -n*a + a = -26. Is 21 a factor of a? False Let b = -3767 - -11431. Is b a multiple of 16? True Suppose 0 = -4*c + 8 - 0. Let q be (-1 - 5)*(-32)/c. Suppose v - q = -2*v. Does 21 divide v? False Suppose 0 = -4*y + 3*v + 697, 0*y + 5*v = -5*y + 915. Let j = y - 26. Is j a multiple of 38? True Suppose 0 = 2*t - 5*c - 93, -5*t + c = -263 - 27. Suppose t = x + 5*y - 18, -3*y - 159 = -3*x. Is x even? False Let g be 30/(-4)*224/24. Let u = g - -108. Is 8 a factor of u? False Let q(x) = 2*x + 7. Let h be q(-6). Let i be h/10*38 - -4. Does 8 divide 480/(-100)*i/2? False Suppose 5*j + 569*a - 574*a = 28675, j - 5723 = -5*a. Does 49 divide j? True Let v(b) = -13*b**3 + 11*b**2 - 26*b - 69. Is v(-6) a multiple of 116? False Is 44 a factor of (2/(-5))/(111/(-183150))? True Suppose -12 = -3*j, 3*j = 5*i + 6*j - 14812. Does 24 divide i? False Does 21 divide (1819260/720)/(10/16*(-6)/(-10))? False Suppose 3 = 9*v - 123. Let t be (-1 + -9)*7*2/v. Does 39 divide (52/t)/(2/(-60))? True Does 31 divide 2453 - (15 - (-6 + 14)) - -3? True Let i be (-163)/(-2)*(3 + (-2)/2). Suppose -4*k + i = 4*n - 113, -3*k = -2*n + 128. Suppose 0*a = -2*x - a + n, -51 = -x + 3*a. Does 12 divide x? True Is ((-2)/7 + 121253/(-77))*(15 - 16) a multiple of 45? True Let l(f) = 3*f. Let k be l(3). Suppose -k*b = -11*b - 8. Let s(h) = -10*h + 12. Is s(b) a multiple of 26? True Suppose 9*q - q = 8. Let w be (-12)/(-15)*(-1 + 6/q). Suppose w*a = 4*i + 5 - 225, 0 = 5*i - 4*a - 275. Is i a multiple of 11? True Let n(a) = 23*a**2 + a - 4. Let q(d) = -d**3 - 10*d**2 + d + 12. Let m be q(-10). Suppose m = -2*v + 6. Does 15 divide n(v)? True Does 3 divide (-9)/(-21)*-7 - 747/(-1 - 2)? True Suppose 752 + 1432 = -4*r. Is (4/7)/((-52)/r) a multiple of 2? True Let a = -4 - -331. Suppose 12*u - 177 - a = 0. Is u a multiple of 2? True Let x(f) = f**3 - 19*f**2 + 32*f + 22. Let j be x(17). Is 26 a factor of 3/j - (-3939)/12? False Let l(q) = 12*q**2 + 10*q - 6. Let k = -35 - -32. Is 12 a factor of l(k)? True Let y(x) be the first derivative of -x**4/4 + 2*x**3 - x**2/2 - 4*x - 3. Let w be y(5). Suppose -14*a + w*a = 170. Is a a multiple of 28? False Is (-7 + 6)*((-8901)/(-1))/(-9) a multiple of 2? False Suppose 13*z - 22892 - 48387 = 0. Does 15 divide z? False Let s(t) be the second derivative of t**5/10 - t**4/6 - t**3/2 + 3*t**2/2 - 4*t. Let o be s(3). Suppose o = -7*q + 142. Does 7 divide q? False Suppose 34 = 6*r - 20. Let p(m) = 45*m + 20. Does 19 divide p(r)? False Let p be 1*-3 + (1 - (5 + 4)). Does 11 divide (10 + 0)/((-2)/p)? True Let p = -62 + 142. Suppose -4*o - p = -4*j, 0 = -3*j + 11*o - 13*o + 50. Does 6 divide j? True Suppose 2*x = 6*x - 56. Suppose 4*y - 2*y = -x. Let t = 61 + y. Does 16 divide t? False Let d be (12/(-4) + -9)*(-30)/24. Suppose -d*c + 242 = 17. Is c a multiple of 15? True Let a(l) = 2*l + 47. Let x be a(-21). Let s be (-2)/x + (-291)/(-15) + -3. Let p = s + 17. Is 11 a factor of p? True Let t(h) = 90*h - 84. Let y be t(14). Suppose d + 5*x = 264, 4*d - 4*x = -0*d + y. Does 37 divide d? False Let x = -82 - -34. Let g = -45 - x. Suppose g*l = -2*a - 7 + 18, l = -4*a - 3. Is l a multiple of 2? False Let r = 3666 + -3398. Is r a multiple of 2? True Let p be (5/4)/(9/36). Suppose p*b - 12 = 8*b. Is (-2 - (-90)/b)*-2 a multiple of 12? False Is (-1598)/(-235)*(108 - (-4)/2)/2 a multiple of 93? False Suppose -6*m + 8*m = -4*m + 732. Does 26 divide m? False Let z(w) = 24*w + 20. Let i(j) = 24*j + 20. Let a(u) = 7*i(u) - 6*z(u). Is 10 a factor of a(5)? True Let s(a) = -90*a**3 + 4*a**2 - 5*a + 20. Is 7 a factor of s(-4)? False Suppose 4 = -2*o + 5*l + 226, 3*o - 333 = 4*l. Suppose 0 = 9*r - o + 3. Suppose 3*q + r = 0, 0*v = 5*v + 3*q - 273. Does 12 divide v? False Suppose 3*f + 4*f - 315 = 0. Let n = 59 - f. Suppose -4*s + 2*t + t + 9 = 0, 4*s = -2*t + n. Is s a multiple of 3? True Let t(b) be the second derivative of b**5/20 + 2*b**4/3 - b**3/3 + 5*b**2 - 43*b. Does 8 divide t(-7)? False Is 8 a factor of 11/(-99) + 8/9*47890/8? False Suppose -10 = 7*d - 5*d - 4*x, 2*x = 2. Let s(i) = -2*i + 2. Let w be s(5). Is w/d*((-125)/(-10) + 1) a multiple of 36? True Let t(h) be the third derivative of h**4/24 - h**3 + 12*h**2. Let b be t(9). Suppose -a = -2*q - 0 + 26, b*q - 5*a - 46 = 0. Is 12 a factor of q? True Let p = -88 - -93. Suppose -765 = -p*r + x, 2*r + 3*x - 70 = 219. Does 8 divide r? True Suppose 12*k + 815 = 17*k. Suppose 405 = 5*n - 5*z, -k = -5*n - 5*z + 272. Is 21 a factor of n? True Let j(t) = 2*t**2 + t + 1. Let m(q) = -11*q**2 - 35*q - 98. Let s(a) = -6*j(a) - m(a). Is 41 a factor of s(22)? True Let x be -2 + (9/3 - -1) + -2. Suppose x = -5*i + 3*q + 1185, 4*i - 697 = 3*q + 254. Is 18 a factor of i? True Let m = 191 + -189. Is 13 a factor of -5 - m*1806/(-12)? False Let w = 16 - 11. Suppose -132 = k - w*k. Let f = -11 + k. Is 11 a factor of f? True Let y(b) = 68*b + 733. Does 32 divide y(-6)? False Let h(j) = j**2 + 17*j + 34. Let q(p) = -3*p - 13. Let l be q(-6). Suppose 33 - 108 = l*c. Is 2 a factor of h(c)? True Let i(j) be the third derivative of j**5/20 - 5*j**4/4 + 8*j**3/3 + j**2 - 10*j. Is i(14) a multiple of 8? True Let w = -2376 - -10548. Is 12 a factor of w? True Let o = -943 + 1908. Is o a multiple of 5? True Let n be (2 + -1)*(1 - -2). Let p be (-252)/(-1 - 2) - n. Let k = -39 + p. Is 21 a factor of k? True Suppose -58*j + 114192 = -82138. Is j a multiple of 22? False Let j(p) = -p**2 - 2*p + 8. Let g be j(0). Is 19 a factor of (944/5)/(-4)*(-20)/g? False Let s = 5312 + -4696. Is 28 a factor of s? True Suppose 3 = -2*s - 5*b, b - 15 = s - 4*s. Let g(d) = d**3 - 2*d**2 + 8*d - 8. Is g(s) a multiple of 46? True Let j = -3 - -1. Let q be (-4 + 5)/(j/(-4)). Suppose 4*h - q*x - 24 = 0, 4 = 2*h - 4*x - 2. Is h a multiple of 3? False Let c(b) = 20*b - 6. Let h be c(3). Suppose 5*i - 86 - h = 0. Is 4 a factor of i? True Let w(z) = z**2 + 4*z - 55. Let g be w(-6). Let c = g - -230. Does 17 divide c? True Let i(n) = n**2 + 8*n + 17. Let l be i(-5). Suppose -5*z = -41 - 39. Suppose 124 = 4*a + l*o, -a - o + 13 = -z. Is 11 a factor of a? True Suppose 5*c = -5*s + 225, s + 4*c - 54 = -3. Suppose 3*a = 73 - s. Does 6 divide (-5)/(-25) - (-208)/a - 1? False Does 99 divide 3562 - (2 - (-32)/(-8))? True Is 34 + -20 + 223 - (2 - 3) a multiple of 100? False Let g = 5 - 5. Suppose g = -2*c + 3*o + 9, -3 = c - 0*o - 4*o. Is 8 a factor of ((-168)/(-9))/(3/c)? True Let v be 2/(-2)*-1 - 70. Let r(z) = 200*z + 1153. Let s be r(-6). Let m = s - v. Is 14 a factor of m? False Is 5 + 2171/(-1 - 10/(-5)) a multiple of 17? True Let v = 17 - 9. Suppose v*j = -1514 - 1206. Does 5 divide j/(-14) - (-8)/(-28)? False Let g = -4845 + 6633. Is 12 a factor of g? True Let z be (4/(-3))/4 - 418/6. Suppose -2*k - 4*n = -208, -3*k + n = -0*n - 312. Let g = z + k. Is g a multiple of 14? False Is 66 a factor of 2/(1 + 3) + 2685/10? False Suppose -13 - 87 = 20*z. Let c(f) = f**3 + 10*f**2 + 8*f + 9. Is c(z) a multiple of 28? False Let v be ((-42)/(-12))/7*12. Suppose -3*s - 207 = -2*m, -5*s + 455 = 11*m - v*m. Is m a multiple of 24? True Let m(s) = -4*s**3 + s**2 + 4*s + 2. Let z be m(-1). Suppose -h + 18 = z*t, 0 = -3*t + 5*t - 5*h - 29. Is t even? False Let k = -13595 - -19499. Does 16 divide k? True Let r = -128 - -130. Is 13 a factor of ((-16)/4)/r*-26? True Let q = 5276 - 3532. Is 13 a factor of q? False Let b(v) = 61*v**2 - 2*v. Suppose 6 = 6*s - 7*s. Let u be 18/s*2/6. Is 9 a factor of b(u)? True Let o be (-76)/(-22) + (-216)/(-396). Let y(x) = 14*x + 8. Does 24 divide y(o)? False Let o(n) = n**2. Let w(g) = 4*g**2 - 4*g. Let m = -45 + 48. Let h(y) = m*o(y) - w(y). Is h(3) a multiple of 2? False Let z be 2/(-6) + (-84)/(-36). Let x(o) = 15*o**2 - o - 5. Is x(z) a multiple of 3? False Let m = -68 + 36. Does 13 divide 18/(-6) + m/(-2)? True Let v(s) = -23*s - 74. Let a be v(-11). Suppose 4*d - a = 13. Is 24 a factor of d? True Let m = 2452 + 1916. Does 42 divide m? True Let j = 381 - 272. Let d = 319 - j. Does 20 divide d? False Suppose -2*d + 351 = 5*z, 3*d + d + 4*z - 720 = 0. Suppose 5*f = y + 328, -3*f + d = 3*y + y. Is f a multiple of 13? True Let i(o) = -o**2 - 21*o - 8. Let x be i(-17). Suppose -h + 10 = -x. Does 5 divide h? True Suppose -320*v = -325*v + 13810. Is 46 a factor of v? False Let n(g) = -g**2 - 3*g + 76. Let v be n(7). Let f(i) be the second derivative of i**4/12 + i**3/2 - 2*i**2 - i. Is f(v) a multiple of 10? True Let a(v) = -v**3 + 4*v**2 - 4*v + 5. Let t be a(5). Let p = 1424 - 1368. Let u = t + p. Is u a multiple of 4? True Suppose 0*s = -5*s. Suppose s = 3*g - 1 - 17. Suppose g*f - 275 - 235 = 0. Is f a multiple of 9? False Let m(k) = -39*k - 30. Let f be m(-2). Does 9 divide 8/(-2)*18/f*-6? True Does 26 divide (-17)/(-204)*16*(-141)/(-4)? False Let j = -1141 - -3749. Is j a multiple of 163? True Suppose -3*c - 180 = 2*c. Let p = -54 - c. Is 5 a factor of (3 - (-2)/(-2))*(-153)/p? False Let m be (36/(-27))/((-2)/12). Suppose 5*k + 3*r - 969 = 0, m*k - 9*k - 2*r + 198 = 0. Is 8 a factor of k? True Suppose -8483 + 3503 = -6*i. Is 5 a factor of i? True Suppose 2*f + 15144 = 5*p - 20089, 28192 = 4*p + 4*f. Is 27 a factor of p? True Let u(w) = -9*w**2 + 7*w - w**3 + 3*w + 20 - w. Let z be u(-10). Suppose 3*n + 12 = z. Is n a multiple of 6? True Suppose -489 + 2424 = 19*t - 801. Does 18 divide t? True Suppose m = 5, -4328 = -5*t + m - 1333. Is 25 a factor of t? True Let b(v) be the second derivative of v**5/120 + 7*v**4/24 - 8*v**3/3 + 4*v. Let h(l) be the second derivative of b(l). Is h(9) a multiple of 8? True Let a be 16/(-16)*(16 + 2)/(-2). Let t(u) = 41*u - 28. Is t(a) a multiple of 31? True Suppose 35 - 60 = -5*x, 0 = 2*r - x - 67. Is 2 a factor of r? True Let n = 381 - 179. Let d = 607 - n. Is d a multiple of 15? True Let z = -47 + 52. Suppose -z*o = -98 + 388. Let x = o + 164. Does 16 divide x? False Let i = -42 - -74. Suppose 0 = 2*c + h - 11, 3*h = 3*c + 11 - 41. Let f = i - c. Is 25 a factor of f? True Let h(y) = 234*y + 430. Is 12 a factor of h(5)? False Let l = -30 + 47. Let u = 19 - l. Suppose u*o + 75 = 7*o. Is o a multiple of 15? True Suppose 184505 - 138771 = 76*f - 299002. Does 126 divide f? True Let c(g) = 79*g + 2046. Is 23 a factor of c(7)? True Let q be 2 + 1 - (-2 + 5). Let r be (1 - q)/(1 + (-4)/6). Suppose 4*o + r*k - 143 = 0, -2*k - 85 = -2*o + k. Does 6 divide o? False Let q(x) be the third derivative of 13/60*x**5 + 1/60*x**6 - 11*x**2 - 1/24*x**4 + 0 + 4/3*x**3 + 0*x. Does 10 divide q(-6)? True Suppose 0*k - 4*k - 2*w - 310 = 0, 0 = -2*k + 2*w - 158. Let m = k - -94. Is 16 a factor of m? True Let j(t) = t**3 + 37*t**2 - 4*t - 1. Let o = -74 - -37. Is 21 a factor of j(o)? True Let j = 3537 - -168. Is j a multiple of 19? True Is 627/22*4672/24 a multiple of 151? False Suppose 11*n - 39447 = -4*n - 3807. Does 4 divide n? True Let r(v) = -6*v - 18. Let c(x) = 3*x**2 + 2*x - 7. Let l be c(0). Is 6 a factor of r(l)? True Does 137 divide 8/(-20)*-5*(12 - 7)*487? False Let s(l) = -l**3 + 11*l**2 - 12*l + 21. Let t be s(10). Suppose -c - 3 = 0, -4*z + 3*c + 16 + t = 0. Is 33 a factor of (z/(-6) + 0)*(-11 - 190)? False Suppose 14*r - 16*r = 31*r - 237402. Is r a multiple of 11? True Let o = 3824 + -2626. Does 9 divide o? False Let o(t) = -t**3 + 9*t**2 - 2*t + 6. Let i be o(9). Let z = 33 + i. Suppose 5*d - v = 41, -4*d + 10 = v - z. Is d a multiple of 3? False Is ((-75)/(-35)*7/2)/(10/1560) a multiple of 23? False Suppose 10*p - 2456 + 18626 = 108*p. Does 3 divide p? True Suppose -65 = -5*y + 55. Suppose -y = -p + 68. Is 12 a factor of p? False Let k(t) = -3*t**2 + 160*t + 80. Is k(25) a multiple of 45? True Let g(n) = -4*n - 5. Let r be 44/(-33) + (-4)/6. Let l be g(r). Let p(t) = -t**3 + 4*t**2 - t - 2. Is 2 a factor of p(l)? True Let u(p) = -p**2 + 13*p - 1. Let x be (-6)/(-4)*-1*(-4)/3. Suppose x*a - 30 = -a. Is u(a) a multiple of 7? False Suppose 104*n - 100*n - 9268 = -5*v, 4*n - 4*v = 9304. Is n a multiple of 17? False Suppose 4*h - m = 2055 + 11395, -10080 = -3*h - 3*m. Does 28 divide h? False Let f(i) = -15*i**3 + 25*i**2 + 132*i + 11. Does 20 divide f(-6)? False Let z = -3933 - -6891. Is z a multiple of 29? True Suppose 13*f - 8*f = 0. Suppose 0 = -6*z + z - 5*h, h + 4 = f. Suppose -206 = -2*p - m, m + 129 + 277 = z*p. Does 11 divide p? False Does 25 divide (-2)/4*(114 + -5256)? False Let j(a) = -9*a**2 - 22*a - 40. Let u(q) = -3*q**2 - 8*q - 13. Let h(m) = -3*j(m) + 8*u(m). Does 14 divide h(8)? True Let r(i) = -11*i - 6. Let f be r(8). Let t = f + 248. Let x = 264 - t. Is 10 a factor of x? True Suppose 4*f - 27 + 11 = 0. Suppose g + 0*g - 4*z = -3, 0 = 2*z + f. Let l = g + 22. Is l a multiple of 11? True Let h(i) = -9*i**2 + 8*i - 8. Let y(c) = -7*c**2 + 6*c - 7. Let z(q) = 4*h(q) - 5*y(q). Suppose 0 = 5*o - o. Is z(o) even? False Let b = 93 - 89. Is 24 a factor of (24 + -2)*58/b? False Let v(x) = -x**3 + 2*x**2 - x + 2. Let b be v(0). Suppose f + 1 = 0, 4*z + 4*f = b*f + 46. Is 46/z + 2 + (-11)/6 even? True Let d(a) = a**3 + 6*a - 6. Let x be 10*(1 - 12/20). Suppose -j - t + 6 = -0*j, x*j = 4*t. Is d(j) a multiple of 7? False Let v(s) be the third derivative of s**5/60 + s**4/24 + 19*s**3/6 + 16*s**2. Let o be v(-8). Let g = o + -54. Does 5 divide g? False Suppose 1274 = -7*p - 2352. Let a = p - -873. Is a a multiple of 41? False Suppose 2*i - 472 = 4*a, -2*i + 477 = 17*a - 20*a. Is 51 a factor of i? False Suppose -13 + 5 = -3*v - b, 0 = -3*b - 12. Suppose -k + 2*r = -60, 4*r + 289 = v*k + 61. Suppose 5*y - k = -19. Does 2 divide y? False Let a = 4689 + -2428. Does 17 divide a? True Let s(r) = -6*r + 10. Let j be s(4). Let l be 21/(9/56 - (-4)/j). Let o = -78 - l. Is 21 a factor of o? False Suppose 173*d - 206820 = 128*d. Is d a multiple of 18? False Suppose -9*u - 3*u - 7*u = -100510. Is 36 a factor of u? False Let d(m) = 2*m**3 + 62*m**2 + 2*m - 36. Does 12 divide d(-30)? True Suppose -d + 2*d = 2*d. Suppose -3*p - 266 + 812 = d. Is 13 a factor of p? True Let a(m) = m**3 - 27*m**2 + 4*m - 1. Let u be a(28). Suppose -u = -7*r - 139. Is r a multiple of 76? False Suppose -4*x + 2*p = 0, 0*p = 4*x + 3*p - 20. Suppose x*t - 298 = 3*g, 5*g = 5*t - 10*t + 695. Is 11 a factor of t? True Let h(u) = -182*u + 10. Let y be h(-5). Suppose -4*p + 280 - y = 0. Let q = 276 + p. Is 32 a factor of q? False Does 15 divide (-231)/539 - 22368/(-7)? True Suppose 4*j - 4 = -128. Let g = 38 + j. Suppose -4*q - 5 - g = 0, 0 = -4*d + 2*q + 246. Is 9 a factor of d? False Let n be (3 - (-1 + 4)) + 0 + 0. Suppose m + 3*d - 50 = n, -3*d - 112 - 38 = -3*m. Let b = -38 + m. Is b a multiple of 6? True Suppose -83*p + 18107 = -67964. Does 17 divide p? True Let z(y) = -3*y**3 - 3*y**2 + y + 2108. Is z(0) a multiple of 74? False Suppose 8 = -4*a - 0*a, -5*j + 1958 = a. Suppose 0*t = 2*t - j. Is t a multiple of 49? True Suppose 23*c = 19*c + 92. Let o = 25 + c. Does 8 divide o? True Let c be -4*15/50*5. Let s = c - 47. Let g = 25 - s. Is g a multiple of 26? True Let b be 18/(-135) - 5666/30. Let g = b + 200. Is 5 a factor of g? False Let l be 2/(-8) + 1/4. Let r be (108 + -4 - 5) + (l - 0). Let c = r + -48. Is 12 a factor of c? False Suppose 14*p + 8 = 18*p. Let s be 9 + -5 + 2 - 1*p. Suppose -42 = s*r - 158. Is 8 a factor of r? False Let g be (1 - 5/9)*531/118. Suppose n = -4*p + 6*n + 962, -g*p + 3*n + 480 = 0. Does 8 divide p? False Suppose 14*t - 5*x + 2795 = 18*t, 4*t = 3*x + 2803. Does 20 divide t? True Let h = -278 - -1733. Is h a multiple of 13? False Let z = 150 - 144. Let r(d) = d**3 - 6*d**2 + 3*d + 20. Is 6 a factor of r(z)? False Let m be 335/1 - (-6 + (-8)/(-2)). Suppose -4*j + 3*x = 909, j + 2*x = -j - 444. Let g = m + j. Does 29 divide g? False Suppose k = -5*t - 195, -5*k + t - 1004 = -81. Let s = k + 369. Is 9 a factor of s? False Let q(g) = -5*g - 10. Let l be q(-2). Suppose -n + l*a + 2*a - 8 = 0, -n + 5*a = 20. Suppose n = 5*m - 2*k - 152, 4*m - 2*k - 116 = k. Does 16 divide m? True Suppose -2*t + 19964 = 5*l, -49940 = -5*t - 3*l - 2*l. Does 24 divide t? False Let w(x) = -244*x + 292. Does 14 divide w(-5)? True Let u(p) = -881*p + 351. Is 25 a factor of u(-4)? True Suppose 2*s + 2 = 8. Suppose 4*y + 0*m = 5*m + 17, y + s*m = 0. Suppose -y*j + 5*j = 262. Is j a multiple of 37? False Suppose -6*b = -15*b - 2016. Let w = -184 - b. Does 8 divide w? True Suppose -4*n = 5*g - 523 - 485, 1260 = 5*n + 4*g. Suppose 2*j - j = 4. Suppose -j*h + n = 3*h. Is h a multiple of 12? True Let x be 3 + -3 + (469 - 4). Suppose 5*i + 35 + x = 0. Let f = -55 - i. Does 9 divide f? True Suppose -4*q + 19*k = 14*k + 2535, -k - 627 = q. Is (9/(-18))/(3/q) a multiple of 17? False Let b(g) = 2*g**2 + 103*g + 170. Does 6 divide b(-52)? True Let r(k) be the first derivative of k**4/2 - 20*k**3/3 + k**2/2 - 6*k - 1. Let t be r(10). Suppose 343 + 49 = t*m. Does 19 divide m? False Suppose 0 = 2*b - 1112 - 840. Suppose 3*m - b = -5*m. Suppose 2*o + 3*w - m + 29 = 0, -3*o + 142 = 2*w. Does 48 divide o? True Suppose -129*c - 4*f = -127*c - 3082, -f = -2. Is 12 a factor of c? False Suppose 11*s - 1264 = 7*s. Suppose -s - 228 = -4*m. Let x = m + -60. Is x a multiple of 19? True Let r(n) = 3*n**2 + 7*n + 24. Let c be r(-7). Let d be -1*2 - (-8)/4. Suppose d = -5*s - 2 + c. Is 3 a factor of s? True Suppose q - 38 = -5*g - 9, -4*g + 19 = 5*q. Suppose -g*i + 43 = -5*i. Let c = 83 - i. Is 20 a factor of c? True Let q = 218 + -216. Is (-4 - -12)/(q/36) a multiple of 36? True Suppose -2*g + 10 = 4. Suppose 13 - 1 = -g*f. Is (f - -58)/(-3)*14/(-4) a multiple of 21? True Suppose -p + y + 2*y = -16, 4*p + y + 1 = 0. Is p + (46 - (1 + 0)) a multiple of 11? False Let t(b) = -b**3 - 16*b**2 + 2*b + 28. Suppose -2*o - 5*a = 32, -5*o + 0*o = 4*a + 80. Let x be t(o). Let c = x + 40. Is 6 a factor of c? True Let j be 3 - (-3 + 2)*3. Suppose j*b - 492 = 2*b. Let z = -71 + b. Does 35 divide z? False Let h be 88/66*(-15)/(-4). Does 28 divide 938/h - 68/(-170)? False Let m(k) be the third derivative of -18*k**2 - 2*k**3 + 1/8*k**4 + 0*k + 1/60*k**5 + 0. Does 6 divide m(6)? True Let b(n) be the second derivative of -n**5/10 - n**4 + 2*n**3 - 15*n. Is b(-9) a multiple of 63? True Suppose -3*l - 4*o = -31, 2*l + 2*o - 22 = -o. Let z = l + 71. Is z a multiple of 76? True Let i(n) = -n**2 + 16*n + 3. Let u be i(15). Let h(y) = 2*y + 46. Let d(l) = -3*l - 91. Let o(m) = -3*d(m) - 5*h(m). Does 10 divide o(u)? False Suppose -5*l - 12 = 2*j - 4*l, 0 = -j - 5*l - 15. Is 14 a factor of (168/30)/((-2)/j)? True Let l(b) = 60*b**3 + b**2 - 2*b - 12. Does 64 divide l(4)? False Suppose 19*p - 23698 - 24078 = 731. Does 22 divide p? False Let v(o) = -263*o - 71. Is v(-17) a multiple of 25? True Let x be 3620/(-6) - -4*(-5)/(-60). Let n = -279 - x. Is n a multiple of 27? True Suppose 15041 = 4*r - 5*v, 36*v - 41*v = -5*r + 18805. Is 52 a factor of r? False Suppose -8*a = -99 + 1483. Let z = 462 + a. Is 13 a factor of z? False Suppose 5*z = 2*z - 96. Let x = 36 + z. Suppose 4*v - 3*v - 3*h = 26, 2*h - x = 0. Does 17 divide v? False Let m(z) = 57*z + 13. Is 13 a factor of m(7)? False Suppose 3*r = 55 + 410. Suppose o - 516 = -2*a, -1289 = -5*a + o - 4*o. Let f = a - r. Is f a multiple of 15? False Let a = 1 + -14. Let b(q) = q**2 + 3*q + 10. Let y be b(a). Is (((-285)/(-12))/5)/(5/y) a multiple of 27? False Suppose 0*y - 15 = -3*y. Suppose -4*f - y*w = 39, -w - 30 = 4*f + w. Let v = f - -15. Is v even? False Suppose 93*f - 87*f - 240 = 0. Is f a multiple of 5? True Let v(l) = 10*l - 119. Let t be v(0). Let j = t + 149. Is j a multiple of 15? True Let d(k) = k + 1. Let j be d(-5). Let l = -6 - j. Is (72/15)/(l/(-10)) a multiple of 8? True Let s = 958 - 412. Suppose 100 - s = -2*n. Does 18 divide n? False Suppose 0 = n + 6*n - 217. Let r = 40 - n. Suppose -w + 48 - r = 0. Is w a multiple of 19? False Let g be (26/(-13))/(2/11). Let s be -1 - (-10)/8 - 115/(-4). Let u = s - g. Is 8 a factor of u? True Suppose 0*k + 36393 = 14*k - 43071. Is 22 a factor of k? True Suppose 2*n + 181*m = 183*m + 7594, 2*m = -2*n + 7574. Is n a multiple of 8? True Suppose u - 3005 + 790 = 982. Is 169 a factor of u? False Suppose -32*l - 28*l + 74210 = -487750. Does 19 divide l? False Suppose 0*k - 5508 = -27*k. Does 51 divide k? True Suppose 245 = -37*a - 14. Let f(g) be the first derivative of g**4/4 + 3*g**3 + 5*g**2/2 + 6*g - 1. Does 23 divide f(a)? True Let j be (-1)/(-1 + 5/4). Let s(q) = -q**3 - 7*q**2 - 9*q. Let k be s(-6). Let z = k - j. Is z a multiple of 7? False Let q(h) = -922*h**3 + 3*h**2 + 3*h - 10. Is q(-2) a multiple of 38? True Does 20 divide (-35)/(-7)*80/(-25)*-290? True Let h(t) = 3*t + 2. Let f be h(7). Suppose d = f - 25. Let j(p) = 3*p**2 - 3*p + 1. Is j(d) a multiple of 10? False Let p(g) = -2*g**3 - 61*g**2 - 73*g + 46. Is p(-32) a multiple of 109? False Suppose -p - 121125 = -76*p. Does 17 divide p? True Let f = -83 + 195. Suppose -w = -8*w + f. Let k = 26 - w. Is k a multiple of 7? False Let u(r) = -r**2 - 13*r + 2. Let y(b) = -6*b**2 - 65*b + 1. Let o(w) = 11*u(w) - 2*y(w). Suppose 0*k - k = -18. Is 22 a factor of o(k)? True Suppose 4784*r - 2070 = 4774*r. Does 9 divide r? True Let f(g) = -9*g + 40. Let d be f(7). Let t = d + 160. Is t a multiple of 13? False Suppose -2*h + 57 - 53 = 0. Suppose -6*p = -h*p - 92. Is p a multiple of 18? False Suppose y - 21*o = -24*o + 4591, 9174 = 2*y + 4*o. Is y a multiple of 11? False Suppose -26*k = -8*k - 6*k - 19080. Is k a multiple of 3? True Suppose -92864 = 68*o - 84*o. Does 26 divide o? False Let y(t) = -5000*t + 67. Does 45 divide y(-2)? False Let s(n) = 2*n**2 - 11*n - 5. Let l be s(6). Let w be (-27)/9*(-1 + l + -1). Suppose x - w*k = 99, -10 = 4*k + 10. Is x a multiple of 21? True Let s = 63 - -7. Let y = 170 - s. Does 21 divide y? False Let z(h) = 9*h - 4. Let f be z(1). Let u(x) = f*x + 2*x + 16 + 2*x - 11*x. Is 18 a factor of u(-10)? True Let t(n) = -159*n + 4760. Is 20 a factor of t(0)? True Let t be ((0 - -2)*(-9)/6)/1. Let k(v) = -3*v - v**2 - 4 - v - 3*v**2 + 3*v**2 - 3*v**3. Is 17 a factor of k(t)? False Let r be 6/(-4)*922/(-3). Suppose 0 = 5*j - 459 - r. Suppose 3*i - 4*u - 472 = 0, -2*i - 2*u + j = -126. Does 26 divide i? True Let u(z) = 176*z + 241. Is u(24) a multiple of 95? True Let c(m) be the third derivative of m**4/8 + 6*m**3 - 6*m**2. Let q be c(-11). Is (-3 + q)*1 - -104 a multiple of 26? True Suppose 153722 = -106*l + 570938. Is 24 a factor of l? True Suppose -17*f = -13*f - 20. Suppose -4*i + 0*v + 5*v + 901 = 0, -f*v = i - 219. Is 8 a factor of i? True Let i(d) = d**3 + 25*d**2 - 7*d + 77. Is i(-15) a multiple of 98? False Let v(w) = -2*w**3 - 12*w**2 + 60*w - 24. Is 142 a factor of v(-13)? True Suppose -3*l - 6 = 0, 0*n = n - 5*l - 64. Suppose -105 = -2*t + 5*j, -2*t - 2*j = -3*t + n. Does 6 divide t? True Suppose 2 = -19*b + 78. Suppose 4*m = -f + 354, 4*f - 1416 = -2*m + b*m. Is 65 a factor of f? False Let a(h) = -2*h - 5. Let y be a(-9). Suppose x + 3*q = -y, 4*x + 4*q + 16 = q. Does 9 divide (3 + -77 - -1)*x? False Let a be 6 + 168/(-27) + 4/18. Suppose 10*s - 4*s - 660 = a. Does 22 divide s? True Let a(u) = 36*u**2. Suppose 3*k + 4*m = -37, -4*k = k + m + 56. Let i(c) = 73*c**2. Let o(l) = k*a(l) + 6*i(l). Is 9 a factor of o(-1)? False Is (-21)/3 + 11/(77/13636) a multiple of 3? True Suppose -n + 1044 = -0*n - 2*c, -5*c = -n + 1050. Suppose -152*q + n = -144*q. Does 9 divide q? False Let b = -74 + 80. Is 42 a factor of (1*-1)/(b/(-2154))? False Suppose -2*n + 3*o = -4*n - 792, 3*n + 1188 = 5*o. Is 66 a factor of (-8)/(1194/n + 3)? True Let r = 12049 + -6131. Does 31 divide r? False Let o(l) = -5*l + 3. Let t be o(0). Let s(d) = 5*d**3 + 3*d**2 + 5*d - 5. Does 21 divide s(t)? False Let c be ((-30)/(-8))/(((-25)/(-40))/(-5)). Does 24 divide c/18*3 + 461? True Let d = 7762 + -4437. Does 133 divide d? True Let j be (-1 - 2)*(-60)/9. Suppose -9*g = -j - 115. Suppose 12*r = g*r - 162. Is r a multiple of 9? True Let c(d) = 49*d**2 + 158*d - 6. Does 17 divide c(-4)? False Let m = 16 + 1076. Let o = m - 622. Is 47 a factor of o? True Suppose 2*q - 16 = 6*l - 2*l, 5*q = -10. Is 6*(182/4 + l) a multiple of 15? False Suppose -57*i + 65*i = 2808. Is 39 a factor of i? True Let t = 7236 + -2931. Does 15 divide t? True Let x(z) = 331*z - 643. Is 5 a factor of x(8)? True Let w = 4913 - 1964. Is w a multiple of 7? False Suppose 3 = 5*y + 28, -2*o + 2464 = 4*y. Let f = o - 885. Is 17 a factor of f? True Let k be (-11)/55 + 11/5. Let l(w) = 2*w**k + 26 + 11*w - 11*w**2 + 11*w**2. Is 20 a factor of l(-7)? False Let t = 5558 - 2974. Is 4 a factor of t? True Suppose -67 + 61 = 2*n. Let i(f) = -7*f**3 - 4*f**2 - 7*f - 10. Does 21 divide i(n)? False Let v = 54 - 54. Suppose 3*s = 4*h - s, -s + 10 = 4*h. Suppose 5*l - h*d = 390, v*l - 5*d = -4*l + 312. Is l a multiple of 17? False Suppose -25 = 5*v, -5*x = -0*x + 4*v. Suppose -x*d = 320 + 576. Let y = d + 346. Is y a multiple of 14? False Let x(a) = 29*a**2 + 4*a - 6. Let u be x(1). Does 21 divide 2132/36 - -4 - 6/u? True Let q = -3976 + 4080. Is 46 a factor of q? False Suppose 22*k - 177744 = -11*k + 10*k. Is 28 a factor of k? True Suppose 5*l + 706 = 2101. Suppose 0 = -6*t + 165 + l. Is 14 a factor of 2 + -3*(t/(-6) + -1)? True Let v be -198 + (-6)/18*0. Let p = v + 255. Does 21 divide p? False Suppose 14 = 8*o - 26. Suppose -208 = -3*k - l + o*l, 3*l - 15 = 0. Suppose 2*t - 6*t = -k. Does 6 divide t? False Let p = -2661 - -4311. Is 33 a factor of p? True Let l(m) = -6*m**2 + 3*m - 9. Let f(p) = -5*p**2 + 3*p - 9. Let b(a) = -4*f(a) + 3*l(a). Let h be (-2)/(-14) + (-108)/(-28). Is b(h) a multiple of 29? True Let i = -113 + 116. Let y(w) = 5*w**3 - 15*w**2 - 30*w + 6. Let b(s) = s**3 - 3*s**2 - 6*s + 1. Let a(l) = -11*b(l) + 2*y(l). Is 4 a factor of a(i)? False Let x = -9 - -17. Is 1376/x - 0/3 a multiple of 9? False Let h(r) = 2*r**3 - 3*r**2 + 9*r + 5. Let p(f) = -f**3 + 2*f**2 - 5*f - 2. Let l(q) = 4*h(q) + 9*p(q). Is l(-5) a multiple of 14? True Suppose -406 = 12*p - 19*p. Suppose 4*v = -k + 27, 0 = k + k + 4*v - p. Is k a multiple of 5? False Does 23 divide (-5)/(-15)*2 - (-44248)/12? False Let x(k) = 514*k**3 + k - 1. Does 25 divide x(1)? False Let p be (4 - 7) + (2 - -341). Let g = p - 238. Suppose 0 = -2*y + 78 + g. Is 30 a factor of y? True Let o(g) be the first derivative of g**4/4 + g**3/3 + 3*g**2 - 44*g + 30. Is 34 a factor of o(7)? False Suppose -h - 3*h = -3*v + 20, -6 = -3*v - 3*h. Suppose c = 2*c - 2*j + 2, -v*j = 4*c - 28. Is 14 a factor of c/1 - (-61 - -3)? False Let m be (-2)/10 - (-4)/(-5). Let j be (m + 1)*(-14)/28. Let z(g) = g**2 - g + 129. Does 19 divide z(j)? False Suppose -3368 = -3*d - 4*c, -d = 5*c - 452 - 689. Is 18 a factor of d? True Let v = 113 + -40. Suppose 5*x - v = 2*m, -2*x - 4 = 5*m - 39. Let q = 12 + x. Is 27 a factor of q? True Suppose -5*t + 78 = -d, 2*t + 7 = 2*d + 35. Let v = -31 - t. Let n = -2 - v. Does 10 divide n? False Suppose 75*y - 69*y - 294 = 0. Let z be 1018/8 + 1/(-4). Let n = z - y. Does 11 divide n? False Suppose 2*z - 2 = -0*z. Let u be ((-5)/(-4))/(z/40). Suppose -4*p + u = 2. Is p a multiple of 4? True Let s(v) = -16*v - 22. Let m be s(-2). Is 28 a factor of (448/m)/((-16)/(-40))? True Suppose -7*i - 5*i + 600 = 0. Suppose 155 = 5*r + 4*d - i, 3*r - 3*d - 96 = 0. Is r a multiple of 16? False Let m be 6/(-4) - 88/(-16). Suppose -6*c = 5*h - 2*c - 1604, -m*c + 956 = 3*h. Is 18 a factor of h? True Let b be 1 + -602*5/(-10). Suppose -2*k - 3*a + 450 = 0, 2*k - 164 = 5*a + b. Is k a multiple of 19? True Let h(v) = -19 + 36 - 72*v**3 - 3*v - 20. Is 12 a factor of h(-1)? True Let v(j) = -j**3 + 11*j**2 - 15*j - 1. Let c be v(9). Let y = 377 - c. Is y a multiple of 39? True Is (302 - 63)/((-2)/(-8)) - 2 a multiple of 7? False Let s = 74 - -16. Let a = 51 + s. Is 8 a factor of a? False Let f(u) = -29*u + 27*u + 0 + 53. Is f(-13) a multiple of 48? False Let a(q) = 3*q**3 - q. Let x be a(1). Let h be -8*(84/8)/21. Is 1*(x + h + 20) a multiple of 18? True Is 9 a factor of 879/(6/(-27)*21 + 5)? True Let s = -26 - -26. Suppose -3*l + 4 = 2*y - s*y, 2*y - 2*l - 4 = 0. Suppose n + 264 = y*a - n, 4*a - 536 = 2*n. Does 34 divide a? True Let p(h) = -3*h - 3 - 14*h**2 + 3*h - 5*h. Let b be p(-2). Let k = b + 140. Does 13 divide k? True Suppose 676 = 72*h - 1484. Does 5 divide h? True Suppose -z + 0*z - 2 = -x, 0 = -z - 5*x + 28. Is 17*((-2 - -5) + z) a multiple of 6? True Suppose 1 = -4*d + 21. Suppose 1815 = 5*c + d*a, 4*c = -c + 4*a + 1824. Is 28 a factor of c? True Let o(j) = -j**3 - 11*j**2 + 96*j + 84. Is 24 a factor of o(-26)? True Let m(c) be the first derivative of c**3/3 + 4*c**2 - 6*c - 30. Does 42 divide m(-19)? False Let w(r) be the first derivative of r**4/8 - 7*r**3/3 + 4*r**2 - 9. Let v(m) be the second derivative of w(m). Does 3 divide v(8)? False Suppose 56*f - 1055 = 51*f. Let h = f + 108. Is h a multiple of 11? True Is 6353 + 12/6 + (9 - 4) a multiple of 53? True Suppose -3*p = 2 - 17, 0 = -2*u + 2*p - 2. Suppose 3*f - 1004 = -u*y, 22 + 316 = f - 2*y. Does 25 divide f? False Let o be 1/(-5) - (-13416)/(-120). Let t = o - -124. Does 6 divide t? True Let r = 1202 - 618. Is 2/(3 - r/196) - -2 a multiple of 14? False Let x = 3797 - 394. Is x a multiple of 41? True Let i = -4514 + 6142. Is 9 a factor of i? False Let j(d) = -d. Let u be j(-5). Suppose -9 = -h - 4*b, -4*h - 3 + 18 = -u*b. Suppose -4*y + 265 = h*p, -4*y - 30 = 3*p - 189. Is 13 a factor of p? False Suppose -5*v - 24 = 4*s, -s - 4 = 2*v - v. Let k be 1005/(-10)*v/6. Suppose 2*g - 272 = -4*m, -k = -3*m - g + 71. Does 25 divide m? False Let s(o) = -2*o**3 - 2*o**2 - 4*o - 7. Let r be s(-7). Let w = r + -419. Does 38 divide w? True Suppose -4*n + 4*t - 36 - 120 = 0, 2*t = 0. Let o = -32 - n. Suppose 0 = 9*b - o*b - 62. Is 6 a factor of b? False Suppose 13*w + 15 = 171. Is 5 a factor of ((-18)/w)/((-4)/(-40)*-1)? True Let g = 1089 + 1786. Does 151 divide g? False Let l(u) = u**3 + u**2 + 4. Let w be l(0). Suppose 2*c = w*c - 80. Suppose 2*s + c = 116. Is 37 a factor of s? False Is (-707472)/340*(-20)/6 a multiple of 12? True Suppose -3*y - 3*j - 451 = -5*y, 2*j - 926 = -4*y. Suppose -960 = -y*m + 228*m. Is m a multiple of 56? False Is 121 a factor of (30/2)/((-381)/(-187198))? False Let r = -3862 - -4323. Does 9 divide r? False Let d = 433 + -643. Let i = -142 - d. Is 5 a factor of i? False Let b = -4010 + 4184. Does 5 divide b? False Suppose 4*f - 19298 = -5*z, -2*z - 5*f + 12166 - 4440 = 0. Is 153 a factor of z? False Let p(u) = 8*u + 140. Let z(s) = 5*s + 93. Let x(a) = 5*p(a) - 7*z(a). Does 11 divide x(6)? False Let o = -4360 + 4450. Does 10 divide o? True Does 60 divide 90*3*(-52)/(-6)? True Suppose -5740 = -30*f + 16*f + 9*f. Does 7 divide f? True Let p(u) = -u**3 + 6*u**2 - 7*u + 29. Let s be p(6). Let n(k) = 18 + 2*k - 4 - 3 + 19. Does 3 divide n(s)? False Let h(w) = -98*w + 2138. Is 32 a factor of h(-35)? True Let t be (-3)/15 + 602/10. Suppose t = u - 4*u. Let j = 30 + u. Is 5 a factor of j? True Let b(x) be the first derivative of 4*x**3/3 + 3*x**2/2 + 6*x - 2. Suppose 2*i + 5*r + 3 = 0, -4*i - 13 - 1 = 2*r. Does 23 divide b(i)? False Let l(c) = -c**3 - 45*c**2 - 93*c - 117. Does 50 divide l(-44)? False Let d = -22 + 24. Suppose 0 = -k + 2, -5*h - 1 = -d*h - 2*k. Is 26 + -14 + -3 + 2 + h a multiple of 11? False Let l(x) = -x**3 - 10*x**2 - 2*x + 32. Let y(h) = -h**3 + 6*h**2 - 2*h - 26. Let k be y(5). Does 22 divide l(k)? False Suppose 23*q = -85362 + 163962 + 144063. Does 36 divide q? False Let c(x) = 4*x - 28. Let l be -3 - (7 + 4)*-1. Let a be c(l). Suppose -6*h + 314 = -a. Does 11 divide h? False Suppose 0 = b - 8*b + 2275. Suppose b + 271 = 4*r. Suppose 6*l - r = -23. Does 7 divide l? True Suppose q = -5*p + 4769, -275 = -2*q - 3*p + 9270. Is q a multiple of 22? True Let i be 35*5/(-5 + 0). Let t = 99 + i. Is t a multiple of 32? True Suppose 342141 - 83341 = -13*y + 53*y. Does 48 divide y? False Suppose -2*c + 328 = -2*q + 1094, 2*c = -5*q + 1880. Is 9 a factor of q? True Suppose -4*z = z - 5, w = z + 529. Suppose 252 = c + 4*d, -d - 1 = -2*c + w. Is c a multiple of 6? True Let x be ((-11)/33)/(1/(-12)). Suppose 3*b + 475 = x*z, 0 = -5*z - b - 0*b + 608. Let m = z + -53. Is m a multiple of 10? False Suppose 7*d = -43*d + 8638 + 9412. Is 5 a factor of d? False Let x(g) = -g**3 + 4*g**2 - 2*g - 1. Let k be x(2). Suppose 0 = -8*a + k*a + 150. Let m = a - 14. Does 7 divide m? False Let x = 2325 + 1835. Is x a multiple of 64? True Let a be 24/20*(-50)/(-6). Suppose 15*t + 5 = a*t. Does 6 divide (-84*t/10)/(1/5)? True Let h = -3266 + 3955. Does 13 divide h? True Let q = 32 + 169. Let f = -135 + q. Is 33 a factor of f? True Let n be 0 + -12*45/(-6). Is 31 a factor of (-6134)/(-22) + n/495? True Suppose -4*p + 7*d + 25 = 2*d, -2*p = 2*d - 8. Suppose p*o - 245 = 255. Is o a multiple of 6? False Suppose -6*w + 13 = -5. Let n be 1*(w - 3 - -7). Suppose 0 = 2*u + 2*y - 108, -n + 67 = u + 4*y. Is u a multiple of 7? False Suppose m - 12*m = -3*m - 32152. Is m a multiple of 11? False Let w = 8830 + 1180. Is 130 a factor of w? True Suppose 12 = -3*l - 6. Let h = l + 29. Suppose 0 = -3*n + 5*c + h, 3*n + 0*c - 28 = 4*c. Is n a multiple of 4? True Is (3150/(-125))/((-6)/15) even? False Let c(i) = 35*i - 24. Let t(w) = 71*w - 48. Let a(f) = 9*c(f) - 4*t(f). Is a(9) a multiple of 15? True Suppose 0 = 4*s - z - 13388, -3*s - 5*z = 531 - 10572. Is s a multiple of 53? False Suppose -5*k + 2*i + 2040 = 0, -3*k + 408 = -2*k - 4*i. Let j = k - 276. Does 11 divide j? True Is (1209/5)/3 + 0 + 1434/3585 a multiple of 3? True Let j = 15591 - 5464. Is j a multiple of 13? True Let u(b) = b + 32. Let k be u(0). Let d be (-802)/(-14) + ((-174)/21 - -8). Let p = d - k. Does 7 divide p? False Let o(w) = -w**2 + 14*w + 3. Let z be o(6). Is 17 a factor of (12/(-6) - (0 - 2)) + z? True Let z(w) = 207*w**2 - 78*w + 226. Does 53 divide z(3)? True Let u = 8857 + -6033. Is 8 a factor of u? True Let w(h) = 74*h**2 - 42*h - 172. Is 14 a factor of w(-8)? True Does 16 divide (-6520)/(-163)*26/5? True Let c(x) = -774*x**2 + 782*x**2 - 4*x**3 + 2*x**3 + x**3 - 3 - 8*x. Is c(6) a multiple of 21? True Let i(c) = c**3 + 6*c**2 - 5*c - 8. Let o be (70/(-25))/(-1 + (-14)/(-15)). Suppose -6*a = o - 6. Is i(a) a multiple of 8? False Let c(d) be the second derivative of -25*d**3/6 + 19*d**2/2 - 52*d. Is c(-8) a multiple of 28? False Let f be (58/4)/((-1)/2). Suppose -42 = 424*k - 421*k. Let v = k - f. Is 10 a factor of v? False Let o(j) = j**3 - j**2 - 10*j - 1. Let c be o(4). Suppose 5*i + 24 = c*i. Is 3 a factor of i? True Is 35 a factor of (4/(-14))/((84/11417)/(-12))? False Let q(x) = 40*x + 709. Is 7 a factor of q(8)? True Suppose -3822*s = -3832*s + 38340. Is 13 a factor of s? False Let w = 15 - 10. Let n be (-9)/((-135)/(-40))*(-1179)/4. Suppose -w*z + n = z. Does 27 divide z? False Let h = -26 - -35. Is 1/2*(-492)/h*-3 a multiple of 10? False Let z(o) = -2 - 3 + 7 + 6 - 20*o. Let u be z(-8). Suppose 8*l - u = 5*l. Is l a multiple of 8? True Suppose 2*g = -2*g + 16. Suppose 46 + 134 = g*m. Let t = 46 + m. Is t a multiple of 13? True Suppose -45*l = -46*l - 4. Let k(m) = -25*m - 35. Is 13 a factor of k(l)? True Let d be (-1)/(18306/(-3660) - -5). Let a = d + -248. Does 39 divide a? False Let t(r) be the first derivative of -8*r**2 - 9*r + 25. Suppose -3*n - 2*n = 15. Is 5 a factor of t(n)? False Let k = -4194 + 6595. Is 7 a factor of k? True Let s(n) = 746*n - 2. Let g be s(1). Suppose -363 = -i - r, 2*i - 13*r = -9*r + g. Is 26 a factor of i? False Let l = 2333 - -59. Does 4 divide l? True Let q be (-27 + 23)/((-4)/(-2) + -4). Suppose 0 = q*f - 16 - 20. Is f a multiple of 3? True Let a be (12 + -3)*1/(1/(-15)). Let l = -83 - a. Is 26 a factor of l? True Let s be (-12)/(-15) + 802/10. Suppose 157 = 7*f - s. Let b = f - 6. Is 14 a factor of b? True Let r(n) = n**3 - 22*n + 4160. Does 104 divide r(0)? True Let r be -4 - (-195)/50 - 36964/(-40). Suppose -12*j = -r - 228. Does 12 divide j? True Suppose y = 6*y - 15. Suppose 226 = -y*f + 31. Let u = 46 - f. Is 12 a factor of u? False Let t(d) = 4*d**2 - 10*d + 18. Let m be t(3). Does 46 divide 3460/15 + 3 + m/(-9)? False Suppose -46*w - 599924 = -129*w. Does 13 divide w? True Let a = 2243 + -1008. Does 14 divide a? False Let n = 3608 + -2048. Is n a multiple of 15? True Let m(k) = k**2 + 6*k - 10. Suppose 4*o = 2*o - 3*v - 20, -5*o - 50 = 3*v. Is 10 a factor of m(o)? True Let n = 7 + -1. Suppose -t + n*t = 20, -18 = 3*g - 3*t. Is 10 a factor of 71 + 3/(-6)*(-4)/g? True Suppose 2*p - 40 = 6*p. Let s(q) = -2*q - 15. Let g be s(p). Suppose g*u - 464 = 46. Is u a multiple of 17? True Suppose 0 = 5*f - 6*f. Suppose f = 2*q - 2, d + 308 = 2*d + 2*q. Let o = d - 170. Is 23 a factor of o? False Suppose 8*k + 65 = 3*k. Let b(u) = 2*u**2 + 19*u - 28. Does 21 divide b(k)? True Let z(w) = 5 - 30*w**3 + 8*w**2 - 6*w**2 - 15*w + 21*w. Does 19 divide z(-2)? False Suppose -24*t = -86*t + 74214. Is t a multiple of 98? False Let g = 425 + -192. Let f = g - 164. Is f a multiple of 20? False Suppose 2475 = 5*l + 5*d, 3*l - 3*d - 863 - 622 = 0. Does 3 divide l? True Let d(m) = 43*m - 5. Let y(n) = 86*n - 10. Let p(x) = -11*d(x) + 6*y(x). Is p(1) a multiple of 4? False Let k = 6114 + -1506. Does 48 divide k? True Let x be 8*30/(-10)*83/(-2). Suppose 137 = -i + f + 637, 3*f = 2*i - x. Is 12 a factor of i? True Let h(j) = j**2 - 14*j - 578. Is h(50) a multiple of 47? True Let s be 12*5/45*36*4. Let r(m) = -9*m + 11. Let q be r(8). Let i = q + s. Is 15 a factor of i? False Let f be 13 - (-5 - -10)/1. Does 18 divide 3/((-6)/f) + (215 - -5)? True Let m = -176 - -179. Suppose 5*n + 0*n - 575 = -4*k, -m*k = n - 445. Is 30 a factor of k? True Suppose -2*z - 125 = 3*f, 0 = -2*f + 4*z - 3*z - 74. Let j be (104/f)/(2/6). Is 9 a factor of (31 - 0) + (j - -4)? True Let j be 1*(-2)/6 - 20/(-15). Let s be 0/1 + 3/j. Suppose 0 = s*v + 15, 0*v = 4*r + v - 171. Is r a multiple of 10? False Let q = 28573 + -18505. Is q a multiple of 12? True Let i = 13073 + -7588. Does 19 divide i? False Let b = 9181 - 4314. Is 150 a factor of b? False Suppose -14*q - 3276 = 4788. Let j = 961 + q. Does 55 divide j? True Let o(a) = -2*a**2 - 26*a - 40. Let n be o(-11). Suppose n*k = -2*z + 34 + 64, -z + 3*k = -74. Is 17 a factor of z? False Suppose y + 2*y = -246. Let k(z) = 158*z**3 + z**2 - 7*z + 7. Let n be k(1). Let s = n + y. Is 34 a factor of s? False Let w be 3728/32*(0 + 2). Suppose -z - y + 268 = y, 5*y + w = z. Is z a multiple of 32? False Let j = -61 - -141. Suppose 2*q = 298 + j. Does 21 divide q? True Is 5119 - ((-92)/4 + 12) a multiple of 45? True Suppose -66*l = -58*l - 64. Suppose l*z = 9*z - 425. Is 35 a factor of z? False Let a(p) = p**3 + 4*p**2 - p + 1. Let h be a(-4). Let k = 846 - 578. Suppose -3*q = h*t - k - 27, 2*t = 2*q - 186. Is 19 a factor of q? True Suppose -59*x - 3223 = -22803 - 4964. Does 8 divide x? True Suppose 53*d + 2816 = 55*d + 4*h, -2*h = 2*d - 2816. Is 5 a factor of d? False Suppose 0 = -20*w - 8710 + 52710. Does 5 divide w? True Suppose -90*d - 57600 = -122*d. Is d a multiple of 72? True Let t = 224 + -219. Suppose 2*y = 3*w - 975 - 579, 0 = -4*w + t*y + 2079. Does 16 divide w? False Let y = -3836 + 8818. Does 29 divide y? False Suppose -76 + 24 = -4*t. Suppose t*m - 2112 = 7*m. Suppose l - m = -l. Is l a multiple of 30? False Let r = -2559 + 6625. Does 38 divide r? True Let c = 11149 - 6532. Is c a multiple of 57? True Does 18 divide (2*617/2)/(403/39 - 10)? False Let h(r) = -r**2 - 6*r + 68. Let j be h(6). Let x(q) = q - 12. Let f be x(8). Is 29 a factor of 1*f - 500/j? False Let k(d) = d**2 - 15*d + 31. Let y be k(13). Suppose 4*j = y*v - 1825, -2*j = 5*v - 1113 - 742. Is 60 a factor of v? False Let s be (11 - -7)*(10/(-4) + 1). Let u = s + 182. Is u a multiple of 9? False Let d(h) = 7*h**2 + 17*h - 12. Is d(-32) a multiple of 29? True Let h = 176 + -82. Let r = h - -148. Is r a multiple of 29? False Let k(b) = b**3 + 6*b**2 + 4*b - 5. Let n be k(-5). Suppose -1 = 3*j - v - 65, n = -3*v + 15. Let m(d) = d**2 - 22*d - 2. Does 7 divide m(j)? True Let c be -6 + 26/3 - (-1)/3. Suppose -c*l + 1138 = 154. Is 41 a factor of l? True Suppose 2*f + 4*s = -8, -f - 4*s - 13 = s. Suppose f*z - 308 = -82. Does 9 divide z? False Let m be 6/(3*5/(-15)). Let f(r) = -4*r**2 - 7*r + 1. Let p be f(m). Let a = p + 164. Does 9 divide a? True Let w = -16 + 19. Suppose -2*t + 316 = 4*i, -t + 143 = -0*t - w*i. Is t a multiple of 21? False Let h be ((-3)/(-9) - (-6)/(-2))*-96. Let j = h - 216. Is j a multiple of 21? False Let j = -764 - -1430. Suppose 3*i - 7*i + 1322 = -5*l, -2*i + j = -5*l. Is i a multiple of 8? True Does 23 divide (12 + -11)/((-3)/(-8418))? True Let q = 5073 + -3078. Is 35 a factor of q? True Suppose -6 = 10*t - 1036. Let i = 271 - t. Is 24 a factor of i? True Suppose -1102*l + 1108*l - 264 = 0. Let z(d) = d**2 + 5*d - 8. Let j be z(-6). Let c = l + j. Is 6 a factor of c? True Suppose 6*n + 3335 = -0*n + 27575. Does 20 divide n? True Let l(x) be the first derivative of -x**4/4 + 10*x**3/3 - 19*x**2/2 + 14*x + 5. Is l(7) a multiple of 14? True Let v(q) = 21*q**2 - 27*q**2 + 5*q + 0*q - 2*q**3. Let c be v(4). Let u = c - -306. Is 17 a factor of u? True Let t be 70/7 + (-2 - 40). Suppose -4*i + 1 - 75 = -3*r, -4*r + 87 = -3*i. Does 11 divide 2465/45 + t/r + 2? True Let z(i) = 3*i - 8. Let q(n) = n - 8. Let u be q(12). Let l be z(u). Suppose 2*c = -2*c + l*h + 264, -3*h = 0. Does 22 divide c? True Suppose 0 = -3*v - v - 72. Let s(h) = -3*h**3 + 39*h**2 - 31*h - 27. Let d(i) = 4*i**3 - 58*i**2 + 47*i + 40. Let g(a) = 5*d(a) + 7*s(a). Does 3 divide g(v)? False Is -10*-503*(-2)/(-4) a multiple of 12? False Let j = 9504 + -5448. Is j a multiple of 60? False Is 19 a factor of -3*((9 - 24) + -1858)? False Let i = 48 - 44. Suppose 5*u = -2*x - 6, -5*x + 16 = i*u - 7*u. Suppose 2*n = -2*n - 8, -3*y + 349 = -x*n. Is 14 a factor of y? False Suppose -19*r = -4516 - 443. Is r a multiple of 9? True Let v = 14427 - 5662. Is v a multiple of 60? False Let q = -16 + 71. Let l = q - 23. Let u = 44 + l. Is u a multiple of 20? False Suppose -23*j + 8*j + 41280 = 15*j. Is 32 a factor of j? True Let y(s) = s**3 + 14*s**2 + 27*s + 45. Let h be y(-12). Suppose 2524 = h*i - 581. Does 17 divide i? False Is 10 a factor of 631465/92 - (11/4 - 3)? False Suppose 3*x - 6777 = 5*a - 20343, 0 = 4*a - 3*x - 10854. Is 116 a factor of a? False Let i = -8 + 11. Suppose 9*h = -i + 3. Is ((-2)/1)/(h - (-2)/(-30)) a multiple of 15? True Let g(b) = 88*b + 14. Let t be g(3). Suppose -2*m + k = 263 - 828, m + 4*k = t. Is m a multiple of 22? False Let v(g) = 100*g**2 + 253*g - 3. Does 7 divide v(2)? True Let y be 1*((-6)/(-8) + (-85)/(-20)). Suppose 2*x - y*j = -x + 295, j - 355 = -4*x. Suppose -10*h = -5*h - x. Does 4 divide h? False Let y(r) = -175*r - 2016. Is 7 a factor of y(-30)? True Let y(o) = -16*o + 100. Let c be y(8). Let t(r) = -r**3 + 9*r**2 - 6*r - 8. Let p be t(6). Let m = c + p. Is 6 a factor of m? True Let a = 20444 - 13946. Is a a multiple of 38? True Does 4 divide -13 + (-669)/(-51) + (-10198)/(-17)? True Suppose -r + 6865 = 3*h, -h - 20617 = -3*r + h. Is r a multiple of 21? False Does 16 divide 14/(-10) - ((-193920)/50 - -21)? True Let p(k) = -2428*k**3 - 9*k**2 - 7*k + 1. Is 8 a factor of p(-1)? False Let a(v) be the second derivative of -v**6/60 + 7*v**2/2 - 17*v. Let f(u) be the first derivative of a(u). Is f(-2) a multiple of 2? True Suppose -1460*q + 80850 = -1450*q. Is q a multiple of 15? True Let b(z) = 75*z**3 - z**2 + 2*z - 1. Let v be b(1). Let k(h) = 47 + v*h - 76*h - 7. Is k(19) a multiple of 3? True Suppose -4*n = -8*n + 5*x + 849, -n = 5*x - 181. Does 35 divide n? False Let h = -2039 - -4386. Is 5 a factor of h? False Suppose -5*v + 8*v + 12 = 0. Let l(p) = 9*p**3 + 4*p**2 + 3*p. Let g be l(v). Is 2/(-5) + g/(-10) + -2 a multiple of 25? True Suppose 47*b - 52222 = 17046 + 59371. Does 9 divide b? False Let y(j) be the second derivative of -29*j**3/6 - 49*j**2/2 + 26*j. Is 11 a factor of y(-8)? False Let a be (15/(-10))/(3/(-10)). Suppose 2*z + 2*x - 256 = 0, -5*z + 8*z - a*x - 400 = 0. Is 5 a factor of z? True Let m = 6 + -6. Suppose m = 32*y - 21*y - 1100. Is y a multiple of 12? False Let y(s) = 55*s - 43. Let j = 37 - 32. Is 16 a factor of y(j)? False Let f(b) be the first derivative of 3*b**3 + b + 5. Let q be f(1). Suppose 0 = -q*s + 11*s - 10. Does 10 divide s? True Let l = -183 + 209. Suppose -l*h = -23*h - 627. Is h a multiple of 63? False Let y(h) = h**2 + 2*h - 3. Let c be 2/((14/5)/(-7)). Let t be y(c). Is 3 a factor of (34/(-6))/((-4)/t)? False Let i(s) = s**3 - 5*s**2 + s + 6. Let y be i(3). Let q be 38/y*-3 - 4/6. Suppose -5*n + 4*g + 72 = -529, -3*g = q. Does 29 divide n? False Let o = 3911 - 3716. Does 13 divide o? True Let u(v) be the third derivative of v**5/20 - 11*v**4/8 + 17*v**3/6 + 4*v**2. Let g(m) be the first derivative of u(m). Is g(10) a multiple of 9? True Let d(s) = -s**2 - 126*s + 343. Does 42 divide d(-106)? False Let t = 245 - 228. Suppose 0 = 2*z + 3*z - s + 68, 3*z + 5*s + 52 = 0. Let h = z + t. Is h a multiple of 3? True Is (-23)/((-345)/56270) - (-8)/12 a multiple of 28? True Suppose 14 = -3*y + 4*a, -3*y + 2*a = -0*y + 10. Let n be 4 + -3 - (y - 2). Let u = 19 - n. Is u even? True Let a = 55 - 42. Let i = 18 - 16. Let z = i + a. Is 6 a factor of z? False Let a be -3 + (-5 - -6)*823. Suppose -5*d = -5*n + a, -9*n = -12*n + 4*d + 495. Is 7 a factor of n? True Suppose -q = -4*a + 12277, 1 = -7*q + 6*q. Is a a multiple of 11? True Let i(q) = 17*q - 30. Let j be i(10). Suppose -142*l + 612 = -j*l. Is l a multiple of 18? True Suppose -8*j + 1188 = -116. Suppose 7*t = -9 + j. Does 6 divide t? False Let q(y) = -y + 7. Let i be ((-20)/16)/(1/(-4)). Let g be q(i). Suppose -3*k + g*r = -5*k + 58, -4*r + 32 = k. Is k a multiple of 4? True Suppose -7*r + 3 - 17 = 0. Is r - -3 - 5 - -70 a multiple of 18? False Let d = -28 - -39. Let s(x) = 2*x**3 - d*x + x**2 - 3*x**3 - x**2 - 11*x**2 - 26. Is 19 a factor of s(-11)? True Let r = -1002 - -3034. Is r a multiple of 16? True Suppose -3*i + 44 = 17. Let u be 6/(-4)*150/i. Let w = 115 - u. Does 35 divide w? True Let k(f) = 2*f**2 - 9*f + 9. Suppose -g + 8*g - 42 = 0. Let i be k(g). Suppose 51 - i = 4*m. Does 3 divide m? True Let k = -30 - -41. Let u = -7 + k. Suppose -5 = -5*i, -p + 0*i + u*i = -137. Is 19 a factor of p? False Suppose -5*w + 83*v + 9914 = 87*v, 0 = -5*w + 3*v + 9907. Does 10 divide w? False Let f = 3613 + -853. Is 56 a factor of f? False Let u = 42 + -12. Suppose 21 = w - 5*b - 6, 2*w - 2*b - u = 0. Does 6 divide w? True Is 15 a factor of (85/(-30))/(-17) + 68394/(-36)*-1? False Is (-2)/12 + 500540/120 + -10 a multiple of 13? False Let d = -190 - -1601. Is d a multiple of 9? False Suppose 5*m - 36588 = 3*k, 4*m + 3*k = 2968 + 26324. Is m a multiple of 16? False Let n(f) be the first derivative of -f**4/4 + 11*f**3/3 - f**2/2 - 10*f + 17. Let h be n(8). Suppose 4*b - h = b. Is b a multiple of 39? False Let r(b) = b**2 - 8*b + 13. Let m be r(8). Let u(q) = 11*q - 24. Let w be u(m). Let g = w - 75. Is g a multiple of 11? True Suppose -32 = -6*y + 2*y. Suppose 2*r - 2*z = -y, z - 7 = 2*r + 1. Is 8 a factor of (-1392)/(-30) + r/10? False Let b(s) = -s**3 - 10*s**2 + 12*s + 13. Let m be b(-11). Suppose -5*n = d + 1105 - 4041, -m*n + 1170 = -4*d. Is n a multiple of 21? False Suppose -4*t + 7 = 3*k, 4*t - 8*t + 16 = 0. Is 32 a factor of ((-3)/(-4))/(k/(-8)) + 286? True Let b(r) = 52*r + 3 + 11 + 27*r + 0. Let i be b(6). Suppose -122 = -5*m + i. Is m a multiple of 14? False Let k = 11435 - 3411. Is 34 a factor of k? True Suppose -7*k + 4*k + 15 = 0. Let v(d) = 9*d**2 + 18. Is v(k) a multiple of 29? False Let x = -4483 + 4583. Is x a multiple of 5? True Let o be (-7740)/(-48) - (-3)/4. Suppose -o = -d + m, 0*d + 3*m = -3*d + 498. Does 13 divide d? False Let h be -1 - -155 - (1 + -1). Let m be ((-240)/(-1080))/(2/81). Is h/2 + -6 + m - 0 a multiple of 16? True Let z = -2443 - -4363. Is 15 a factor of z? True Suppose 0 = -2*b - b - 3. Let x(d) = -260*d**3 - 2*d**2 + 1. Let a be x(b). Suppose -a = -2*n - q, -q - 401 = -3*n - 0*q. Is 33 a factor of n? True Let y(j) = -j**2 + j. Let l(a) = 2*a**2 + 12*a + 11. Let m(s) = s**2 - 4*s + 2. Let d be m(3). Let n(b) = d*l(b) - y(b). Is 11 a factor of n(-11)? True Let d(q) = -2*q + 48. Let x = 25 - 5. Let b be d(x). Let p(z) = z**3 - 8*z**2 + 3*z - 18. Is p(b) a multiple of 2? True Is (-185)/(-65) - (5 - 2) - (-32712)/26 a multiple of 34? True Let c(x) = 3266*x**2 - 8*x + 9. Is 113 a factor of c(1)? False Let p = 4643 + -4324. Is p a multiple of 5? False Let x be ((-18)/(-8))/((-15)/(-5720)). Let n = x + -541. Does 15 divide n? False Let c be (9 + -12)*(-2)/(-6)*-8. Let a(k) = -7*k - 4 + 0 + c*k**2 - 2 - 6*k**2. Does 10 divide a(7)? False Let c = 125 + -31. Suppose -c = -3*n + 110. Is 45 a factor of n? False Is 93 a factor of 4588/(-9 + (-20)/(-2) - 1/3)? True Let j be 2 - ((-8)/(-4) + -2). Let p = 264 + -93. Suppose -2*v - 29 = j*d - p, 4*d = -5*v + 350. Does 22 divide v? True Suppose 24*d - 36 = 15*d. Suppose 124 = 2*t - 2*k - 2*k, 0 = -d*t + k + 241. Is 6 a factor of t? True Let j = 7 - 5. Let h(u) = 2*u - 4. Let z be h(j). Suppose 0 = 4*b - z*b - 56. Is 14 a factor of b? True Suppose 0 = -17*l + 83 + 2. Suppose 0 = -3*v - l*b + 1093, 4*v - 302 = -5*b + 1152. Is v a multiple of 17? False Let w(g) = 7*g**3 + g**2 + 10*g - 4. Let f(t) = -4*t**3 - t**2 - 5*t + 2. Let p(z) = 5*f(z) + 3*w(z). Is 10 a factor of p(4)? True Let a(s) be the first derivative of -49*s**3/3 + s**2 - 6*s + 16. Let c(g) = -24*g**2 + g - 3. Let b(v) = 6*a(v) - 13*c(v). Is 33 a factor of b(3)? False Does 38 divide (-186741)/(-27) - (-1)/(-3)? True Suppose -15 + 6 = -3*n. Does 3 divide (-15)/(3/(-20)*(-1 + n))? False Let m = -14 + 16. Suppose -2*z - m*x + 10 = 0, 2*z + 5*x - 25 = -2*z. Suppose z = -3*n + 88 + 17. Is n a multiple of 9? False Let p(k) be the second derivative of 3*k**5/5 - k**3/6 + 7*k**2/2 + k - 9. Is 41 a factor of p(3)? True Suppose -m = 4*v - 368 - 312, -149 = -v + 5*m. Let f = v - 128. Is f a multiple of 11? False Suppose -6*k + j + 5 = -3*k, -5*k + 4*j - 1 = 0. Let w(s) be the first derivative of s**3 + s**2 + 3*s - 2. Is w(k) a multiple of 9? True Suppose -4*j + 0*j = 5*h - 42, -4*j = -2*h. Suppose -35 + 11 = h*t. Does 6 divide -24*(1/t - 15/12)? True Let o be 18/(-45) - ((-24)/5)/2. Suppose 10 + 590 = o*u. Suppose 0 = -8*w + 5*w + u. Is w a multiple of 25? True Suppose 35*z - 9023 + 938 = 0. Is 14 a factor of z? False Suppose 4*w = 988 + 180. Suppose -4*x = 4*v - 416, -4*v + x + w = -144. Let k = v + -70. Is k a multiple of 5? False Suppose 0 = 5*c - 31 + 21. Suppose 980 = 2*z + c*q, -4*q = -5 + 25. Does 45 divide z? True Suppose 2*m - p = 9416 - 676, -3*m + 3*p = -13110. Is 12 a factor of m? False Does 2 divide (-305)/(-1) + 5*(-8 + 7)? True Let p(u) = 478 + 14*u + 7*u - 10*u + 0*u. Is 32 a factor of p(0)? False Let h = 15 + -16. Is h/(3/(-528)*4) a multiple of 11? True Suppose 2*v - 8*v + 228 = 0. Suppose k - 173 = -v. Does 7 divide k? False Let n = -1925 - -4902. Does 200 divide n? False Let s(a) be the second derivative of a**5/20 - 2*a**4/3 + 17*a**3/6 + a - 38. Is 35 a factor of s(7)? True Suppose -6 = 3*w - 5*m, -2*m + 5 = w - 6*m. Let c(p) = -71*p - 32. Is c(w) a multiple of 31? True Suppose 0*s + 1318 = -9*s + 9643. Does 42 divide s? False Let y = 8 - 4. Let n be (33/(-22))/((-3)/y). Suppose n = -o, 2*b - 2*o = o + 56. Does 6 divide b? False Is (46/3 - 16) + 2*(-1271)/(-6) a multiple of 47? True Let u(f) = -f**2 + 77*f - 96. Is u(58) a multiple of 22? False Let l = -28 + 28. Suppose l = -5*m + 35 + 50. Let x(u) = 3*u - 41. Does 8 divide x(m)? False Let w(q) = -q**3 + 14*q**2 + 32*q. Let o be w(16). Does 13 divide (-8)/(o - 4) - (-176 - 4)? True Let l(d) = 4*d + 18. Let p be l(12). Suppose -2*k + 5*k = -p. Let n = k + 63. Does 5 divide n? False Let h = -933 - -3118. Is 15 a factor of h? False Let s = -973 + 2341. Does 12 divide s? True Suppose -2*p - 68 = 3*t, -p + 5*t = 9 + 38. Let k = -548 - -635. Let v = p + k. Is v a multiple of 25? True Let u(n) = -345*n**2 - 339*n**2 + n + 1 - n**3 + 685*n**2. Let g be (-3 - -6)*2/(-3). Is u(g) a multiple of 4? False Suppose 5*v - 5*w = 70, 2*v - w - 38 = -v. Let d(o) = -17*o - 1272. Let k be d(-76). Does 21 divide k*-22*(-3)/v? False Let u(y) = y**3 + 48*y**2 + 93*y + 207. Is 113 a factor of u(-43)? False Suppose 3*q - 1145 = 5387 + 14222. Does 14 divide q? False Let a(p) = 11*p + 93. Let y be a(-8). Suppose 24*t - 19*t = -b + 305, -5*t - y*b = -325. Is t a multiple of 15? True Suppose 18 = -0*c + 2*c - v, -3*v - 12 = 0. Suppose -30 = -c*o + o. Suppose -3*z = -2*i + o*i - 27, 5*i - 2*z = 52. Is i a multiple of 2? True Suppose 0*c + 2478 = x + 3*c, 5*x - 12346 = -4*c. Is 75 a factor of x? False Let p(m) = 135*m**3 - 2*m**2 + 5*m - 1. Let x(l) = 272*l**3 - 3*l**2 + 9*l - 1. Let z(w) = 5*p(w) - 3*x(w). Is 14 a factor of z(-1)? True Let l(j) = 47*j - 1634. Is l(66) a multiple of 41? False Let v(n) = -2626*n**3 + 5*n + 4. Does 75 divide v(-1)? True Let p = 227 - 258. Let f(u) = -u**3 - 30*u**2 + 20*u + 19. Is f(p) a multiple of 36? True Suppose 4*l - d - 509 = 0, -4*d - 650 = -4*l - l. Does 5 divide (-4 - l/(-30))*295? False Suppose 4*b - 12 = 0, 5*n - 9 = 3*n - 3*b. Suppose 2*r = -3*u + 1055, n*u - 4*r + 1757 = 5*u. Is u a multiple of 34? False Let v be ((-3)/(-6) - 2)*-6. Let y be (3/v)/(2/(3 + 9)). Suppose 2*c + y*s - 96 - 130 = 0, 4*c - 4*s - 444 = 0. Does 11 divide c? False Let o = -90 - -92. Let j(d) = 30*d**3 - 5*d**2 + 4*d + 1. Is j(o) a multiple of 8? False Let p(h) = h - 6. Let a be p(6). Let n(y) = y**2 + y + 3. Let q be n(a). Suppose r - 2*r = 5*m - 146, -q*m = r - 86. Is 7 a factor of m? False Suppose -o - 90 + 93 = 0. Suppose -4*m = o*m - 1995. Let x = -168 + m. Is x a multiple of 16? False Suppose 32*w - 16188 = 29*w - 4*b, -3 = b. Is 9 a factor of w? True Suppose 3*h + 477 = 2*f, -h + 372 = 5*f - 829. Suppose f + 76 = -4*r. Let t = 148 + r. Is 23 a factor of t? True Let x(z) = -7*z**3 - 8*z - 4*z**2 + 32 - 39 + 4*z**3. Is 2 a factor of x(-2)? False Let o be 7 - -12 - (-1 - (-1 + -1)). Suppose 0 = -27*u + o*u + 2331. Is 28 a factor of u? False Let u(h) = 2*h**3 + 3*h**2 - h - 1. Let i be u(1). Let c be (18/(-8))/(i/(-8)). Suppose 10*p = c*p + 32. Is p a multiple of 7? False Let s(i) = i**3 + 19*i**2 + 29*i + 47. Let y be s(-19). Is 21 a factor of y*(2/4)/(24 + -25)? True Let i = 222 + -148. Let k = 276 - i. Suppose -3*f - 4*s = -f - k, -404 = -4*f + 4*s. Does 17 divide f? False Let q(l) = -l + 4 + 0 - 1. Suppose -26 = 4*m - m + j, -3*m = 2*j + 22. Is q(m) a multiple of 13? True Is (27255/10 + -4)*(-14)/(-49)*7 a multiple of 15? False Suppose 282*f = 286*f - 40. Suppose 0 = f*u - 15*u + 610. Does 7 divide u? False Suppose 0 = 6*h + 5*p - 19516, -5*h + 2*h + p = -9772. Is 11 a factor of h? True Let r = 41 - 56. Let g(w) = -w**3 - 14*w**2 + 20*w + 24. Let v be g(r). Let f = -29 - v. Does 7 divide f? False Suppose -t + 12 = 2. Let j(c) = -c**3 + 10*c**2 - 2*c + 23. Let f be j(t). Suppose 5*v + 5*p - 100 = 0, -f*v + 4*p + 36 = -31. Is 3 a factor of v? True Suppose u - 2*u + 402 = 0. Suppose 2*i - 20 = u. Is i a multiple of 6? False Let q(j) = 3*j**3 + j. Let m be q(1). Let k(u) be the first derivative of 7*u**2/2 - 9*u + 14. Does 19 divide k(m)? True Let a(d) = 5*d - 11. Let p be a(-6). Is 0/3 - -4 - p even? False Let q(y) = -3*y**3 - 3*y**2 - 8*y - 16. Let a(l) = -2*l**3 - 2*l**2 - 5*l - 11. Let f(g) = -7*a(g) + 5*q(g). Suppose o = 2*o + 4. Is 8 a factor of f(o)? False Let m be 105 + 1*(-2)/2. Let j(o) = 88*o - 1306. Let z be j(14). Let v = m + z. Is v a multiple of 30? True Let v(g) = g**3 + 12*g**2 + 12*g + 4. Let w = -23 + 9. Let d = w - -4. Does 21 divide v(d)? True Let u(i) = 5*i - 27. Let w be u(5). Does 16 divide w - (56/16)/((-2)/184)? True Suppose 0*x - 2*x + 20 = 0. Suppose -5*r + x = -m - 10, -4 = -r + 2*m. Suppose -3*c = 4*w - 152, -c - 147 = -r*c - 3*w. Does 6 divide c? False Let b = 3653 - 3353. Is 173 a factor of b? False Let s = -99 - -200. Let i = -24 + s. Let g = -12 + i. Is 30 a factor of g? False Let b(u) = 3*u**2 + 3*u - 2. Let f = -26 + 27. Let a be b(f). Does 3 divide a/16 + (-39)/(-4)? False Suppose 2*f + 5*s - 18 = -1, 4*f = -5*s + 29. Is 4 a factor of 8/(-12) - (-4 - 598/f)? False Suppose -5*w + 65*k + 315 = 62*k, -3*k - 51 = -w. Is 11 a factor of w? True Let b = -15 - -15. Suppose 0 = 5*w + 5*y + 990, -3*w + 0*y - y - 602 = b. Let r = w + 283. Does 27 divide r? True Suppose -774*u = -810*u + 55944. Is u a multiple of 14? True Is (6 - 3)*-1 - 13407/(-3) a multiple of 10? False Let f = 1261 + 3002. Is f a multiple of 87? True Suppose 5558 - 4734 = 4*w - 5444. Is w a multiple of 16? False Let s(w) = 18*w - 5. Let p(b) = -b - 1. Let x(v) = 20*p(v) + 5*s(v). Is x(3) a multiple of 15? True Suppose -5*h + 0*h + 25 = 0. Let z(p) = 1 + p + 8 + 2*p - 2*p. Does 14 divide z(h)? True Let d = 10049 + -5123. Suppose -1804 = 14*v - d. Is v a multiple of 5? False Let j = -1828 - -7081. Is j a multiple of 17? True Let k = 20 + -22. Does 18 divide (171/k)/(3/(-20) + 0)? False Suppose 27*t + 28359 - 122088 - 39786 = 0. Is 14 a factor of t? False Let l = 10213 + -3158. Is 111 a factor of l? False Suppose 0*t - 20 = 2*t - 4*m, 3*t + 5*m - 3 = 0. Does 4 divide (-15)/(-2) - 5/40*t? True Let j(r) = -31*r - 10. Suppose 5*t + 4 = -b, 3*t + 19 = -5*b - 1. Let u be j(b). Suppose -k + u = -3*q, 3*k + 0*k - q - 374 = 0. Does 32 divide k? False Let n(d) = -d**2 + 5*d - 1. Let u be n(3). Suppose -54 = -2*h - u*l - 9, -l = 2*h - 49. Is h a multiple of 5? True Suppose 0 = 2*s - l - 7273, 762*s - 760*s + 2*l - 7282 = 0. Is s a multiple of 8? False Let o(x) = -x**3 + 14*x**2 - 20*x - 14. Let g be o(6). Let j = g + -142. Is 3 a factor of j? True Does 4 divide ((-330)/4)/((-121)/3146)? False Suppose 0*t + 3152 = 4*j + 4*t, -4*j + 3154 = 5*t. Is 7 a factor of j? False Let z(d) = d**3 - 12*d**2 + 22*d + 28. Let n be z(9). Let b(y) = -6 - 1 + 2 + 9*y - 12 + y**2. Is 23 a factor of b(n)? False Let k(r) = -49*r**3 - 18*r**2 - 32*r. Is k(-3) a multiple of 8? False Let c(t) = -t**3 + 6*t**2 - 3*t + 1. Let w be c(4). Suppose 0*j = -5*j + 15. Suppose 4*d = -j*h + 71, -d + 0*h - 4*h + w = 0. Is 11 a factor of d? False Let p = 300 - 485. Let j = p - -253. Is j a multiple of 46? False Let r = 9364 + -6628. Does 36 divide r? True Suppose -39*t = 17*t - 19*t - 235542. Is t a multiple of 40? False Let l = 47 + -38. Let w = l - -7. Let g = -8 + w. Does 2 divide g? True Let q(v) be the third derivative of -7*v**4/24 + 5*v**3/3 - 16*v**2. Is 5 a factor of q(-11)? False Suppose -15*h + 16856 = 5*h - 6*h. Is h a multiple of 7? True Let o be ((-18)/2 + 2)*-19. Let i = 57 + -127. Let p = o + i. Does 14 divide p? False Let z = 2152 - 432. Does 20 divide z? True Let u = -97 + 100. Is 10 a factor of 339/(-6)*u/((-12)/8)? False Suppose 2*m - 3451 - 905 = 0. Is m/27*(1 - -2) a multiple of 25? False Let l = -18 - -26. Suppose -3*h - 7 - l = 0. Is 17 a factor of 2/10 + ((-74)/h - -2)? True Let l(f) = 2*f + 25. Let d be l(-5). Suppose 0 = 12*c - d*c + 360. Does 15 divide c? True Suppose 3*x + 6 = 9. Suppose 3*g - x - 29 = 0. Suppose -4*c - g + 66 = 0. Is 14 a factor of c? True Let x(t) = t - 11. Let q = 20 + -6. Let a be x(q). Does 37 divide a/(6/296) - 0? True Suppose 0 = -4*a + 4*r, 8*a - 6*a + r = -12. Does 8 divide (236 - a)*(-12)/(-18)? True Suppose 5*l - 5 = 0, -5*l = 2*v + 3 - 34. Suppose v = 4*i - 7. Suppose -3*j - 2*u + 178 = -u, 4*u - 292 = -i*j. Is 10 a factor of j? True Let x = -196 + 193. Is 7 a factor of 1*-2*(1095/(-10) - x)? False Let p = 4234 - -5334. Is 26 a factor of p? True Suppose 19*m + 15*m - 1974 = 33*m. Is m a multiple of 47? True Let c(g) = -g**2 + g + 68. Let l(d) = d**3 - d**2 - 2. Let k(s) = c(s) - l(s). Is k(0) a multiple of 11? False Let k(z) = -z**2 + 2*z - 4*z + 23*z - 40. Let p(c) = c**2. Let n(j) = -k(j) - 2*p(j). Is n(-20) a multiple of 15? True Let v(j) = 3*j - 9 + 18 + 23 + 0. Let o be v(-8). Suppose o*r - 157 + 29 = 0. Does 4 divide r? True Suppose 7*l - 293 = 771. Let r = -22 + l. Does 10 divide r? True Suppose -3*y + 27517 = -4*i, -207*i - 27522 = -3*y - 204*i. Is y a multiple of 13? False Suppose 2*f + f - 3348 = 0. Is 9 a factor of ((-48)/(-64))/(1 - 1113/f)? True Let i(a) = -a**2 - 38*a + 29. Let u be i(-16). Suppose -s - 193 = -3*s + g, 3*g = -4*s + u. Is 8 a factor of s? True Suppose -2*u + 3*d + 218 = -3*u, u = 3*d - 224. Let h = u + 330. Suppose -h = -5*b + 71. Is 6 a factor of b? True Let f = 190 - 104. Let g = f + -52. Is 2 a factor of g? True Let k(b) = b**2 + 3*b - 10. Let c(d) = -d**2 - 3*d + 1. Let s be c(2). Let j be k(s). Let p = j - 34. Is 3 a factor of p? False Suppose -2*w + 9341 + 2947 = 0. Suppose -w = -5*x - 7*x. Is 15 a factor of x? False Let s(f) = f**2 + 13*f + 9. Let j be 0 - -4 - (16 - 1). Let z be s(j). Does 4 divide (z + 11)/((-1)/8)? True Let n(o) be the third derivative of 5*o**4/24 + 25*o**3/2 - 32*o**2. Is 19 a factor of n(36)? False Suppose 6*c = -6 - 12. Let h be 9/(-3) + (-15)/c. Suppose h*f = -3*f - 2*t + 256, 3*t + 58 = f. Is f a multiple of 26? True Suppose q + k - 6 = 114, -4*q + 5*k + 453 = 0. Is q a multiple of 2? False Suppose -t - 3 = 0, 2*b - b + t = 94. Suppose -1053 = -b*c + 88*c. Is c a multiple of 14? False Let u(n) = n**3 - 5*n**2 - 8*n. Let b be u(6). Let a(k) = 61*k - 153. Let o be a(2). Let i = b - o. Is i a multiple of 7? False Let v(u) = -u**3 + 53*u**2 - 98*u + 274. Is 10 a factor of v(51)? False Let g(f) = 9*f + 5. Let p(l) = 17*l + 9. Let s(m) = -11*g(m) + 6*p(m). Let c be s(1). Suppose t - c*t + 12 = 0. Does 10 divide t? False Suppose -49*s = -50*s + 25. Let o = 220 - s. Is o a multiple of 15? True Let p = -122 - -189. Let t be -7*(8 + -11 + 7). Let d = p + t. Does 13 divide d? True Let w(u) = -7*u**2 - 46*u + 6. Let m be w(-6). Does 6 divide 17*5 - (30 - m)? False Let x be (-112)/16*(2 - 1). Does 19 divide 15966/60 + x/70? True Suppose 126*l - 75*l = 62730. Is 88 a factor of l? False Let t be ((-2)/6)/(-5*(-1)/15). Is 6 a factor of -1*(t - 150) + -6? False Let h(q) = 69*q**3 + q**2 + 16*q - 27. Is h(2) a multiple of 11? True Let t be 19 + -13 + (-1 - 5). Suppose -4*h = x - 1843, t*h + 5*x - 1395 = -3*h. Does 23 divide h? True Let p(x) = x**2 + 3*x - 25. Let a be 4/(34/10 - 3). Let s be p(a). Suppose -9*o - s = -12*o. Is o a multiple of 5? True Let l be (-7)/5 - -1 - 43/5. Does 23 divide 2 + (-426)/(-18) - 3/l? False Suppose 3*k + 12*k - 240 = 0. Does 3 divide (2 + 0)/(k/304)? False Suppose -114*u + 644192 = 387272 - 747876. Is 39 a factor of u? True Let p be (((-212)/(-6) - -2) + -2)*3. Suppose x = p + 13. Is x a multiple of 7? True Let a(w) = -w**3 + w**2 - w + 1. Suppose -23 - 7 = -5*t. Let c(z) = -5*z**3 + 6*z**2 - 8*z + 5. Let k(v) = t*a(v) - c(v). Is k(-3) a multiple of 22? True Let d(x) = -x - 1. Let c be d(10). Let s = -22 - c. Is 79/3 + s/33 a multiple of 13? True Let s(k) = -k + 4. Let f be s(0). Suppose f*z = 3*x - 838, x - z = -5*z + 306. Is 31 a factor of x? False Let y = 24 - -6. Suppose y = -2*g - 3*g - 4*l, -3*g + 4*l = -14. Does 3 divide (-2)/(-1) - 8*g/4? True Let z be (-2)/(-4)*-1*-10. Suppose l + 104 = -0*o + 2*o, -510 = 5*l - z*o. Let s = l - -196. Does 16 divide s? True Let t(g) = 4*g - 23. Let p(n) = 1. Let k(v) = p(v) + t(v). Let z be k(7). Is 11 a factor of 111/2 + (-3)/z? True Suppose -6*z - 2582 = -11552. Suppose 5*j - z = q - 245, 4*q + 1250 = 5*j. Does 25 divide j? True Suppose 126*k = -6*k + 217808 + 9364. Does 33 divide k? False Let b be (-5 - -4) + 1*4/1. Suppose -5*s - w + 1056 = 0, 74 + 561 = b*s + 2*w. Is 21 a factor of s? False Suppose 16697 = 163*d - 250976 - 46917. Does 19 divide d? False Suppose 4*l - 3*y = -4*y + 133, 0 = 3*l + 4*y - 103. Let f = 78 + l. Is 8 a factor of f? False Let u = 5698 - 2749. Is 176 a factor of u? False Let r = -85 + 3614. Is 49 a factor of r? False Let f(y) = -7*y - 14. Let k be f(-3). Suppose 0 = 9*n - k*n - 52. Does 6 divide n? False Suppose 23 = 3*r - 5*n, 0*r - 3*n - 11 = r. Suppose 0 = 5*s + 2*b - 19, 5*s + r = 4*s + 2*b. Suppose 4*y + 0*j - j = 37, 7 = -y - s*j. Does 4 divide y? True Let u(a) = 2*a**2 - 5*a - 1. Let h be u(6). Suppose 0 = -5*g - 4*b - b + 95, 2*g + 5*b = h. Is g a multiple of 6? True Let h = -1784 + 6458. Is 82 a factor of h? True Suppose -3*v + 1415 = -7*x + 2*x, 3*x = -12. Suppose -v + 3117 = 17*k. Is 39 a factor of k? True Let q = -6 - -9. Suppose q*k + 4*z = 39, 15 = 5*k + 4*z - 42. Suppose -2 = y - k. Is 3 a factor of y? False Let p(z) = 11*z**2 - 31*z + 9. Let h be p(-16). Suppose 0 = -15*n - 12*n + h. Does 4 divide n? False Suppose 3*p + t - 23145 = -2*t, 3*t + 23115 = 3*p. Does 30 divide p? True Let a(k) = 7*k**2 + 64*k - 647. Is a(16) a multiple of 26? False Let v = -35 - -26. Let d = 13 + v. Suppose 5*a - 28 = d*w - w, 4*a = 5*w + 12. Does 5 divide a? False Let p = 299 + 27. Suppose 0 = -5*y + 5*n + 515, 3*n = 4*y - 81 - p. Does 14 divide y? True Let f(a) = 80*a**2 - 2*a. Let z be f(1). Let d = -34 + z. Is 1/(0 + 2/d) a multiple of 6? False Let p = -44 + 237. Let r = p + -103. Is r a multiple of 15? True Let k(c) = 3*c**2 - 11*c + 6. Let z be k(3). Suppose -86*l + 79*l + 3815 = z. Is 20 a factor of l? False Suppose 3*c = 15 + 12. Let n = c + 26. Does 20 divide n? False Suppose 76*d = 72*d + 248. Suppose 11*c = 9*c + d. Is c - 3/(4 - 1) a multiple of 21? False Let x = -656 - -371. Let c = x + 638. Is c a multiple of 16? False Let a(g) = 69*g - 5. Let c be a(4). Suppose -11*l - 142 = 1904. Let z = c + l. Is z a multiple of 17? True Suppose -u + 1804 = -4*x, -10*x = -11*x + 4. Does 10 divide u? True Does 15 divide ((-877)/10 + 18/36)*2125/(-50)? False Let w(b) = 2*b**2 - 19*b - 12. Let l be w(7). Let j = 60 - l. Is 32 a factor of j? False Suppose 3*n = 4*d + 3589, -15*n + 14*n - 2*d = -1203. Is 11 a factor of n? True Let k(u) = -5*u**3 + u**2 - u - 1. Let m be k(-4). Suppose 0 = -3*o - b + 155, 3*o = 4*b + 98 + 77. Suppose o = 8*r - m. Is r a multiple of 20? False Suppose -3118 = -2*o - 4*s, -70*o - 6258 = -74*o + 3*s. Is 8 a factor of o? False Does 92 divide (22/(-154) - 8/(-14)) + 35417/7? True Suppose 4*h + 2*x = -70, 5*h + 8 = -4*x - 72. Is ((-15)/h - 1180/16)/(-1) a multiple of 73? True Let a = 8826 + -4911. Does 19 divide a? False Suppose -7*h + 3985 = 289. Suppose 6*i - h = i - 3*w, 5*i - 520 = 5*w. Is 5 a factor of i? True Let p(d) = d**3 + 3*d**2 + 2*d. Let c be p(-2). Suppose c = 5*y + 4 - 4. Suppose -2*u - 3*f + 283 = y, 6*u - 2*u - 599 = 5*f. Does 15 divide u? False Let p(w) = -w**2 - 21*w + 22. Let m be p(-22). Suppose m = -3*g - v + 414, 9*g = 12*g - 5*v - 414. Does 4 divide g? False Let c(o) = 5*o + 13. Let s be (-4 + 26 - 4) + 1 + 1. Let b = 25 - s. Is 13 a factor of c(b)? False Let s = -106 - -113. Suppose 1464 = s*a + 232. Is a a multiple of 22? True Suppose -4*a = -93 - 63. Let z be (-112)/(-32)*(-8)/14. Let d = z + a. Does 29 divide d? False Let h(i) = -3*i**3 - 26*i**2 - 52*i - 393. Is 5 a factor of h(-11)? False Suppose 0 = -5*i + 68 - 298. Let b = 49 + i. Suppose -5*k + 2*k + 4*o = -26, -7 = -k + b*o. Does 3 divide k? False Let s be (-1 - -1)*(11 + -5)/12. Suppose 0 = -3*u + 3*f + 18, -u + 14 = -s*u - 3*f. Suppose -6*g = -u*g - 176. Is g a multiple of 5? False Suppose 4*d - 595 = 909. Suppose -18*n + 22*n = d. Is 8 a factor of n? False Suppose -1288 = 25*g + 77*g - 5878. Is 15 a factor of g? True Let j be (-30)/(-210) - (-2)/(-14). Let u(i) = i**3 - 5*i**2 + 3*i - 7. Let w be u(5). Suppose j = 3*r - w*r + 270. Does 10 divide r? False Let z(n) = 3 - 7*n**2 - 8*n - 7 + 8*n**2 - 5. Is 15 a factor of z(14)? True Suppose 2*v - 12*t + 14*t - 56 = 0, -v = -2*t - 40. Does 8 divide v? True Is 18 a factor of (-1 + 10)*15*1490/25? True Suppose g - 3 = 105. Suppose 0 = -18*v - 204 - 192. Let t = g + v. Is t a multiple of 16? False Let r(y) = -y**3 - 5*y**2 + 18*y + 31. Let w be r(-7). Suppose z = 5*f - 980, -w = 3*z + 12. Is f a multiple of 19? False Suppose -4 = -5*q + 21. Let x(c) be the third derivative of c**5/60 - c**4/24 - c**3/2 - 4*c**2. Is x(q) a multiple of 2? False Let n = -2881 - -4833. Is 139 a factor of n? False Suppose 5 = -3*n + 2*x - 0, 3*n = -2*x - 25. Does 20 divide -3 - (2/5 - (-1572)/n)? False Let n = 725 + -369. Does 5 divide n? False Let r(x) = x**2 + 2*x - 9. Let w = 35 - 43. Let q be r(w). Let g = 51 - q. Is 12 a factor of g? True Suppose 0 = 4*p + 4*j - 3220, j = -2*p + 5*j + 1580. Suppose p = 2*o - 2*m, -11*m + 2 = -10*m. Is o a multiple of 67? True Let z = 38 - 36. Let g be -3 + 5/2 + 123/z. Does 15 divide g + 8/2 + -5? True Let j(n) = n**2 + 10*n + 17. Let l be j(-8). Let p be 0/(-2) - (-124 + l). Let t = p - 68. Is 33 a factor of t? False Let d(m) = 56*m**2 + 9*m - 19. Suppose 7*i - 10 = 4. Is 24 a factor of d(i)? False Suppose 2*k - 16 - 22 = -4*c, 0 = 5*c + 4*k - 46. Suppose 6*v + 20 = -c. Is 14 a factor of (-142)/(-5) + 2/v? True Let q(i) = 3*i**2 - 3*i - 8. Let s(w) = -4*w**2 + 4*w + 9. Let m(p) = 3*q(p) + 2*s(p). Let j be m(-3). Is 1492/20 - j/(-15) a multiple of 22? False Does 148 divide (-296)/(801/81 + -10)? True Suppose -10*c + 2*c = -40. Suppose f + 5*m + 20 = -4*f, c*f = -m. Is (6/3)/f + 0 - -20 a multiple of 11? True Let r(j) = -5*j - 19. Let n be r(10). Let w = 33 + n. Let i = 40 - w. Does 38 divide i? True Let b be 0/5 + 4 + 4. Suppose -12*h + 10*h + b = 0. Suppose 5*v - 23 = 5*f + 162, 20 = -h*f. Is v a multiple of 8? True Let n be 3 - 2 - (-3 + 1/1). Suppose 4*a - n*a - 9 = 0. Is (-6)/a*(-294)/4 a multiple of 7? True Let a be (3/(-2))/(1/(-272)). Let y(x) = x**2 + 11*x + 40. Let n be y(-6). Does 18 divide (-4)/n + (a/20 - 2)? True Let y be (-1 + 0)/(1/(-3)). Suppose 3*j - 2*m = -37, 1 = -y*m + 7. Is 12 a factor of 114/8 + j/44? False Is 716705/(-628)*(-2 + 3 + -5) a multiple of 46? False Suppose -3*s - 51 = 66. Let w = 63 + -139. Let a = s - w. Does 13 divide a? False Let t = -8 + 16. Let x(v) = 2*v**3 - v**2 + 1. Let c(j) = 3*j**3 + 6*j**2 - 3*j + 13. Let u(z) = -c(z) + 2*x(z). Is u(t) a multiple of 3? False Suppose 18*z + 270 = 9*z. Is ((-5985)/z)/((-3)/(-4)) a multiple of 14? True Suppose 4*q - 4*y - 7432 = -0*y, -3*y - 9282 = -5*q. Is 103 a factor of q? True Let r = -2655 - -2615. Let x be ((-7)/(-3) + -1)*-3. Let b = x - r. Is b a multiple of 36? True Let l = -2194 - -3851. Does 13 divide l? False Suppose 19 = 14*q - 9. Suppose 43 + 353 = q*w. Does 18 divide w? True Suppose 0 = -0*o + 12*o - 36. Suppose o*d - 30 = -3*p, -25 = 2*p + 3*p. Does 12 divide d? False Let j(z) = -z. Let q(w) = -8*w + 35. Let n(m) = 3*j(m) + q(m). Does 29 divide n(-2)? False Let n(h) be the first derivative of -h**2 + 11*h - 2. Let t(g) = 3*g**3 + 21*g**2 + 25*g + 42. Let o be t(-6). Is 11 a factor of n(o)? True Let q(g) = -g**3 + 3*g**2 + 2*g + 6. Let z be q(4). Let b(l) = -64*l - 7. Let k(v) = 21*v + 2. Let j(s) = z*b(s) - 7*k(s). Is j(-2) a multiple of 38? True Suppose -4*g + 7*g - 4*i - 55 = 0, -5*i = 2*g - 75. Suppose 151 = -2*t + 4*f + g, 4*t + 237 = 3*f. Let h = -47 - t. Is h even? True Does 13 divide (63 + -28)*(244 + 3)? True Is 32 a factor of (12/(-12) - -3)*1109*2/4? False Let x(p) = p**2 + 2*p - 4. Let g(u) = -u**2 - 2*u + 4. Let y(t) = 6*g(t) + 7*x(t). Let s be y(2). Is -4*s/(-40) + 223/5 a multiple of 23? False Let y be ((-66)/55)/(3/10). Let u be (y - (2 + -4))*1. Is (9 - 12)*u*62/4 a multiple of 31? True Is 3 a factor of 1426 + 2*(-77)/(-14)? True Is (-12)/(40/8 - 3)*-180 a multiple of 108? True Let j be ((0 - 4)/(-12))/((-2)/(-30)). Let v(d) = d**3 - 6*d**2 + 6*d + 2. Let h be v(j). Suppose -h*f + 252 = 35. Is 25 a factor of f? False Let x(b) = -b**3 - 18*b**2 + 11*b - 15. Let n be x(-19). Suppose n - 99 = 2*p. Is 4 a factor of p? False Suppose -4*n = 3*z - 3*n - 8, 2*z + 5*n = -12. Suppose 2*s + 2*s + 11 = 5*k, 4*k = z*s + 8. Is 14 a factor of ((-92)/(-12) - k)*(0 - -24)? True Let d = -35 + 41. Let b = d - 2. Suppose 200 = -b*r + 14*r. Does 10 divide r? True Let t(g) be the third derivative of -g**5/30 + 37*g**4/12 + 5*g**3/2 + 4*g**2. Is t(33) a multiple of 9? True Suppose -b - 2*z + 52 = 2*z, 3*b + z = 200. Suppose -135 = -l + b. Is 24 a factor of l? False Suppose 0 = 4*k - 24 - 24. Suppose 1670 = k*o - 706. Is 33 a factor of o? True Let b = 48 - -57. Let i be (-5)/(b/(-1308)) - (-12)/(-42). Let o = -6 + i. Does 14 divide o? True Let j = 182 - 130. Let a = j - 13. Is a a multiple of 23? False Suppose 0 = -5*p + 20, 5*n = -0*n + 3*p + 138. Let c = -28 + n. Suppose c*d = -3*b + 22, 4*d = -0*d + 3*b + 8. Is d a multiple of 5? True Suppose 4*j - 295 = -0*a - a, 0 = -2*j + 8. Suppose 0 = n + 3*f - a, -1144 = -2*n - 2*n + 2*f. Suppose -k - 2*k = -n. Is k a multiple of 19? True Let x(m) = 2*m**2 - 29. Let k be x(-13). Suppose -4*j = 4*u - 820, 614 = 4*u - 2*j - 200. Let s = k - u. Is s a multiple of 26? False Let s(v) = 8*v**2 + 51*v - 392. Is 19 a factor of s(7)? False Let d(l) = -l**2 + 7*l + 33. Let v be d(11). Let f(g) = -3*g + 55. Is 22 a factor of f(v)? True Let j(o) = -o**2 - 11*o + 12. Let x be j(-10). Suppose 2*m - 4*c = 6, 5*m - x = 3*c - 0*c. Suppose -119 = -y - y - 5*s, 290 = m*y + 5*s. Does 10 divide y? False Let v(i) = 72*i - 41*i + 3 + 101*i + 28*i. Does 33 divide v(2)? False Suppose 0 = -5*u - 2*y + 114, -3*u + 5*u + y - 46 = 0. Suppose -26*f = -u*f - 368. Does 9 divide f? False Let x(b) = b**2 - 13*b + 17. Let m be x(12). Suppose m*o = -o + 18. Suppose 54 = o*d - z + 8, -3*d + 5*z + 38 = 0. Does 16 divide d? True Suppose -6*h = 106 + 218. Let v be (-3)/(-5) + h/(-10) - 0. Suppose -v*o + 584 = -358. Is 29 a factor of o? False Let z(b) = -107*b - 2156. Is z(-28) a multiple of 4? True Let t = -110 - -113. Suppose 1220 = t*p - 160. Does 20 divide p? True Suppose -2*z + 4*v = -8, -2*v + 5*v + 11 = 4*z. Suppose -z*f + 715 = 9*f. Is f a multiple of 44? False Let n(z) be the third derivative of 3*z**4/8 + 4*z**3/3 + 16*z**2. Let c be n(2). Suppose -6*q + 206 = c. Is q a multiple of 7? False Suppose -3*l - 452 = v, 4*l + v - 45 = -649. Let n = 162 + l. Is 5 a factor of n? True Let p(f) be the third derivative of 1/8*f**4 + 1/3*f**3 + 1/12*f**5 + 0 - f**2 - 1/120*f**6 + 0*f. Is p(4) a multiple of 13? False Let u(g) = 319*g**2 + 47*g + 13. Is 11 a factor of u(4)? False Let s be 0 - (-2 + (94 - 3)). Let k = s - -177. Is 23 a factor of k + 3 - (-1)/2*2? True Let m be (-1)/(-5 + 6)*-683. Let d = 997 - m. Does 45 divide d? False Suppose 134*w + 86964 = 146*w. Does 29 divide w? False Let g be ((-4)/(-6))/(4/12). Let w be ((-48)/30)/(g/(-5)). Let v(o) = -o**3 + 2*o**2 + 9*o + 3. Is 4 a factor of v(w)? False Let c = -2571 - -4978. Is 83 a factor of c? True Suppose -3*m + 9337 = -p, 0 = -m - 4*p + 3309 - 201. Is m a multiple of 149? False Let l(w) = -45*w + 47. Suppose -4*y = -4*x + 8, 4*y + 3*x = -18 + 3. Is 14 a factor of l(y)? True Suppose -5*a = 4*t - 14560, -210*a + 212*a - 5852 = 4*t. Is 6 a factor of a? True Let f(b) = -b**3 + 17*b**2 + 244*b - 32. Is 39 a factor of f(14)? False Let r be 10684/30 + 1 + (-10)/75. Let h = -237 + r. Does 10 divide h? True Let q = -4895 + 5343. Is q a multiple of 8? True Suppose 36093 + 22684 + 2603 = 33*s. Is 30 a factor of s? True Let w(m) = -2*m + 11. Let s be w(6). Let x be (4 - (-4 - -13))*s. Suppose -2*n + 5*k + 5 = 0, 4*k + 1 = x. Does 2 divide n? False Suppose 0 = -15*z + 36*z - 176337. Is 27 a factor of z? True Suppose -b - 3*a - 91 = -231, 5*b - 5*a = 720. Let u = b - -114. Is 35 a factor of u? False Let y be (-2990 - (-4 + 6))*-2. Suppose -9*u = 8*u - y. Is 36 a factor of u? False Let b(l) be the second derivative of 11*l**7/210 + l**6/360 - l**4/24 - 5*l**3/2 - 11*l. Let a(m) be the second derivative of b(m). Is a(1) a multiple of 22? True Suppose 2*s - 16 = -2*s. Suppose 3*b = b + 8, -24 = -4*f - s*b. Suppose a = f*a - 10. Is 10 a factor of a? True Suppose -3*q - 298 = -2*y, -q - 26 = -3*y + 78. Let k = -62 - q. Does 9 divide k? True Let m(s) = 6*s + 60. Let r be m(-4). Suppose 4*b + 2*d - 2268 = 0, -4*b = 3*d - r - 2230. Does 59 divide b? False Let n(m) = -520*m + 755. Is 77 a factor of n(-16)? False Let z(j) = 10*j + 16. Let l be z(5). Let m = 144 - l. Let t = m + -38. Is 13 a factor of t? False Let v(s) = 3*s**2 + 19*s - 34. Let f be v(-8). Let g(y) = 2*y**2 - 3*y + 3. Let n be g(5). Suppose n + 52 = f*z. Is 3 a factor of z? True Suppose -29*b = 91*b - 25560. Is b a multiple of 5? False Let n(z) = -z**3 - 6*z**2 - 3*z + 11. Suppose -4*j - 20 = w, 0 = -6*j + 4*j + w - 16. Does 25 divide n(j)? False Is 0 + (-3070)/(-6) - 6*(-12)/54 a multiple of 5? False Let t(y) = y**3 + 28*y**2 - 34*y - 25. Suppose 0 = -6*q + 16 - 190. Is t(q) a multiple of 10? True Let u(p) be the third derivative of p**5/60 - 5*p**4/24 - p**3/3 + 8*p**2. Let c be u(-10). Suppose 2*n - 7*n - 2*k = -c, -n = -k - 24. Is n a multiple of 8? False Let v = 97 + 1409. Does 5 divide v? False Let r = -181 + 184. Suppose -r*m + 12 = 0, 2*m - 1839 = -5*b + m. Is b a multiple of 14? False Suppose 5 = -l, 3*l + 33 = 5*i + 3. Suppose -3*q + 8*q + 2*j = 19, -5*q + 11 = -2*j. Suppose q = i*a - 69. Is a a multiple of 8? True Is 5194 + (-45)/(-15) + 14 a multiple of 42? False Let r be (-2)/1 - (-128)/32. Suppose r*c = -5 + 13. Does 4 divide c? True Suppose 9*s + 16 = 43. Is (s/2)/(6/728) a multiple of 9? False Let p(r) = -r**3 - 13*r**2 + 39*r - 13. Let c be p(-17). Suppose -11*d + 16*d = c. Is 24 a factor of d? True Suppose -6*x = -11*x - 55. Let u(d) = 3*d**2 + 14*d. Is u(x) a multiple of 48? False Suppose 39*q - 150 = 49*q. Is 10 a factor of (112/(-21))/(1/q)? True Suppose -x + 239 = -o, -13*o + 9 = -16*o. Is x a multiple of 62? False Suppose -5*c = -u + 33, 0*u - 4*u = -5*c - 87. Suppose -u*o + 2205 = -13*o. Is 17 a factor of o? False Suppose -3*u - 20 = u. Let q(j) = -j**3 - 3*j**2 + 9*j - 5. Let w be q(u). Is 132*(w - 2 - -3) a multiple of 31? False Suppose -3*p + 128 = 4*y - 166, -p - 3*y = -98. Let f = p + -50. Is 4 a factor of f? True Let z be 10/(-12) + 92210/60. Suppose -z = 54*a - 62*a. Does 32 divide a? True Let s = 33 - 37. Let o be s/(16/12) - 18. Let v = 72 - o. Is 29 a factor of v? False Suppose 44*f - 51*f = -42. Does 3 divide f/5 - 4288/(-160)? False Suppose -a = z - 1296, -11*z = -15*z + 4*a + 5200. Is z a multiple of 22? True Suppose -56*f = -5*f - 177990. Is f a multiple of 64? False Let a(c) = -105*c + 14. Let l(v) = v - 9. Let n be l(5). Is 31 a factor of a(n)? True Let o(x) = 304*x - 1938. Is 63 a factor of o(34)? False Let l be 163/1*(4 - 0). Let v = -376 + l. Is 10 a factor of (v/(-16) + 1)*2*-2? False Suppose -d + 0*d = -6. Let r = -5 + d. Is 8 a factor of (-195)/(-10) + r*2/(-4)? False Let b(a) = 72*a + 1188. Does 45 divide b(36)? True Let k = 2569 + -2113. Does 24 divide k? True Let n be (2/(-6))/((-13)/117). Let p be ((36/4)/n - 4)*-1. Is 2 a factor of p*5*3/1? False Suppose 3*y - y - 10 = 0. Suppose -242 = -2*q - 2*w, -q - 493 = -y*q - w. Suppose 0 = -68*z + 72*z - q. Is z a multiple of 9? False Let x be (-357 + 1)*(-153)/(-68). Let v = x - -1294. Does 35 divide v? False Suppose 0 = -2*l - 22 - 24. Let z(d) = d**3 + 24*d**2 + 25*d + 56. Is z(l) a multiple of 3? False Let d = -15103 + 22123. Is d a multiple of 90? True Suppose -4*u + 438 = -3*s + 6*s, -5*u = 2*s - 551. Suppose 0 = -u*t + 114*t - 213. Is 24 a factor of t? False Suppose -2*n = -i + 679 + 11, -5*i + 3435 = 5*n. Suppose 2062 = 10*m - i. Does 24 divide m? False Suppose s + 27 = f - 260, 0 = f - 5*s - 299. Suppose -f*t - 240 = -288*t. Does 9 divide t? False Does 3 divide (-3074)/(-159)*(98 - -1)? True Does 11 divide (-3)/1*(-166324)/129? False Let r be (2 + -1)*(0 - 0). Suppose 4*o + 328 = 2*i, 2*o = i + 2*i - 472. Suppose -5*t = -2*q + q + 101, -2*q - 2*t + i = r. Does 8 divide q? False Let h(n) = 2*n**3 + 4*n**2 - 3*n. Let i be h(1). Suppose 3*b - 5*s - 949 = -b, 0 = -i*b + 4*s + 713. Is b a multiple of 21? True Suppose 5*q - 27 = 2*q. Let l be 5/1 - (q + -7). Suppose 140 = 4*t - 4*j, l*t + t - j = 131. Does 14 divide t? False Suppose 0 = -3*x - 10 - 20. Let u(l) = l**3 + 11*l**2 + 6*l + 21. Let o be u(x). Suppose g - 4*n - o = -8, -3*g = 4*n - 239. Is g a multiple of 16? False Let m(h) = 23*h**2 - 18*h + 60. Let d be m(8). Is d/5 + (-12)/(-30) a multiple of 23? False Does 25 divide 2/((-6)/1146*6/(-15))? False Let j(z) = z**3 + 6*z**2 + 2*z + 21. Let m be j(-6). Suppose 357 = m*w + 60. Is w a multiple of 33? True Does 12 divide (28 - 61)*(0 + -37) + 3? True Let b = -426 - -625. Let w = b + -145. Does 9 divide w? True Suppose -6 = 2*u + 5*g, g = 5*g + 8. Let w(l) = 0*l**2 - 3*l + 18*l - 9 - l**2 + u*l. Is w(13) a multiple of 43? True Suppose -7*u = -2*u - 75. Suppose -4*i + 4 = -n + 3*n, 0 = -i + 3*n + u. Suppose 42 = 4*q - 2*r + i*r, 2*r - 14 = -q. Is q a multiple of 2? True Let j(p) = 3*p**2 + 5*p - 87. Let c(l) = -5*l**2 - 8*l + 130. Let s(g) = -5*c(g) - 8*j(g). Let k = -23 - -23. Is 23 a factor of s(k)? True Does 51 divide ((-24)/(-15) - 0)/((-7)/((-68740)/8))? False Let z(v) = v**2 - 11*v - 20. Let f = 9 + 4. Let x be z(f). Suppose 0 = -3*h + 66 + x. Does 6 divide h? True Let a(n) = 6 - 15*n + 2*n + 1. Let w be a(7). Does 8 divide (-1)/(2/w*2)? False Suppose 2*n - 2024 = -4*d, -2*d - 5*n + 488 = -d. Is 11 a factor of d? False Let v = 201 - 197. Suppose 102 = v*x - 66. Is x a multiple of 6? True Let a(x) = 2*x**3 - 22*x**2 - 61*x + 104. Is a(20) a multiple of 78? True Let d = 3992 + -3628. Is d a multiple of 7? True Suppose -5*z + 0*a + 171 = 3*a, 140 = 4*z + 4*a. Suppose z*t = 28*t + 20. Suppose t*k = -8, 0 = 6*j - j + 4*k - 32. Is 3 a factor of j? False Let i be (0 + 1)*-12*(-4)/8. Suppose 2*w - i = -2. Let o(n) = 9*n**2 + 2*n + 4. Is 11 a factor of o(w)? True Let c be (-4)/(-8)*-1*8*-3. Is 2/c*6 + 269 a multiple of 23? False Let p(d) = d**3 + 3*d**2 - 15*d - 27. Let o be p(-5). Let y(w) = 30*w**2 + 21*w + 1. Is 8 a factor of y(o)? False Suppose -4 = -3*y - k + 18, -3*k = 5*y - 30. Suppose y*i + 348 = 6*i. Let v = -62 - i. Is 8 a factor of v? False Suppose -3*q = -0*n - 5*n + 19, -5*q + 35 = 5*n. Suppose -5*t = -2*j + 527 - q, 0 = -j + t + 258. Is j a multiple of 15? True Let a(z) = z**2 + z. Let f be (1 + 2)/(5/2 - 1). Suppose 0 = -f*q - 3*n - 17, 6*q - q + 5*n = -40. Is 11 a factor of a(q)? False Suppose 0 = -8*k + 11*k. Suppose k*j + 5*j - 5*p - 370 = 0, -2*j + 142 = -4*p. Is 11 a factor of j? True Let h = 2057 + -1657. Does 6 divide h? False Suppose 0 = -2*b + 3*t - 2*t - 4, -5*b + 5*t - 20 = 0. Suppose -3*z + 6*z - 12 = b, -2*n - 2*z = -848. Suppose -n = -3*y - 2*y. Does 21 divide y? True Let p(x) = 597*x**2 + 60*x + 126. Is p(-2) a multiple of 63? True Suppose -5*v = -3*g - 0 + 26, 3*g = 3*v + 18. Is 23 a factor of (161/(-14))/(g/(-8))? True Let x = -277 + 592. Suppose 163*k = 162*k + x. Is 45 a factor of k? True Let y = 33 + -31. Suppose 2*v - 2*n - y*n = -18, -5*v + 5*n = 25. Is -1 - (-93)/(v - -2) a multiple of 12? False Suppose -517*l + 1664 = -513*l. Let h = 596 - l. Is 10 a factor of h? True Suppose -10*w + 46 = 6. Does 17 divide 211 - -5 - (w - 9)? True Let g = -152 - -222. Suppose 1950 = g*a - 60*a. Does 16 divide a? False Suppose -4*a = -12*a - 632. Let o be (-1)/((-3 + 7)/(-524)). Let b = o + a. Does 11 divide b? False Let i(h) = -2*h**3 - 7*h**2 + 6*h + 1. Let q be i(-5). Is 16 a factor of (q + 15)*(0 - -1)? False Let g(o) = 22*o - 21. Let u be g(-8). Let p = -127 - u. Does 10 divide p? True Suppose 3*x = -4*f + 4243, 0 = -54*x + 49*x + 4*f + 7125. Is 26 a factor of x? False Does 5 divide ((-280)/252)/((-4)/18)? True Let w = -575 + 565. Let x(u) = -18*u + 6*u - 4*u**2 + 3*u**2 + 5. Does 25 divide x(w)? True Suppose d + 4*n = 25, 4*d + 19*n = 14*n + 45. Suppose -40 + 270 = d*u. Does 4 divide u? False Let f = 41 + -16. Let o = 117 + -117. Suppose 2*b - 3*b + f = o. Is 11 a factor of b? False Is 5 + (-460164)/(-310)*(-5)/(-2) a multiple of 16? False Let r = 8107 + 1013. Is 80 a factor of r? True Let i = 35 + 10. Let j = i - 40. Suppose -4*n - 18 = -f, 25 = j*f - 4*n - 145. Is f a multiple of 38? True Suppose 4*t + 5 = -t. Let l = t + 6. Suppose 7 - 3 = 4*k, l*k = 2*q - 127. Does 22 divide q? True Does 56 divide ((-12)/(-32)*14)/((-33)/(-20416))? True Let y(n) = n**2 + 6*n - 5. Let o be y(-7). Let g(m) = 4*m**2 - m - 4. Let q be g(o). Suppose 11*p = q*p + 54. Is p a multiple of 10? False Let f = -4850 - -8847. Is f a multiple of 7? True Let k be 2 - (-2 + 3 + -1). Let y(s) = 10*s - 1 - 7 + 10*s - 6*s. Is y(k) a multiple of 4? True Let y(p) = p - 7. Let s be y(17). Suppose 0 = -s*a + 4*a + 288. Does 23 divide a? False Suppose m - 6*r + 35 = -r, -5*m - 5*r - 115 = 0. Suppose -2*v - 160 = -144. Is 2 a factor of (v/(-10))/(m/(-125))? True Let d(s) = s**3 - 10*s**2 + 4. Let n be d(10). Suppose 5*a - 416 = 4*k, n*a - 331 = -3*k + 8*k. Is 29 a factor of a? False Suppose -38*x + 16 = -36*x. Suppose x*m - 1277 = -77. Is 25 a factor of m? True Suppose -4*c - 2*f + 1 = -3, -4*c - f = 0. Let z be (-35)/105*(0 + c + 7). Is 20 a factor of 43/1 - z/((-2)/3)? True Suppose -18*u = -29*u + 33. Suppose -u*w - 4*w = -105. Is w a multiple of 10? False Let r be (-234)/(-144) + 9/24. Suppose 4*t + r*t = 276. Is 24 a factor of t? False Let s(o) = 4*o + 47. Let n be s(-11). Suppose n = -6*u + 297. Is u a multiple of 16? False Let s = -41 - -73. Suppose -s*g + 25*g = -385. Does 11 divide g? True Let x = 307 - -2487. Is x a multiple of 7? False Let l(a) = a**3 + 6*a**2 + 4*a - 3. Let v be l(-5). Does 43 divide 4 + v*1 + (33 - -4)? True Let r = 22 + -15. Suppose m = 3*s + r, 3*s + 0 = -m - 5. Is 14 a factor of 49 + m + (0 + 1)*3? False Let x(t) = -2*t + 24. Suppose 5*n + 2*s - 1 = -s, 7 = -n - 3*s. Let f be (-3)/n + 9/6. Is 6 a factor of x(f)? True Suppose 2*k - 17023 = 22*m - 17*m, 3*k - 25539 = 3*m. Is 33 a factor of k? True Suppose 0*l = -l + 58. Let m = 36 - l. Is 13 a factor of (m/33)/(1/(-78))? True Suppose 3*j = 2*m - 4123, -2*j - 2074 = -m + 2*j. Does 79 divide m? True Suppose 3*a - 132 = 3*r, -2*a - 49 = r - 4*a. Let n = r - -36. Is 14 a factor of n/((-12)/136) + 2? False Suppose -5*u - 1587 + 6391 = -4*s, 2*u - 1925 = 5*s. Does 48 divide u? True Suppose 273 = -5*d - 4*a, -3*a + 2*a = -d - 51. Let k = 49 + d. Is (44 + -1)*(k + 2 + 4) a multiple of 27? False Let z = 5153 + -3558. Is 55 a factor of z? True Let s = -814 - 122. Is 25/((-1050)/s) + 2/(-7) a multiple of 7? False Let z = 1179 + 18. Suppose -3*y = -4*h + z, 2*h + 4*y + 296 = 3*h. Does 20 divide h? True Let d(z) = -5*z - 172. Suppose -4*y + 3*y = -4*k + 20, -3*y + k = 5. Let h be d(y). Let b = h + 283. Is b a multiple of 17? False Suppose 4*m = 2*p + 39364, 39350 = 4*m - 20*p + 25*p. Is 82 a factor of m? True Let u be 438/30 - 2/(-5). Let p = -14 + u. Suppose p = 3*k - 107. Does 9 divide k? True Let z be (1 + -3)*(14 - 18). Suppose 16*d = z*d + 1368. Is d a multiple of 9? True Suppose 16465 = 5*i - m, -2*m - 5183 = -3*i + 4696. Suppose 0 = 3*k + 2*p - 1325, 5*k - 4*p = i - 1092. Is 49 a factor of k? True Let x be 4 - (5 - (-1 + 2)). Suppose -2*p + x = -8, 5*o - 764 = -p. Is 21 a factor of o? False Suppose -2*r = -5*v - 25, -5*r - 6*v - 20 = -2*v. Suppose 5*s = 2*i - 24, r + 4 = -s. Is (34/5)/((-4)/(-40)*i) a multiple of 17? True Let d(c) = 69*c**2 + 3*c + 64. Is 40 a factor of d(9)? True Suppose -7*j = -5*j - 5*d - 21, -6 = 2*j + 4*d. Suppose -2*r + s = r - 37, -j*r + 57 = 3*s. Does 14 divide r? True Suppose -1712 = -5*q + r, 6*q = 5*q - 5*r + 358. Let s = q + -193. Is 5 a factor of s? True Suppose 10*m = 2213 + 3867. Suppose m = -10*a + 18*a. Is a a multiple of 13? False Let o = -2286 - -7606. Is o a multiple of 109? False Let m = -148 + 151. Suppose -15 = m*y, 3*k + 16 = -5*y + 192. Does 3 divide k? False Suppose 305*a - 300*a = 1640. Suppose -d - 224 + a = 0. Is d a multiple of 52? True Suppose 3*t - 7014 = q, 4*t - 13333 = 5*q - 3970. Is t a multiple of 41? True Suppose 0 = 5*s + 5*y - 1220, -956 = 15*s - 19*s + y. Is 21 a factor of s? False Let i(q) = -q + 29. Let w(t) = -18*t - 3. Let k be w(-2). Let h = 33 - k. Is 6 a factor of i(h)? False Suppose -10*x - 850 = -0*x. Is 8 a factor of (-1 - 4)*(-51)/x + 11? True Suppose -l - 19*l - 10*l = -58500. Is l a multiple of 6? True Is 2714/5 - 172/(-860) a multiple of 28? False Let w(o) = 3*o - 21. Let t be 2*(28/8 + 0). Let i be w(t). Suppose -5*k + 45 + 65 = i. Is k a multiple of 9? False Let y(i) = -i + 4. Let o be y(-13). Is o/((-102)/(-45))*6/5 a multiple of 3? True Let z = 4717 - 4503. Is z a multiple of 20? False Suppose 2*v = -6, 12*v = 4*s + 8*v - 27660. Is s a multiple of 32? True Let z = 19 - 19. Let a(g) = -2*g + 69 + 0*g - g**2 - g + g. Does 23 divide a(z)? True Suppose 4*i - 2*h - 11864 = 0, 4*i - h - 3*h - 11856 = 0. Is 14 a factor of i? True Let a = -33 + 31. Let y be (-710)/25*5/a. Let w = y + 3. Does 14 divide w? False Let c(a) = a**2 - 10*a + 16. Let p be c(8). Suppose 0*y + 3*y - 12 = p. Suppose 5*o = -y*i + 215, 2*o = -4*i - 61 + 291. Is i a multiple of 11? False Let j be 0 + 265 + -4 + -4 + 7. Let q = 545 - j. Does 19 divide q? False Suppose -2*o - 52 = -4*n, -19*o = -4*n - 21*o + 52. Suppose 0 = n*i + 14*i - 459. Is i even? False Let g = -2883 - -7325. Is 58 a factor of g? False Let i(x) = x**3 - 13*x**2 + 14*x + 16. Let d be i(12). Suppose 4*z - d = 2*z. Let j(v) = 3*v - 30. Does 26 divide j(z)? False Let x(w) be the first derivative of w**4/4 - 2*w**3 - 3*w**2/2 + w + 38. Is 7 a factor of x(8)? True Let b = -424 + 65. Let z be b/(-4) + (-96)/128. Suppose -60 = -2*d - m, 3*d + 3*m - z = m. Is d a multiple of 10? False Suppose 15 = -s - 2*a, -a - 3*a = -s + 9. Let y(z) be the third derivative of -z**6/120 - z**5/12 - z**4/12 - 2*z**3/3 - 570*z**2. Is 12 a factor of y(s)? True Let a(j) = j**2 + 2*j - 3. Let h be a(-3). Suppose 5*s + 80 - 385 = h. Is 5 a factor of s? False Let h(g) = -3*g + 12. Let q be h(3). Suppose -3*t - q*i = -0*i - 84, -2*i = -t + 25. Does 2 divide t? False Let b = 143 - 144. Let g(x) = -49*x**3 + 2*x + 3. Does 25 divide g(b)? True Let y(r) = 24*r**2 + 4*r + 4. Let b be y(-1). Suppose -11*n = -b*n + 1339. Is n a multiple of 24? False Let x(k) = 5*k**2 + 21*k + 8. Let p be x(-8). Is 8 a factor of (p/(-24))/((-2)/12)? True Let q = -3444 - -3519. Does 5 divide q? True Let x(g) = 5*g**3 - 3*g**2 - 10*g + 68. Let n(b) = -12*b**3 + 5*b**2 + 20*b - 135. Let i(u) = 2*n(u) + 5*x(u). Is 5 a factor of i(6)? False Does 7 divide 5/((-5)/(-2))*(-405)/(-2)? False Does 90 divide 28002/12 + 6/(-9)*9/4? False Let i(b) = 2*b**3 + 3*b**2 + 2 + 5*b**3 - 5*b**3 + 4*b**2 - 13*b. Is 22 a factor of i(4)? False Is 27 a factor of (12159/(-12))/(81/(-432))? False Does 134 divide 2 - (1 - (7 - 5))*2946? True Suppose -4*u + 6*o + 1305 = o, 4*o + 20 = 0. Let j = -233 + u. Is j a multiple of 29? True Suppose 20*d + 10 = 30*d. Is 18 a factor of (-10)/(17/18 - d)? True Suppose 33*l = -3*o + 35*l + 944, -l = o - 323. Does 6 divide o? True Let a = 634 - -458. Does 3 divide a? True Let s(p) = 3*p**3 - 3*p**2 + 3*p - 7. Let b be -2*3/(12/(-14)). Let c(a) = 6*a**3 - 6*a**2 + 6*a - 15. Let n(f) = b*s(f) - 3*c(f). Does 3 divide n(2)? False Suppose -n + 4*j = -694, -5*n - 604*j + 3486 = -608*j. Is n even? True Suppose 0 = -4*h - b + 1816, -2131 = -5*h - 2*b + 139. Is h a multiple of 3? False Let t = 1005 + 579. Does 4 divide t? True Suppose 0 = 4*v - 6*v + 4. Suppose 5*n + 11 = -h, -v*h - n = 3*n + 16. Is ((-26)/2 - -1)*h a multiple of 10? False Let j(z) = -z**3 - 43*z**2 + 162*z + 32. Is 16 a factor of j(-48)? True Suppose 66 = 3*z - z. Suppose 3*s + z - 9 = -i, -2*s = -i - 9. Is ((-5)/i)/((-1)/(-84)) a multiple of 14? True Suppose 2*x = -358 + 126. Is (36 + -31)*3/((-15)/x) a multiple of 5? False Suppose -3*z = 0, 45*s = 50*s + 3*z - 0*z - 48600. Does 81 divide s? True Let b be (-56)/(-21) - (-12)/9. Suppose -2*i + 4*i - 4*w - 24 = 0, -b*i = 4*w. Suppose 5*p - i*p = 3. Is p even? False Let x be ((-2)/(-1))/(-2)*0. Suppose -5*k = -3*v - 543, 0*k + 2*k - 2*v - 218 = x. Is 12 a factor of k? True Suppose 31*v - 24*v + 63 = 0. Is (0 - (-60)/v)/((-1)/6) a multiple of 18? False Suppose -h - 4*k + 13 = 0, -3*k + 21 = -2*h - h. Let l be 5 + -1 + 5 + h. Let v(g) = 2*g - 8. Is v(l) even? True Let u = -117 + 125. Suppose -i + u + 62 = 0. Is i a multiple of 10? True Let y = 22291 + -15189. Is y a multiple of 53? True Suppose -203 = -4*v - 5*w + 2*w, 0 = -4*v + w + 199. Is v a multiple of 10? True Let t(b) be the second derivative of -b**5/20 + b**4 - 2*b**3/3 + 21*b**2/2 - 2*b - 20. Is t(8) a multiple of 35? True Let i(a) = a**3 - 7*a**2 - 12*a - 9. Suppose -12 = -4*r + 24. Is i(r) a multiple of 8? False Suppose -4*m + u = -1602 - 1785, 0 = -2*m - 5*u + 1721. Does 16 divide m? True Does 56 divide ((-111104)/(-22))/1 + 8/(-44)? False Let o = -790 - -2239. Does 9 divide o? True Let j(t) be the first derivative of -3*t**2/2 + 10*t - 2. Suppose 20 = -90*f + 86*f. Does 6 divide j(f)? False Suppose 0 = -4*m - 3*o + 454, 204 = 6*m - 4*o - 460. Does 7 divide m? True Let d(x) = -201*x. Let q be d(-1). Let f be 3 + 1 - 7 - (0 + -3). Suppose -r - 2*r + q = f. Does 16 divide r? False Suppose -2*m + 1 = -1, 24 = 5*j + 4*m. Is 25 a factor of 4968/28 + (j - (-48)/(-14))? False Let q(f) be the third derivative of -f**6/60 - f**5/15 + f**4/8 + f**3/3 + f**2 + 2. Does 54 divide q(-4)? True Suppose 319 = 6*p - 359. Let b = p + 57. Is 17 a factor of b? True Let w = -8 + 23. Let n be 1*(-3)/w - (-486)/5. Suppose 5*z - 6 = -v + 25, 0 = -2*v - 3*z + n. Does 28 divide v? True Let h = 229 + -228. Is 18 a factor of -7 + 12 + -2 - -326*h? False Let q = -47 + 55. Is ((-931)/(-28))/(2/q) a multiple of 19? True Let h = -12 - -18. Suppose 2*l - h*l = -4. Suppose 0 = -b + 12 + l. Is b a multiple of 13? True Let a(d) = 9*d**2 - 36*d + 11. Let w(j) = 4*j**2 - 18*j + 6. Let r(i) = 2*a(i) - 5*w(i). Let q be (11/(-9) - 18/(-81))*-7. Is 10 a factor of r(q)? True Let y(w) = w**2 - 6*w + 5. Let f be y(7). Suppose q - f = 4*r, -6 = 5*r + 5*q - 4*q. Let t(u) = 24*u**2 - 3. Is t(r) a multiple of 26? False Let w(m) = -m**2 + 7*m - 5. Let d be w(2). Suppose 2*o + c - 328 = d*c, 171 = o + 5*c. Does 16 divide o? False Let w(c) = -3*c**3 + 12*c**2 - 26*c + 49. Is w(-13) a multiple of 114? True Suppose r + 0 = -2. Suppose -4*g + 516 = 2*l, -3*g + 3*l + 2*l + 361 = 0. Is 9/(-6) - g/r a multiple of 31? True Let z(p) = 94*p - 68. Let r(k) = 19*k - 14. Let m(b) = -11*r(b) + 2*z(b). Is m(-11) a multiple of 6? False Let m be (27/(-6))/(1/(-2)). Suppose m*i - 11*i + 92 = 0. Suppose 2*l - 3*u - i = 86, 3*u + 60 = l. Is l a multiple of 24? True Let j(l) = 2250*l**3 - 4*l**2 + 3*l - 1. Is 4 a factor of j(1)? True Suppose 914 - 246 = r. Is 3 a factor of r? False Does 7 divide (-3625 + 3)*(-1)/2? False Does 162 divide (-462)/77 + 4470/2? False Suppose -21*d + 20*d + 226 = -336. Is 125 a factor of d? False Let s(x) = 2*x**3 - 96*x**2 + 159*x - 48. Does 15 divide s(48)? False Let q(i) = -179*i + 1124. Is 24 a factor of q(-44)? True Suppose 0 = -4*x + 259 + 1289. Let p = -161 + x. Suppose -5*b - p = -3*d - b, 2*d - 162 = -3*b. Does 29 divide d? False Let o = -12538 + 18764. Does 108 divide o? False Let o be 3 + (2 - 10/2) + 3. Let t(q) = 7*q**2 + 47*q - 7 - 45*q + 1 + q**o. Is t(-5) a multiple of 17? True Let g = -16 + 20. Suppose 5*m - g*j = m + 156, -5*m = 2*j - 202. Suppose 35 = 5*x - m. Does 15 divide x? True Let s = 25 - 23. Let q be (s - 2)/(4 - 1). Suppose -4*g + 13 + 7 = q. Does 2 divide g? False Let y(h) be the third derivative of h**8/2240 - h**7/630 + h**6/360 + 5*h**4/24 + 3*h**2. Let z(q) be the second derivative of y(q). Is 34 a factor of z(4)? True Let r = 119 - -369. Suppose -q = 4*w - 2*q - 380, 2*q = -5*w + r. Suppose -t - t = -w. Is 16 a factor of t? True Let h(k) = 29*k - 100. Let c be (-81)/(-27) + (6 - -1). Does 19 divide h(c)? True Let q = 68 - 66. Suppose -2*n + 64 = -4*p - 58, 0 = -q*n + p + 131. Does 17 divide n? False Let q be (7/(-2))/((-3)/(-4284)) + 3. Does 3 divide 1/2 + q/(-74)? False Let y = 769 + 179. Is y a multiple of 10? False Is 26 a factor of 326/(-1141) + 24936/7? True Let j(y) = -y**3 + 12*y**2 + 2*y - 13. Let s be j(12). Is (s + 0)*((-1)/(-1) - -6) a multiple of 8? False Suppose -4296*p + 4301*p - 3210 = 0. Is 2 a factor of p? True Let p be 9/3 + 3 + 312. Let g = -87 + p. Does 9 divide g? False Let k(t) = 13*t + 28. Let n(o) = 12*o + 29. Let w(m) = 5*k(m) - 4*n(m). Let y be w(-5). Let r = -43 - y. Is r a multiple of 3? True Suppose -4*c = -2*q - 0*c + 20558, 5*q = c + 51359. Is 12 a factor of q? False Let f(r) be the third derivative of r**8/20160 + r**7/630 + r**6/45 - r**5/5 - 6*r**2. Let k(m) be the third derivative of f(m). Does 19 divide k(-11)? False Let w(n) = -n**3 - 7*n**2 - 5*n + 5. Let p be w(-6). Let z = -221 + 185. Is 12 a factor of (4/6 + p)*z? True Is 12 a factor of (-4 - 3) + -1 + 1616? True Let h be 6 + 8 + -4 + -6. Suppose h*a = a. Suppose 3*o - 3 + a = 0, 3*f + 3*o - 66 = 0. Does 5 divide f? False Suppose 0*y = -8*y + 104. Is 5746/22 + y/(1001/(-14)) a multiple of 29? True Let a be -56*(-9)/(-12)*(-6)/(-9). Suppose -b + 8 = -4*n, -2*b + 2 = -b - 2*n. Let m = b - a. Does 8 divide m? True Let f be ((-4)/10)/(0 + (-5)/(-20525)). Let p be 3 - 22/6 - f/6. Let l = -169 + p. Does 13 divide l? True Let k(g) = -11*g + 0*g**2 - 7*g + g**2 + 2*g. Is k(21) a multiple of 11? False Let k be (-5 - 0)/(0 - 1). Suppose k*r = -r + 12. Is 12 a factor of 191/r + 1/2? True Is ((-12341)/(-3))/7 + ((-6)/6)/(-3) a multiple of 14? True Suppose 7*o + 3379 = -5*z + 3*o, 0 = -z + 4*o - 671. Is 11 a factor of (-2)/1 + 1 + z/(-15)? True Let d = -5437 - -9920. Does 23 divide d? False Does 203 divide -3*1/(-2)*3318/9? False Let l(r) = 2*r**2 + 6*r + 9. Let x be ((-6)/(-8))/((-1)/8). Let k(z) = -2*z**2 - 12*z - 4. Let m be k(x). Is 16 a factor of l(m)? False Let b(l) = -3*l**2 + 1. Let k = 36 + -37. Let j be b(k). Is 10 a factor of (-2 - 0) + 3 - 110/j? False Suppose 12*u = 15*u - 9. Does 12 divide u/(-18) + 9583/42? True Let d be (0 - 2/(-6))*6 + 2. Suppose d*p - 3 = 13. Suppose 0 = -4*l + p*h + 56, 5*l - 67 = 4*h - 0*h. Does 10 divide l? False Suppose -40 = -2*m + 4*j, -3*m + 41 - 1 = -2*j. Suppose -6*b = -m*b + 20. Suppose b*w - 303 = 2*w. Is w a multiple of 42? False Suppose 23 = 4*d + 5*x, -2*x = -5*d + 2*d. Let a(r) = r + 8. Let v be a(-6). Suppose v*m = -d + 12. Is m even? False Let w(q) = q**3 - 7*q**2 + 7*q + 6. Let j be w(6). Suppose 5 + 3 = 8*k. Let m = k + j. Is m a multiple of 4? False Let j = -156 + 545. Is j a multiple of 8? False Let l(b) = -b**2 + 12*b + 19. Let k be l(10). Let x = -36 + k. Does 6 divide x*4/66 - 1776/(-33)? True Let r be 240/56 - ((-5)/7 + 1). Let d(q) = -q**3 + 5*q**2 - 3*q. Let i be d(r). Is i + (-261)/(-6) + (-2)/4 a multiple of 10? False Suppose -3*s + 26 = 5*v, -s + 0*s = 5*v - 32. Suppose t - 17 = v. Let d = -8 + t. Is 2 a factor of d? True Suppose 0 = -2*y + 4*n + 141 + 479, 0 = -n + 5. Is 20 a factor of y? True Suppose 2781 = d - 2*g, -3*d = 22*g - 17*g - 8354. Is d a multiple of 29? False Suppose -4*w - 20 = w. Let k(d) = -d**3 + d**2 + d. Let u(o) = 3*o**3 - 5*o + 2. Let g(a) = -2*k(a) - u(a). Is g(w) a multiple of 6? True Is (212/265)/((-8)/(-30020)) a multiple of 38? True Suppose 0 = 3*j - 9*j + 2436. Let k = j - 264. Does 26 divide k? False Suppose 4899 = -10*p - 32*p + 158661. Is 7 a factor of p? True Let v = -132 + 138. Does 39 divide 1868/v - 12/(-18)? True Suppose -9*s + 26 = -28. Suppose -x + s = -3. Suppose x = -2*l + 83. Does 14 divide l? False Does 97 divide -10*((-27)/18 + (-191)/2)? True Suppose -6*k + 2*k + 8 = 0. Suppose -k*l - 3*z = -14, -3*l + 8 = -0*l - 2*z. Suppose 2*t - 53 = -5*n, 2*n - l*n - 5*t + 38 = 0. Does 7 divide n? False Suppose 50 = -4*u + 18. Let x be (u/(-20) - 3) + (-6)/15. Is ((-424)/24)/((-1)/(x/(-1))) a multiple of 20? False Suppose 4*p + 48 = -5*c, p + 47 = -4*p - 3*c. Does 24 divide (0 + 324)/(p - -8)? False Let g(h) = 3*h**2 - h + 1. Let d be g(1). Let x = -922 - -913. Does 3 divide (d/x)/(1/(-27))? True Let j = -181 + 203. Suppose -24*g + 132 = -j*g. Is 33 a factor of g? True Let i(x) = -18*x**3 - 2*x**2 + 2*x + 1. Let y be 1/6 - (3 + 375/(-18)). Let j = y - 20. Is i(j) a multiple of 23? False Let d(z) = 2*z**2 + 16*z - 18. Let y be d(-9). Suppose y = 20*r + 1443 - 7203. Is 24 a factor of r? True Suppose t = 7*t + 18. Let g be 1/(-1) - (t + 0). Let q(z) = 9*z**3 + 2*z**2 - 2*z - 2. Does 37 divide q(g)? True Let a(g) = -g**3 + 21*g**2 - 36*g + 2. Let c be a(19). Suppose u - 32 = -3*n, 0*u = u - 4*n - 32. Suppose c + u = m. Does 24 divide m? True Suppose 49622 - 2186 = 5*x + 3*l, -3*l + 37950 = 4*x. Does 149 divide x? False Suppose -5*z = -f - 164, -5*z = 4*f - 101 - 43. Let j be (-20)/100 - z/(-10). Suppose -j*r + 0*r = -72. Does 4 divide r? True Is 122 a factor of 4*1 + (-85592)/(-13)? True Suppose 12*z + 46 = 70. Suppose -s - 104 = -5*u - 15, 5*u - 2*s = 93. Suppose 2*c + k - u = -4*k, z*c + 2*k - 26 = 0. Is 8 a factor of c? True Suppose 3425 = -f + 6*f - 1825. Does 10 divide f? True Let z be 139 - (3/(-12) + (-33)/12). Suppose -r - 3*r + 593 = -5*p, r + 5*p = z. Let k = r - 81. Is 28 a factor of k? False Suppose -5*b - 3*d = -12369, -34 = -4*d - 42. Is 15 a factor of b? True Let k(z) = 25*z**3 - 30*z + 20. Is k(5) a multiple of 26? False Let y = 3580 - 1754. Is 11 a factor of y? True Let a = 4861 - 2935. Is 18 a factor of a? True Suppose 316*l = 303*l + 75790. Is l a multiple of 10? True Let s(g) = 47*g + 13. Let l be (-6)/4*(-38)/57. Does 13 divide s(l)? False Suppose 2*v - 5 = v. Let i(g) = -11 - 6 - v*g + 3. Is 16 a factor of i(-8)? False Let y = 5 + -14. Let a be 20/90 + 2/y. Suppose -2*q + 411 - 137 = a. Is 13 a factor of q? False Suppose -103 = 5*g - 98. Let v(d) = -28*d**3 + d**2 - d - 1. Is v(g) a multiple of 13? False Suppose -3*c = 4*j - 52, 5*c + 5*j = 135 - 40. Let d(v) = -v**3 + 24*v**2 + v + 18. Does 7 divide d(c)? True Let v be 2*6/(-12) - (1 - 535). Let c = -339 + v. Does 15 divide c? False Let y(d) = 9*d**3 + d**2 + 3. Let c be y(2). Suppose 3*t - c = -67. Is 2 a factor of t? True Let l = 142 - 80. Suppose -3*w = 6, -53*z + 56*z - 2*w = 22. Is 20 a factor of z/(-2) - ((-20)/(-5) - l)? False Let s(t) = -t**3 + 7*t**2 - 5*t - 22. Let h be s(5). Suppose -117 = -4*c - 5*x, 3*c - 3 = h*x + 105. Is c a multiple of 2? False Suppose d - 3*s = -2*s + 517, 3*d = s + 1551. Suppose 3*v - 3*i - 387 = 0, -4*v + 2*i + d = -i. Does 13 divide v? True Is 13 a factor of -602*((-20)/(-16)*-4 + -2)? False Let g(s) = s**3 + 4*s**2 - 11*s + 8. Let b be g(-6). Let f be -2 + (b/9 - (-102)/27). Does 8 divide f/(0 + -2) - (2 - 19)? True Suppose 5*l + 3309 = -241. Let r = -382 - l. Is r a multiple of 41? True Suppose -2*x - o + 295 = 0, 0*x + 155 = x - o. Let y = x - -105. Let v = -175 + y. Is 20 a factor of v? True Let v = 0 + 1. Let d = 9 + v. Does 7 divide d*(4 - -2) + -1? False Let a(r) = 4*r**2 + 26*r - 9. Let k be a(-7). Suppose g - 188 = 4*l, 3*g - 531 = -k*l + 6*l. Is g a multiple of 16? True Suppose 14 = -3*y + 38. Does 5 divide (2/(8/(-15)))/(y/(-192))? True Suppose -1112 = -5*q + 2*z + 512, -5*q = -4*z - 1628. Let d = 3798 - 3792. Suppose 9*y - q = d*y. Is y a multiple of 18? True Does 8 divide ((-39)/273)/(2/(-5584)) - (-1)/7? False Suppose -2445 = -6*l - 537. Let f = l + -125. Does 8 divide f? False Suppose 27*s = 33*s - 11088. Suppose -k + s = 7*k. Does 7 divide k? True Does 6 divide ((-1)/(-4) - 6142/(-8))/(6/9)? True Let z = -161 - -168. Suppose 432 = z*h - h. Is 24 a factor of h? True Suppose 3*b + 5302 - 26585 = -4*q, -5*b - 5315 = -q. Is 35 a factor of q? True Let h(l) = 21*l + 2. Let n be h(1). Let z = n - 17. Does 19 divide ((-160)/z + -1)/((-4)/12)? False Suppose 0*p + 12 = 2*u + 2*p, 0 = p + 4. Suppose -13*f + 7107 = u*f. Does 8 divide f? False Does 8 divide 7 - (-10945)/((-143)/(-13))? False Let p be 2*((-4)/10 + (-36)/(-15)). Suppose 0 = 2*v + 4, p*v - 1 = 3*g - 15. Suppose -4*o - 73 = -t, g*t + 12 = -o + 122. Is t a multiple of 28? False Suppose 6*j - 5*j = 0. Suppose 5*h + 940 = 5*m, 0 = -j*h + h - 2. Is m a multiple of 16? False Let j = 129 - 87. Suppose -j = -4*m + 2*n, 4*m - 3*m - 3*n = 8. Is 4 a factor of m? False Let c be -1 - 0/(4 + 0) - -4. Suppose -6 = c*a, -3*a = -h + 2*h + 313. Let v = 437 + h. Is v a multiple of 25? False Suppose -253*t + 154025 = -152*t. Is 4 a factor of t? False Let p(j) = -13*j - 14 + 62 - 22. Is p(-16) a multiple of 9? True Let w be (-4)/18 - (-534)/(-27) - -3. Let m = 28 + w. Does 11 divide m? True Suppose -2*a + 5887 = 44*t - 41*t, -14775 = -5*a + 4*t. Is a a multiple of 13? True Suppose 4*w = 185 - 1361. Let v = 450 + w. Is v a multiple of 13? True Let z = 3 + -6. Let t be 5 + z - -5 - 3. Is 25 a factor of t/(40/(-535))*2/(-1)? False Suppose 0 = -3*x - 3*s + 522, 12*s - 8*s = 5*x - 879. Does 7 divide x? True Let w = 172 + -173. Is 26 - 28 - 69*(-1 + w) a multiple of 35? False Suppose 53*w = 49*w - 3*c + 7830, 3*w - 3*c = 5862. Is w a multiple of 12? True Let a(f) = -6*f + 35. Let v be a(5). Suppose 2*o - v*c - 129 = 0, o + 7*c - 84 = 3*c. Is o even? True Let s(x) = 59*x**3 - 11*x**2 + 22*x + 10. Does 35 divide s(3)? False Let a = 9 - 21. Is ((-6)/a)/(1/776) a multiple of 34? False Let r = 5570 + -1777. Does 15 divide r? False Suppose -5*h + 1336 = -2*h + 5*t, -t + 1328 = 3*h. Let r = -56 + 61. Suppose r*s - h = 23. Is 20 a factor of s? False Suppose 3 = 2*c + 9, -4*o + 13 = c. Suppose -2*k + 90 = 5*q - 266, 80 = q - o*k. Let u = 132 - q. Is u a multiple of 15? True Let h(i) = 46*i**3 - 2*i**2 - 3*i + 3. Let z be h(-2). Let j = 625 + z. Is j a multiple of 43? True Suppose 2*o = 4*u + 22, -3*o + 0*u + 2*u = -33. Suppose 4*q + 3864 = o*q. Is 20 a factor of q? False Suppose 3605*a - 1351 = 3598*a. Is a even? False Let x(m) = -6*m**2 - 176*m + 84. Does 27 divide x(-26)? False Is 37 a factor of (8957 - -1)*48/72? False Let b = -1701 + 1845. Is 9 a factor of b? True Suppose -f + 3770 = -28*s + 32*s, 2*s + 7570 = 2*f. Does 24 divide f? False Let c be ((-15)/9)/((-3)/9). Suppose -b = -c*t - 29, -1 = -4*t - 5. Let x = b + -9. Is x even? False Let p(k) = -2*k**3 + 97*k**2 - 20*k - 128. Is p(47) a multiple of 17? True Suppose -3*q - 3*l + 8 + 7 = 0, 3*q + 4*l = 15. Suppose 3*b = -3, 2*m = -m + q*b - 3334. Is 41 a factor of (-2)/3 + m/(-9)? True Suppose 2*x - 50 = -23*x. Is (568/6 - 6)*3/x a multiple of 5? False Let x(v) = v**2. Let a be x(2). Suppose p - 4 = a. Suppose p*m - 675 = -m. Does 25 divide m? True Let b = 1915 + 2037. Is 104 a factor of b? True Let m(j) = j**3 - 9*j**2 - 80*j + 191. Is m(14) even? False Let b be (-315)/28*2*-4. Suppose 0 = t + 3*m + 37, 4*t - 4*m + b = -106. Let v = 50 + t. Is v a multiple of 4? True Let j = 19 + -17. Suppose j*g - 4 = g. Does 13 divide g - (3 + -12 - 4)? False Let l(x) = -7*x - 7. Suppose 5*d + 36 = -2*z - 0*z, 0 = -4*d - 5*z - 22. Let f be l(d). Let o = f + -36. Does 5 divide o? False Let t = 3529 + -2944. Is t a multiple of 9? True Suppose 4*p + 16 = 0, -4*p + 0*p - 16 = -j. Suppose n + 7*n - 40 = j. Suppose n*h = 3*z - 108, -3*z + 0*h + 4*h = -108. Is 6 a factor of z? True Let r(z) = 11*z**2 - z - 18. Let j = 54 - 60. Is 24 a factor of r(j)? True Suppose 2*j - 8 = -0*j. Suppose v + 3*v - 12 = 0, 3*v = -j*f + 33. Suppose 440 = f*q - 352. Does 33 divide q? True Suppose 5563 = -31*p + 38547. Is 61 a factor of p? False Suppose 74*j - 20604 = 78630. Does 83 divide j? False Suppose 12320 = 695*u - 687*u. Does 35 divide u? True Does 13 divide (-6 + 3 - 1) + 22188/12? False Let q be -12 + 8 + (27 - 2). Suppose -19*i + q*i = 4. Suppose -f - 3*s + 2 = 0, 0*f + i*s + 17 = f. Is f a multiple of 6? False Let q(j) = -5*j + 7. Let s(k) = -k. Let n(a) = -q(a) + 6*s(a). Let y be n(-10). Does 21 divide (14/(-21))/(2/y) - -125? False Suppose -3*t - 20 = -2*b + t, 3*b + t = 9. Let f = 0 + b. Suppose 0 = g - 3*o - 17, 0 = 4*g + f*o - 2*o - 82. Is 6 a factor of g? False Suppose 165*a + 91306 - 325111 = 0. Is a a multiple of 37? False Suppose 2*j + 2*r - 1928 = 0, 43*r + 3856 = 4*j + 38*r. Is 5 a factor of j? False Suppose -2*z - 11 = -19. Suppose 4*a + 2*i = -6926, 5*a + z*i + 5474 = -3188. Is a/(-35) - (-12)/(-28) a multiple of 19? False Suppose 23 = -5*h + v, 3*h + 4*v = 3*v - 9. Let r be (4 + h)*1/(-2). Suppose -b + r*l + 19 = -2*l, 0 = -2*b - 4*l + 70. Is 27 a factor of b? True Suppose 5*y + 0*y + 5 = 0. Let t be 2*(-17)/(-8) + y/4. Let u(g) = 7*g**2 + 4. Does 27 divide u(t)? False Suppose 0 = 4*i + 2*p - 12, -4*i - 5*p + 15 = -3. Suppose -15 + 91 = -i*b. Let u = b + 50. Does 12 divide u? True Suppose 0 = 2*z - k - k + 6, 0 = -4*k - 12. Let y(f) = 12*f - 8. Let g(s) = s. Let d(l) = z*g(l) + 2*y(l). Is 20 a factor of d(6)? False Let a(l) = -2*l - 6. Let c be a(-3). Suppose 0 = -2*o + 10, c*g - 2*o + 25 = 3*g. Is 4 a factor of -3 - ((-91)/g - 4/(-20))? False Let u be 3*(-16)/(-26) + (-48)/(-312). Suppose 4*i + 20 = 0, -2*o + 116 = -o + u*i. Is o a multiple of 9? True Let c be (5565/30)/(1/2). Let x = -206 + c. Is x a multiple of 15? True Let v be ((-18)/(-10) - 1)*-5. Let s(j) = -j**3 - 3*j**2 - 4*j - 8. Let c be s(v). Suppose -57 + 13 = -p + 3*i, -2*i + c = p. Is 32 a factor of p? True Let y be (49/21 - 1/3) + 198. Suppose -y = 3*o + 445. Let v = o - -320. Is 15 a factor of v? True Let a(q) = -q**3 + q + 398. Let w be a(0). Suppose -4*b + w = -r + 3*r, -3*r + 498 = 5*b. Let x = b - -45. Is x a multiple of 34? False Let z = 13218 + -6639. Is z a multiple of 129? True Suppose 3*f - 5*a = 86, a + 70 = 3*f - 0*a. Suppose 294 = -16*m + f*m. Is 2 a factor of m? False Let r(q) = q**3 + 3*q**2 - 3*q + 9. Let n = -25 + 21. Let c be r(n). Suppose c*m = -3*f + 8*f + 120, 4*f - 8 = 0. Is m a multiple of 19? False Is 10 a factor of (((-7460)/(-6))/1)/(10/30 + 0)? True Suppose -12 = g - 7*g. Suppose -6 = -d - 5*r, -3*r + 2*r = -3*d + g. Is ((1/1)/d)/(5/240) a multiple of 12? True Let z be 4/(0 + 4)*5. Suppose -530 = -2*k - 5*a + 244, 4*k = -z*a + 1558. Suppose -2 = g, 5*y - 1060 + k = 4*g. Does 33 divide y? True Let s(q) = -q**2 - 128*q - 671. Does 49 divide s(-47)? True Let x(z) = 10*z**3 - 7*z**2 - 2*z + 23. Is 54 a factor of x(5)? False Let z(i) = -5*i**2 - i. Let y be z(1). Let d = -152 + 203. Is (3 - d/y)*2 a multiple of 8? False Let u = -7 + -13. Suppose 55 = -35*y + 34*y. Let g = u - y. Is g a multiple of 35? True Suppose -4*g + 2 - 459 = -3*z, 4*z = -g + 622. Let r = z + -77. Is 37 a factor of r? False Suppose 0 = 11*s - 12*s + 8. Suppose s*p + 520 = 13*p. Does 3 divide p? False Suppose 0 = -22*k + 5436 + 5014. Suppose -2*w - 3*w = -k. Is w a multiple of 16? False Let q(m) = 140*m - 230. Is 53 a factor of q(13)? True Let o = -7 - -13. Let v(i) = -i**3 + 6*i**2 + i + 4. Let n be v(o). Is (16/n)/((-2)/(-5))*21 a multiple of 10? False Let p(d) = d. Let j(c) = -c**2 + c. Let m be j(3). Let b be (-9)/6*40/m. Is p(b) a multiple of 9? False Let c = -17960 + 25345. Does 151 divide c? False Suppose 4*m - 4*z = 20, 0 = 3*m - 7*m - 5*z + 11. Suppose 5*o - m*w - 1505 = -9*w, 285 = o - 3*w. Is 76 a factor of o? False Let h = -152 + 155. Does 15 divide h + -1 + (-146)/(-2)? True Let z be 3 + 11/9 + (-2)/9. Suppose 341 = z*c + k, -3*k - 153 = -0*c - 2*c. Is 15 a factor of c? False Suppose -a + 14*l - 11*l = -953, 0 = -5*l + 5. Does 16 divide a? False Let o(g) = -149*g - 15. Let w be o(-2). Suppose -y + w = -3*d - 219, -y = 5*d - 518. Is 48 a factor of y? False Let i = 666 + 5887. Is i a multiple of 74? False Let a(l) = l**3 + 11*l**2 - 33*l + 56. Is a(14) a multiple of 6? True Let h = 48 + -43. Suppose 3*t - 90 = -3*z, -3*t + 136 = h*z - 5*t. Is 7 a factor of z? True Is (-2 + 1562)*20/450*9 a multiple of 12? True Suppose -2*w - r = -5*w + 7, -5*r = -5*w + 15. Suppose 5*i + 13 = -y, -5*y + w = -i - 11. Is (120/(-42))/(y/(-14)) a multiple of 10? True Let r be (-7 - -1)/2 - (-6 + -14). Suppose -4*u + 2*b + 1266 = 0, 0 = -r*u + 18*u - 2*b - 324. Is 42 a factor of u? False Is -1 - ((-4177 - 0) + 0/24) a multiple of 144? True Let z be (-1)/3 + 0 + (-266)/(-42). Suppose 2*b = z, 11*i + b = 6*i + 228. Is i a multiple of 9? True Let j = 15935 - 7615. Is j a multiple of 15? False Let d = 80 - 33. Suppose -4*n = 5*u - 2*n - 267, 0 = u + 2*n - d. Is 8 a factor of u + 2 + 0/2? False Let f(l) = 8*l + 63. Let j be f(-7). Suppose s = 17 + j. Does 6 divide s? True Is 7803*11/231*7 a multiple of 10? False Let c = -538 + 1817. Is 9 a factor of c? False Let d = -196 - -208. Suppose -998 = -d*o + 178. Is 7 a factor of o? True Suppose 4*f = 6*f - 10. Suppose -5*q + f = -5*v, -v + 2 = 3*q - q. Suppose 2*o - o - 150 = v. Is 25 a factor of o? True Let s = 15858 + -7848. Is s a multiple of 178? True Suppose -4*h = 2*y - 12, -2*h + y = -h - 9. Suppose 10*g + 4*x - 372 = h*g, -g = -2*x - 66. Is 17 a factor of g? False Let d(m) = -m**3 + 10*m**2 + 36*m + 15. Let z be d(13). Does 3 divide 48*(-3 - 114/z)? True Suppose 496*h - 470*h - 126672 = 0. Does 45 divide h? False Let q(s) = 14*s - 644. Does 6 divide q(100)? True Let o = 50 - 46. Suppose -o*k + 20 + 0 = 0. Suppose g - 52 = k*c, -g + 5*g + 4*c = 112. Is 16 a factor of g? True Let f(j) = -j**3 - j**2 + 11*j - 18. Suppose 67*i - 24 = 71*i. Does 12 divide f(i)? True Suppose 3*z + 4*i = 17836, -2*i = -0*z + 5*z - 29708. Is 99 a factor of z? True Let y = -55 + 98. Let a = y + -36. Suppose -a*g = -5*g - 70. Is 18 a factor of g? False Suppose -k = 3*k - 2*s + 86, -61 = 2*k + 5*s. Let v = -18 - k. Is 254/v + (-2)/(-10) a multiple of 17? True Let c be (-462)/210 - (-8)/(-10). Is (c - (-5 + 2)) + 1*210 a multiple of 35? True Let s = -1336 - -5242. Is s a multiple of 31? True Suppose -d - 6380 = -2*d + 4*a, -5*d - 2*a + 31966 = 0. Is d a multiple of 94? True Suppose -5*q = -u - 31, 4*q - 15 + 3 = 0. Let v(d) = -d - 17. Let h be v(u). Is 11 a factor of 79 - (-2 - -1) - (-1 - h)? False Suppose -160*f + 4 = -158*f. Suppose a = f*q + 142, a = 4*a - q - 446. Does 10 divide a? True Let u = -5842 + 11404. Is u a multiple of 30? False Suppose 149*s - 30*s = 182427. Is s a multiple of 21? True Does 4 divide (6 + -7)/((-3)/(-84)*4)*-41? False Is (-19439)/(-6) + 13/78 a multiple of 27? True Let a = 1582 - 685. Suppose 2*m = -p + 174, -5*p + m = -10*p + a. Is 21 a factor of p? False Let i be ((-9)/6)/(2/588). Let d = i - -672. Does 9 divide d? False Let x(b) = 19*b**2 + 3*b - 139. Is x(-17) a multiple of 93? True Suppose 3*c + 0*u - 5*u = 6, 0 = 3*c + 3*u + 18. Let a be (0 - c)*((-4)/3 + 2). Suppose -3*k + 40 = a*k. Is 2 a factor of k? True Is 21 a factor of ((-688)/(-68) - 10) + -1*(-450220)/68? False Let y(k) = 3*k**2 - 6*k - 6. Let j be y(3). Suppose -7 = x - 5*r, r - 5*r = j*x - 36. Does 2 divide x? True Suppose 1266 = 2*d + 3*x, 2*d + 4*x - 772 = 496. Is 17 a factor of ((-216)/20)/((-27)/d)? False Let b(f) = 2*f**2 - 36*f + 38. Let r be b(17). Suppose m = -4*z + 676, 5*z + m = r*z + 172. Is 21 a factor of z? True Suppose -114 = -4*r - 10. Let p = 38 - r. Suppose d - p = -d. Does 2 divide d? True Let j = 1980 - 913. Is 69 a factor of j? False Suppose l - 1628 = -3*l. Let q = -281 - l. Is -3 + (q/(-4))/4 a multiple of 40? True Let h(t) = -6*t - 39. Let p(d) = 6*d + 39. Let b(z) = -2*h(z) - 3*p(z). Is b(-19) a multiple of 15? True Let n(b) = 5*b**2 - b - 3. Let a(y) = y**2 + 6*y - 8. Let j be a(-7). Let g be n(j). Suppose -o + 0*o = -g*z + 495, z + o - 161 = 0. Is z a multiple of 41? True Let j = 86 + -71. Suppose -2269 = -j*r + 551. Is r a multiple of 42? False Let o(v) = -29*v + 398. Is 9 a factor of o(-8)? True Let g be (-6)/4*(-16)/6. Let v be 30/(g - 0 - 2). Suppose -17 = -d + v. Is 8 a factor of d? True Suppose -2*r + 2*d = -3476, 0 = 2*r - 4*d - 1600 - 1874. Is r a multiple of 45? False Let z(d) be the first derivative of 7*d**3/3 + 3*d**2 + 64. Does 29 divide z(-3)? False Let s be (12/8 + -1)*(0 - -56). Suppose 0 = -3*o - 2*n + n + 95, 0 = -o - 4*n + s. Suppose -w + 82 = -4*g - o, 0 = -3*w - 5*g + 410. Does 33 divide w? False Suppose 2*k + 1540 = 4*y, -3*k + 0*k + y = 2315. Let o = -346 - k. Is o a multiple of 20? False Let b = 5647 - 1057. Is 22 a factor of b? False Suppose 12*c = 146 + 22. Let h be (-3 + 8)*(-129)/(-15). Let z = h - c. Is z a multiple of 27? False Suppose 1205 = 4*w - a - 89, 0 = w - a - 322. Does 9 divide w? True Suppose 57*c - 48*c = -405. Suppose m - 4*v - 89 = 0, -136 = -5*m - 3*v + 332. Let l = m + c. Does 8 divide l? True Suppose -3*w + 1117 = 4*r + 10, 3*r + w - 824 = 0. Suppose -4*m = -841 + r. Is 71 a factor of m? True Let q(b) be the first derivative of 2*b**3/3 + 6*b - 1. Suppose 15*k - 98 = -23. Is 10 a factor of q(k)? False Let d(r) be the first derivative of 3*r**2/2 - 11*r - 10. Let c be d(5). Suppose c*w = -2*l + 62, l - 2*w = 3*w + 24. Does 18 divide l? False Suppose 5*f - 4262 = 3*w + w, -3*w = -9*f + 7680. Does 18 divide f? False Suppose -5*i - 4*p + 9290 = 0, -p + 2371 = i + 514. Is i a multiple of 19? True Does 15 divide (-4 + (-153)/(-39))*-2 - 187976/(-26)? True Suppose 219 = 2*y + 2*y - 3*a, -2*a - 272 = -5*y. Suppose y*f = 53*f + 7. Is 3 a factor of f? False Suppose 4*d = -v + 5, -3*d = -4*v + 1 + 19. Suppose d = t - 78 + 30. Let j = -25 + t. Does 23 divide j? True Let u = 49 - 49. Let r(p) = 14*p**2 + 0*p - 5*p**2 + u*p - 5*p. Is 33 a factor of r(3)? True Let o = -102 - -154. Suppose 0 = 5*v - 13 - o. Is 7 a factor of 5*v + 8 + -6? False Let b(n) = -n**2 + 6*n + 4. Let l be b(4). Suppose -8 = -5*u + l. Suppose 4*z = 4, 5*g - 2*g + u*z = 199. Is 13 a factor of g? True Suppose 4*k + g + 180 = 0, 5*k + 168 = k + 2*g. Let y = k + 55. Is 5 a factor of y? False Let w be (10*1)/((-100)/(-40)). Suppose 232 = 2*x - 2*j, 5*j + 132 = w*x - 3*x. Is 7 a factor of x? True Suppose 2*s = -4*o + 12, 2 = o + 3*s - 6. Suppose o*k - 1 + 1 = 0. Suppose -5*v + 40 = -k*q + 4*q, -4 = -v. Does 3 divide q? False Suppose -9380 = -284*z + 279*z. Suppose 2*u = 4*k - z, 0*k - 4*k = u - 1876. Is k a multiple of 49? False Suppose 0 = -103*n + 95*n + 7388 + 92. Is 5 a factor of n? True Let d(f) = f**2 + 30*f - 22. Suppose 0 = 2*z + 2, 5*z + 0 + 38 = -b. Is 44 a factor of d(b)? False Let z be -14*((-40)/70 + (-2)/(-7)). Suppose -t + 900 = z*t. Does 15 divide t? True Let s(p) = 79*p**2 + 41*p - 295. Is 65 a factor of s(6)? True Let m = 197 + 3988. Is m a multiple of 93? True Let j(b) be the third derivative of 0*b - 13*b**2 + 1/30*b**5 + 13/6*b**3 - 5/8*b**4 + 0. Is 21 a factor of j(10)? True Let h = 4751 + -2544. Is h a multiple of 73? False Let b = 19 + -25. Let p = 65 + -47. Let o = p + b. Is o a multiple of 3? True Let v be ((-7)/5 + 2)*10. Let s be 408 + (8/6 - (-4)/v). Suppose s = 7*q - 66. Does 34 divide q? True Suppose -9*a + 6 = -10*a. Let w be (4 - (-45)/(-10))*a. Suppose -4*s + p - 2*p = -27, -w*p = -5*s + 21. Is 4 a factor of s? False Let g be (6/(24/220))/1. Let c = 43 - g. Let k(u) = u**3 + 14*u**2 + 17*u + 7. Does 13 divide k(c)? True Suppose -3*s - q + 242 = -s, 2*q - 124 = -s. Suppose -5*b - 20 = -s. Is 5 a factor of b? True Let v(u) = -10*u - 67. Suppose 0 = 2*h + 19 - 3. Is 9 a factor of v(h)? False Let u = -1879 - -2135. Is u a multiple of 16? True Suppose 0*x - 9 = 3*x. Let h be 3 + ((20 - -3)*1 - x). Suppose q + h = 66. Is 15 a factor of q? False Suppose -17*j + 16*j - 41*j = -15372. Does 6 divide j? True Suppose -3*q = -b + 2314 - 932, 4*q + 4146 = 3*b. Is b a multiple of 38? False Suppose -65*n = -226393 - 139817. Does 105 divide n? False Does 6 divide (-495)/(-88) + -6 - (-90873)/24? True Suppose 0 = -5*k - 348 + 98. Let y = 67 - k. Is y a multiple of 5? False Suppose -55 = -15*m + 4*m. Is 15 a factor of 1/(m/25) + 160? True Suppose 24 = 3*l - 3*q, l - 1 = -2*q + 1. Let w be (-2*(-6)/(-4))/((-18)/276). Suppose -l*x = -2*x - 3*y - w, y - 41 = -3*x. Is 13 a factor of x? True Let i be (-3 - (4 + -1 + -5)) + 4. Suppose -316 = -i*s + 2*s. Is 14 a factor of s? False Suppose 2*i - 3*i = -24. Suppose -4*v + 33 = 5*h, 3*h + h = -2*v + i. Suppose -102 = v*l - 4*l. Does 27 divide l? False Let j = -1690 + 4583. Does 60 divide j? False Let b(p) = -11*p - 89. Suppose -44 = 8*l + 60. Is b(l) a multiple of 27? True Let v = 15815 + -8549. Is v a multiple of 97? False Let p = -73 - -122. Let x = -43 + p. Suppose -557 = -x*w - 173. Is 38 a factor of w? False Suppose 15*w = 3*w + 132. Suppose 3*j = -3*r + 702, -475 + w = -2*r - 3*j. Is 17 a factor of r? True Let b(v) = 25*v**2 - 121*v - 13. Is 7 a factor of b(-9)? True Let d(z) = 7*z**3 + 6*z**2 + 9*z + 3. Let b(k) = 6*k**3 + 6*k**2 + 9*k + 4. Let l(p) = 6*b(p) - 5*d(p). Let c be l(-6). Let g = c - -48. Does 3 divide g? True Let m = 67 - 34. Let j be 5*-2*(-9)/15. Suppose m = 7*y - j*y. Is y a multiple of 11? True Suppose 3*n = 2*t + 124, 0 = -4*n + t - 4*t + 188. Let h = 40 - n. Does 3 divide (-10 + -7)/(2/h)? False Let q be ((-1)/(-2))/(723/240 - 3). Let m = q - 35. Suppose p + 141 = 3*n + 16, 0 = -2*n + m*p + 105. Is 28 a factor of n? False Let t = -37 + 42. Suppose 0 = 3*h - 20 + t. Suppose k - h*d = -0*k + 11, -5*d = -4*k + 59. Does 8 divide k? True Let c(y) = -7*y - 7. Suppose -5*m - 1 - 229 = 4*s, -3*s - 183 = 4*m. Let d = m + 40. Is c(d) a multiple of 7? True Suppose 3*t = 5*l + 1135, -180 - 501 = 3*l - 5*t. Does 10 divide ((-6)/(-1) - l)/1? False Let b(a) = -a**3 + 3. Let x be b(0). Suppose 1 = 2*o - x. Suppose -q + 51 = 2*c, 0 = c - o*c - 2*q + 24. Is 26 a factor of c? True Let s(a) be the second derivative of -a**4/6 - 3*a**3/2 + 2*a. Let r be s(-4). Is 38/r - 15/10 even? True Does 52 divide ((-66)/12)/(2 + (-4263)/2128)? False Suppose 5*y - 210 = 8*y. Let j be (-4)/(-3) + y/(-42). Is (-4 - (-2)/j)/((-2)/15) a multiple of 4? False Suppose -p - 2*c - 7 = 0, -3*c = p + 2*c + 22. Suppose 3*u = p*s, 24 = -u - 6*s + s. Let m(k) = 4*k**2 + 11*k + 7. Is 20 a factor of m(u)? False Let d = -79 - -91. Let j = 238 + d. Does 22 divide j? False Is 45/(-25) - 3867/(-15) a multiple of 32? True Let c(w) = -w**3 - 9*w**2 - 8*w + 6. Let k be c(-8). Suppose p = h + k*p - 22, 5*h = 5*p - 10. Is 2448/56 + h/7 a multiple of 13? False Suppose -6*c + 2999 = 4*l - 5*c, -5*c = 25. Is l a multiple of 34? False Let u(t) = -2*t + 16. Let h be u(5). Does 31 divide -1 - (h + -103 + 3)? True Let p(a) be the third derivative of a**5/12 + a**4/4 + 5*a**3/3 + 30*a**2. Is 21 a factor of p(-5)? True Suppose 5*t - 298 = 5*i + 72, t + 3*i = 66. Suppose -15*x + 78 = -t. Is x a multiple of 7? False Let y = 4019 + -2283. Is y a multiple of 8? True Suppose -5*w - n + 14146 = 0, 774 = -3*w + 2*n + 9272. Is 27 a factor of w? False Let d(u) = 2*u**3 - 8*u**2 + 5*u + 1. Let k be (6 - 147/28)*(7 + 1). Does 5 divide d(k)? True Let k = 43 + -27. Let u(r) = 4*r - 148. Let b(z) = -z + 37. Let n(l) = 9*b(l) + 2*u(l). Is n(k) a multiple of 6? False Let o be 2/60*15 - (-26)/(-4). Let p(z) = z**3 + 7*z**2 + 6*z + 6. Let l be p(-6). Does 15 divide (-4 + 717/l)*(-4)/o? False Let h(x) = x**2 - 6*x - 13. Let t be h(8). Suppose -8*m = -t*m - 10. Suppose -m*k = -2*u - 100, -2*k + u = -65 - 39. Is 6 a factor of k? True Let q = -1223 - -1845. Is 148 a factor of q? False Suppose -5*q + 41 = 21. Suppose r - 4*i - 334 = 0, 2*i = q*r - i - 1362. Does 18 divide r? True Let g = 2892 + -491. Is g a multiple of 52? False Let c(u) be the first derivative of -44*u**2 - 80*u - 30. Is c(-5) a multiple of 14? False Let d(n) = 2*n**3 - 29*n**2 + 54*n + 10. Does 125 divide d(18)? True Let q(h) = h**3 - 5*h**2 + 9*h - 8. Let v be q(6). Let w = 113 - -88. Let k = w - v. Is k a multiple of 20? False Suppose q - 48*m - 216 = -52*m, -2*q + 2*m + 432 = 0. Is 6 a factor of q? True Let d = -2398 + 7811. Is d a multiple of 7? False Suppose 5*r = 5*l + 30, 12 = 3*r - 4*l + 7*l. Let z(v) = 6*v**2 - 14*v - 14. Does 23 divide z(r)? False Let x(c) = 36*c**2 - 102*c - 40. Is x(-11) a multiple of 8? False Does 5 divide -7989*((-114)/234 + 24/156)? False Suppose 0 = -3*d + 47 - 38. Suppose m + 3*q = 426, -d*m - q = -189 - 1105. Is 17 a factor of m? False Let g = -4637 - -7893. Is g a multiple of 37? True Let r(p) = 2*p**2 - 11*p + 12. Let j be r(4). Suppose j = -5*n - 66 + 321. Is 6 a factor of n? False Let z(m) = -3*m - 113. Let s be z(-36). Does 6 divide (2 + 22)*21/(-2 - s)? True Let g(q) = -4163*q + 69. Is g(-1) a multiple of 23? True Suppose 2 = -3*o + 4*o, -4*n + 4*o = -448. Let i = 352 - n. Does 8 divide i? False Let k(q) = 4 - 6 - q**2 - q**3 + 0. Let v be k(2). Is (-9 - v)*3/1 a multiple of 3? True Suppose 5*s = 5*i - 5660, -212*i + 4508 = -208*i + s. Does 4 divide i? True Let q be (2 - 2)/(6/((-3)/1)). Suppose -4*g + 2*v + 2370 = 460, q = 2*g - 5*v - 959. Does 36 divide g? False Suppose 22*t - 64*t + 6846 = 0. Is t a multiple of 72? False Let v be 1150/(-2) - (-7 + (5 - 1)). Let y = -312 - v. Is y a multiple of 26? True Suppose 0 = -5*a + 2*v + 3506, 4*a + 3*v = 299 + 2492. Suppose -87*f - a = -91*f. Is f a multiple of 7? True Suppose 0 = 4*v - 16, -3*w - 12 = 2*w - 3*v. Suppose -5*b + 2044 - 339 = w. Does 31 divide b? True Let l(z) = -z**3 - 5*z**2 - 7*z - 6. Let p be l(-4). Suppose 0 = p*i - 318 + 54. Is 44 a factor of i? True Let s(r) = -r**2 - 7*r - 3. Let o be s(-10). Let g = 84 - o. Does 13 divide g? True Let f(u) be the first derivative of -33*u**2/2 - 8*u + 46. Is f(-8) a multiple of 32? True Let k be (16/(-20))/(4/(-10)). Suppose -260 = -4*q - k*x - 0*x, -x = -3*q + 200. Does 20 divide q? False Is (-4)/12*27 + 3508 + -3 a multiple of 113? False Let n(b) = -7*b**3 - 3*b**2 - 2 + 0*b**3 - 4*b + 2*b**3. Let a be n(-2). Let k = a + -17. Does 4 divide k? False Let o = -47 + 47. Suppose 4*m - 4*d - 612 = o, 2*d + d = -5*m + 805. Let f = m + -98. Is f a multiple of 12? True Suppose -4*h + b + 1140 = 0, 2*b = -0*h - h + 285. Suppose h = 3*z - 381. Does 37 divide z? True Suppose 7*d - 2*d = -4*j + 33024, 2*j - 16530 = 2*d. Does 11 divide j? True Let m be (-151)/9 + ((-43)/(-9) - 5). Let p = 66 + m. Does 3 divide p? False Is 34194/24 + (63/36)/7 a multiple of 19? True Let m = 5876 - 4754. Is 3 a factor of m? True Suppose 42*i = 21*i + 28*i - 22183. Does 28 divide i? False Let o(x) = -13*x - 7. Let l be o(-6). Let m = -51 + l. Is 7 a factor of (m/(-12))/(4/(-84))? True Let p(t) = t**3 - 9*t**2 + 12*t + 10. Is 21 a factor of p(10)? False Let t = -167 - -175. Suppose -9*q + t*q + 144 = 0. Does 18 divide q? True Let r(n) = n**3 - 8*n**2 - 11*n + 11. Let f be r(9). Let t be 0 - (f + 3 - -4). Suppose 32*c - 36*c + 140 = t. Is 12 a factor of c? False Suppose 8*d - 3510 = -2*d. Suppose 12*c - 3*c = d. Is 17 a factor of c? False Suppose 2*l - 1552 = -f, 10*f + 4*l + 599 - 16039 = 0. Is f a multiple of 6? True Let u = -1551 - -2531. Is 5 a factor of u? True Let p = 8 + -4. Suppose 6 = -t + p*t. Suppose -r + 4*a = t*r - 310, -3*r + 5*a = -311. Is r a multiple of 14? False Let n = 2759 - 1026. Does 14 divide n? False Let w = -2470 + 3524. Does 17 divide w? True Suppose -f - 4*d + 103 = -6, 3*f = d + 314. Let q be (-45)/f + 76/14. Suppose -3*m - 194 = -4*h - q*m, 143 = 3*h - m. Does 12 divide h? True Suppose 5*b - 14*q = -13*q + 2156, 0 = 4*q - 16. Is 8 a factor of b? True Suppose -18*o + 16*o = g - 64, 2*o + 116 = 2*g. Is g a multiple of 4? True Let j(o) = -o**2 + 2016. Let h be j(0). Suppose 0 = 7*z - 0*z - h. Is z a multiple of 9? True Suppose 29 = -5*r + 19. Suppose -4*w = -8*w - 528. Let i = r - w. Does 13 divide i? True Suppose -5*l = 3*g - 23, 0*l + 8 = 3*l - 4*g. Suppose 99 = x - 3*z, l*x - 3*x - 4*z = 104. Is 21 a factor of x? True Let y(n) be the first derivative of -6*n**3 + 14*n + 9 - 1/4*n**4 - 9*n**2. Is 6 a factor of y(-17)? False Let k(d) = -2*d**3 + d**2 - d. Let g(a) = a**3 - 8*a**2 + 6*a + 1. Let v be g(7). Let p be -3 + 3/(-5) - v/10. Is k(p) a multiple of 22? True Suppose -305 = 7*s + 451. Is 12 a factor of 38/((-12)/s*6/8)? True Let y be (-73)/(-4) - 16/64. Is (34*(-4)/4)/(y/(-99)) a multiple of 11? True Let r be (4 - 0)*(-315)/(-84). Suppose -833 - 112 = -r*i. Does 2 divide i? False Suppose 2*n - 3*n = -6. Let l = 14 - -16. Suppose o = l - n. Is o a multiple of 11? False Let z(i) = i**2 + 13*i - 32. Let k be z(-15). Does 30 divide 0 - (-8)/k - 168/(-2)? False Suppose 16*k - 14*k = -2*x + 3854, 5*k + x = 9615. Is k a multiple of 39? False Let a(t) = t**3 - 5*t**2 + t - 14. Let r be 12/18 + (-8)/(-6). Suppose -3*f - 1 = m - 5, f - 13 = -r*m. Is a(m) a multiple of 37? False Is 60/(-24) - 55767/(-6) a multiple of 23? True Suppose 106*d - 70020 = 85*d + 13035. Is d a multiple of 35? True Let k(j) = -2*j**3 + 2*j**2 + 2*j. Let u(d) = -d**2 + 8*d - 9. Let n be u(6). Suppose 0 = -z + 1, n*a + 20 = -2*a + 5*z. Does 11 divide k(a)? True Suppose 0 = -2*q - 2*q + 48. Let s = q + -4. Suppose s*r + 100 = 9*r. Does 31 divide r? False Does 3 divide (-355)/(-2) - ((-20)/160)/(2/(-24))? False Suppose -2*x + 12 = z + 3, -4*z - 19 = -3*x. Let l be 7 - (z + 6 + -3). Suppose -l*m - 4*c = -710, 2*c + 3*c = -3*m + 413. Is 33 a factor of m? False Let k(a) = 22*a - 21. Let j(p) = 24*p - 22. Let n(h) = 4*j(h) - 3*k(h). Is n(6) a multiple of 30? False Let k(v) = v**3 - 14*v**2 + 12*v - 9. Let s be k(13). Let c = s + 26. Let o(h) = 6*h**2 - 4*h + 10. Is 15 a factor of o(c)? True Let t = 2566 - 833. Is t even? False Let h = 786 - 172. Let b = h - 389. Is 45 a factor of b? True Let g(c) = 5 + 5*c + 17*c - 3*c + 21 - c**2. Does 3 divide g(18)? False Let y(t) = -t**3 - 29*t**2 - 4*t + 21. Let u be y(-29). Suppose -136*i - 50 = -u*i. Is i a multiple of 25? True Suppose -3*y = -69 + 48. Suppose -y*f + 13 = -15. Suppose 5*u + 0*o - 89 = -o, f*u - 68 = -4*o. Is 9 a factor of u? True Let k be (-4 + 44/16)*-4. Suppose -a = 3 + k. Is 100/a*(-48)/5 a multiple of 30? True Suppose 0 = 3*h - 5*h - 3*h. Suppose j + 0*j - 2 = h. Suppose -k + 0 = -1, -j*r = -k - 209. Does 21 divide r? True Suppose -13*l = h - 17*l - 259, 2*h - 4*l - 502 = 0. Let a = 348 - h. Is 5 a factor of a? True Let u(v) = -3*v + 17. Let p be u(5). Suppose 8 = -p*q - 0. Let l(w) = 7*w**2 + 13*w. Is l(q) a multiple of 10? True Let c(d) be the first derivative of -4*d**2 - 20*d + 76. Is 14 a factor of c(-10)? False Let m(v) = 8*v**2 - 4*v - 3. Let j(f) = f**3 - 6*f**2 + 2*f - 7. Let p be j(6). Suppose -3 - p = 4*k. Is m(k) a multiple of 14? False Let o = 7509 - 4270. Is o a multiple of 34? False Let i(n) be the third derivative of 5*n**4/12 - 14*n**3/3 - 14*n**2. Let o(y) = y**3 - 5*y**2 + 3*y - 9. Let g be o(5). Does 16 divide i(g)? True Let y(x) = x**2 + 14*x + 13. Let h = -23 + 10. Let u be y(h). Suppose u = 3*s + 3*z - 7*z, -2*z = -6. Is s a multiple of 3? False Let j(f) = f**3 + 19*f**2 - 56*f - 42. Is 2 a factor of j(-17)? True Is 119 a factor of -4 - ((-12)/36 + (-12885)/9)? True Suppose -5*s - r + 656 = -373, s - 3*r = 209. Let u = s - 38. Suppose w - u = -5*w. Does 14 divide w? True Let j(d) = -3*d + 5. Let t be (40/25)/((-2)/(-5)). Let n be j(t). Let i = n - -12. Does 4 divide i? False Suppose 2*s = 5*d - 7 - 0, -d - 4*s - 3 = 0. Let y be d*(4 - 3) - -175. Let p = y - 106. Is 18 a factor of p? False Let z = 2028 + -1421. Suppose 0 = -13*h + 17*h + 3*b - z, -4*h - 4*b = -604. Is h a multiple of 22? True Suppose -10*z - 140 = -5*z. Let r = -22 - z. Suppose 4*u - r = 3*u. Does 6 divide u? True Is 1152 + ((-2)/2)/(3/12) a multiple of 2? True Let g(j) = -3*j**2 - 37*j + 1. Let w be g(-11). Suppose -3*r = -5*a - 104, 145 - w = 3*r - a. Is 2 a factor of r? False Let l(f) be the third derivative of -1/60*f**5 + 0*f + 0 + 2/3*f**4 + 15*f**2 + 3/2*f**3. Does 8 divide l(15)? True Suppose -14570 = -5*f - 5*k, -118*f + 5*k - 8742 = -121*f. Is f a multiple of 47? True Does 94 divide (-245)/70*-4*235? True Suppose 0 = 3*i + 5*h - 501, 2*i + 2*h - 225 = 105. Does 54 divide i? True Suppose -10759 = -7*b + 9296. Is b a multiple of 27? False Let k(s) = 53*s - 37. Let g(f) = f**3 - 2*f**2 - 2*f + 4. Let d be g(0). Is k(d) a multiple of 7? True Let f = 23 + -20. Let z be 12 - (f - (-1 - (0 - 1))). Suppose s - 384 = -2*s - 2*q, 0 = 3*q + z. Does 45 divide s? False Is 42 a factor of 75/5*7*432/15? True Suppose 3*g - 5*o = -8144 - 1616, -13025 = 4*g + 5*o. Let s = -433 + g. Is s/(-26) - 2/(-13) a multiple of 16? False Suppose 0 = -3*u - m + 31861, -4*m + 1983 = 4*u - 40493. Does 19 divide u? True Suppose 5*g - 18 = 3*l, 3*l = 3*g - 2*l - 14. Suppose -5*f + g*b - 2*b + 1368 = 0, 3*b = -f + 280. Let c = -134 + f. Does 28 divide c? True Suppose -131*s + 136*s = 235. Suppose c + a + s = 127, 5*c = 2*a + 372. Is c a multiple of 13? False Suppose -5084 + 13300 = 15*l - 15619. Does 7 divide l? True Let q(z) = -z - 1. Let o(l) = 13. Let v(h) = o(h) - q(h). Let g be v(-9). Suppose -j = 4*d - 127, -43 = -d + g*j + 15. Is 13 a factor of d? False Let m = 6503 - 3558. Is m a multiple of 19? True Suppose -6*d + 11*d = 5*x + 6275, d - 1231 = -11*x. Is 179 a factor of d? True Let f = -125 + 233. Suppose -f + 408 = 2*r. Is r a multiple of 15? True Is -1*2/12 + 20984050/3084 a multiple of 126? True Let t(h) be the first derivative of 11*h**2 - 28*h - 55. Is t(6) a multiple of 8? True Let y = 11188 - 4505. Is 35 a factor of y? False Suppose 5*h - 2*h = 354. Suppose 0 = -i + 3*d - h, -i + 0*i = 5*d + 86. Let x = i - -226. Is x a multiple of 24? True Suppose -5*o + 64471 = 19081. Is 9 a factor of (3/2)/(153/o)? False Suppose 4*h = 5*v + 4, h - 1 = -4*v - 0*v. Suppose v = -5*a - 3*n + 194, -n - 145 = -4*a - 0*n. Is a a multiple of 6? False Let r(y) = y. Let n(u) = u**3 + u**2 + u - 1. Let d(k) = n(k) - 5*r(k). Is d(3) a multiple of 14? False Suppose 4*l - 8 = 0, -2*g + 5477 = 5*l + 1083. Is g a multiple of 23? False Suppose -88536 = b - 19*b - 3*b. Is 8 a factor of b? True Let s = -3139 + 6931. Is 8 a factor of s? True Is 87 a factor of (1167 + -23)/((-1)/(-7))? False Suppose -5*w = -5*m - 11 - 9, 0 = 5*w - 3*m - 22. Suppose 3048 = -o + 13*o. Suppose 236 = w*c - o. Is c a multiple of 41? False Let m(v) = v**3 + 12*v**2 + 8*v - 30. Let n be m(-10). Let x = 5 + -2. Suppose -x*a - 3*a + n = 0. Is a a multiple of 15? True Suppose 4*d = -c + 864, 2*d - 3*d = 2*c - 216. Let y = d - 196. Does 10 divide y? True Let x(y) = -3*y**2 + 31*y - 16. Let m be x(10). Does 12 divide m/12*(-123 - -3) + 4? False Let r(l) = -123*l - 296. Is r(-24) a multiple of 23? False Suppose -2*z + 16 = -2*j, z - 2*j = 3*j + 24. Let v(g) = -3*g + 17. Let k be v(z). Suppose k*o - 77 = 73. Does 6 divide o? True Let a(g) = -g**3 + 8*g**2 - g + 9. Let o be a(8). Suppose s = 2*r - o, 0 = r + 2*r - s - 3. Suppose -3*l = r*l - 135. Is l a multiple of 17? False Let z = -828 - -1564. Does 8 divide z? True Let o be (7 + 0)/(3/3). Suppose 0 = -o*p + 407 + 230. Does 7 divide p? True Let y = -40 + 42. Suppose -5*a + 450 = -2*m, -4*a - y*m + 392 = 50. Let k = 124 - a. Is k a multiple of 18? True Let w(b) = -13*b - 62. Let m = -25 + 10. Is 48 a factor of w(m)? False Suppose -6*c = -7*c + 106. Does 11 divide c - 3*(3 - 40/12)? False Let v = -19 + 22. Let c be -1 + 5 - -27*v. Suppose 13 = -2*o + c. Does 13 divide o? False Suppose 6301 = 2*r + 1065. Is 14 a factor of r? True Suppose -54*b = -49*b. Suppose b = 21*l - 1228 + 346. Is 5 a factor of l? False Let x(f) = f**3 + 22*f**2 + 18*f + 16. Let t(i) = i**2 - 14*i + 27. Let d be t(8). Is x(d) a multiple of 5? False Suppose 0 = 4655*q - 4653*q - 16000. Is q a multiple of 50? True Let x(s) = -s - 1. Let n be x(-2). Let d(k) = -4 + 5 - n + 4 + 14*k. Is 12 a factor of d(4)? True Let x be (-38 + 40)*1/(-2). Does 43 divide x*(-127 - 1) - (-73)/73? True Is 66 a factor of 8/(-10) - 1214848/(-160)? False Let d be (-295 + (-1 - -3))/(-1 - -2). Let x = -173 - d. Is 15 a factor of x? True Suppose 7*v - 21961 - 5643 = -7339. Does 6 divide v? False Let j(n) = -n**3 + 39*n**2 - 80*n + 6. Is j(32) a multiple of 10? False Let x = 17972 - 12244. Does 16 divide x? True Let p(x) = x**3 + 10*x**2 - 12*x - 11. Suppose -89 = 6*o - 23. Let r be p(o). Is (1 - -1) + r + -4 + 23 a multiple of 7? True Let d(h) = h**3 - 2*h**2 + 4*h + 828. Does 23 divide d(0)? True Suppose 84 = 4*p - 208. Suppose 0 = -4*a - p + 1045. Is a a multiple of 19? False Does 15 divide 341/682 - (-1 + (-7894)/4)? False Suppose -13*h + 15097 - 1057 = 0. Is h a multiple of 20? True Suppose -d + 1759 = -591. Is (6/15)/(10/d) a multiple of 41? False Let d(w) = -w**3 + 13*w**2 - 6*w - 12. Let q(g) = -6*g + 1. Let n be q(-1). Let r be 86/n + 4/(-14). Is 11 a factor of d(r)? False Let s be (7/(-3))/((-2)/6). Suppose s*i - 320 - 1948 = 0. Is i a multiple of 46? False Let o(w) = w**2. Let r(x) = 7*x**2 + 10*x + 4. Let g(v) = -6*o(v) + r(v). Let n be g(-9). Let m = n + 28. Is m a multiple of 23? True Let r = -2991 - -3567. Does 20 divide r? False Let u(r) = -r**2 - 19*r + 8. Let z = -22 - -3. Let o be u(z). Is 36 a factor of (-1074)/(-9)*12/o? False Suppose 0 = 7*z - 12*z + 365. Suppose -70*y - 12 = -z*y. Suppose 104 = y*c - 260. Does 13 divide c? True Let s = 8 + -6. Suppose -7*n + 445 = -s*n. Let v = n + 21. Is 11 a factor of v? True Let j(f) = f**2 + 24*f - 4. Let v be j(-25). Let k = 114 - v. Is 6 a factor of k? False Let o(k) = k**2 + 6*k - 7. Let s be o(6). Suppose q + 3*q = -5*j + 35, 5*q - 2*j - 19 = 0. Suppose -5 = -q*p + s. Does 3 divide p? False Suppose -7*h + 14 - 56 = 0. Is -2 + 97 + (-2 - 7 - h) a multiple of 8? False Let v = 12066 - 4845. Does 87 divide v? True Is 2*304/32*(121 - -1) a multiple of 61? True Let h be (10/40)/(-3 + 61/20). Suppose -h*j = -25, 333 = 23*m - 21*m + 5*j. Does 12 divide m? False Let i be (-2 - -1 - 0)*3/(-3). Let j(f) = 93*f**2 - 3*f - 2. Let h be j(-1). Is 17 a factor of h/8*(3 + i)? False Let i be ((-12)/30 + 34/(-40))*-12. Let o be (-3 - (-50)/i)/(2/90). Suppose -w = 2 - o. Is w a multiple of 3? False Suppose -2*s = -2*t + 8, -2*t + 4*s = -19 + 3. Let k be 111 + (1 - (t - -3)) - -3. Let a = k - 50. Does 15 divide a? False Suppose 3*v - 6114 = -3*p, -15*v + 10192 = 5*p - 11*v. Suppose -49*k + p = -44*k. Does 68 divide k? True Let j(i) be the second derivative of 5*i**4/4 + i**3/3 + 3*i**2/2 + 3*i - 3. Is 33 a factor of j(3)? False Suppose -5*y + 4*a + 1820 = 0, -5*a + 385 = y - 10*a. Is y a multiple of 72? True Suppose 4*j - 538 = 342. Let v = j + 27. Is v a multiple of 16? False Let w(g) = -5*g**2 + 12*g - 4. Let p be w(2). Suppose p = -i - i + 342. Is 13 a factor of i? False Let r = 66 + -71. Does 19 divide 2 - (6/10 + 2368/r)? True Suppose -3*c - h = -5792, -78*h + 75*h = -3*c + 5772. Is 77 a factor of c? False Let w(t) = t - 12 + 4*t + 8*t. Suppose 3*l + 11 = 5*s, -l + 2*s = 7 - 2. Is 6 a factor of w(l)? False Let p = 54 - 102. Let o = p + 56. Is 18 a factor of (-142)/(-2) + (-2)/(o/(-4))? True Let b(w) = -7*w**2 - 57*w - 8. Let l be b(-8). Suppose l = -3*y - 2*o + 226, 3*y + 79 = 4*y - 3*o. Is 8 a factor of y? False Suppose 5*z = -0*z + 3*d, 0 = z - 3*d. Suppose 424 = n + 5*v, 4*n + z*v - 1711 = -5*v. Is n a multiple of 39? True Is 33 a factor of (-135845)/(-40) + 4 + 29/(-232)? False Suppose 0 = -22*p + 47*p - 43500. Is 15 a factor of p? True Let h be (0 + 8/6)/((-37)/(-111)). Suppose -4*q + 4*d + 1212 = 0, -q + 1491 = h*q + d. Is q a multiple of 13? True Let w(s) = -17 - 119 + 121*s - 122*s. Let r be w(0). Let j = r - -202. Does 11 divide j? True Suppose 44*t - 4587 = 43*t. Is 68 a factor of t? False Let w(r) = 2*r**2 + 10*r + 9. Let n be w(-7). Let z be ((-65)/(-60))/(1/4)*15. Let g = z - n. Is 14 a factor of g? True Suppose 25*j - 1639 = 649 + 11962. Does 15 divide j? True Let w = 153 + -225. Let g = w - -184. Is g a multiple of 16? True Suppose -5*l + 146 = 3*u, -u - 14 = -l - 76. Suppose -55*q + u*q = 112. Is q a multiple of 9? False Suppose -2564 - 2284 = -4*j. Is j a multiple of 12? True Suppose 3*m - 5240 = 2860. Suppose -10*d = 2*d - m. Is 27 a factor of d? False Let c(k) = -3*k**3 - 11*k**2 + 6*k - 7. Let z be c(-5). Is 4/(-7) - (-8415)/z a multiple of 19? True Let s = -307 - -586. Let p be 1516/(-8) - 1/2. Let k = p + s. Is k a multiple of 10? False Let k(w) = -w**3 - 5*w**2 + 7*w + 14. Let b(t) = t**2 + 9*t - 16. Let v be b(-10). Let m be k(v). Does 9 divide ((-332)/m - -2)/(2/(-4))? False Let q(j) = j**3 + 31*j**2 - 73*j + 43. Let s be q(-33). Let r = s - 174. Is 3 a factor of r? False Let r(d) = 17*d**2 - 10*d + 15. Let h be r(11). Suppose 0 = -14*z - 4*z + h. Does 9 divide z? False Let u = 1736 - -43. Is u a multiple of 4? False Suppose -23*f - 3 = -24*f. Suppose -a = f - 23. Does 10 divide a? True Let t(w) = -10*w**3 - 14*w**3 - 43*w**2 + 56*w**2 + 23*w**3 - 28 - 3*w. Is 10 a factor of t(10)? False Let a(p) = 6*p**2 - 19*p + 142. Does 11 divide a(-24)? False Let y = -2777 - -3566. Is y a multiple of 16? False Suppose -2*t - 2*n = -16, 4*n - 11 - 5 = 0. Suppose 4*q = t*p - 152, -25 = -p - 2*q + 22. Is p a multiple of 2? False Let t = -1435 + 2254. Does 9 divide t? True Let f(d) be the third derivative of d**5/60 - d**4/24 - d**3 + 11*d**2. Let r be f(-3). Does 31 divide (r/4)/((-3)/(-8))*9? False Suppose 4*c = 4*f - 20, 0 = -0*c - c + 3*f - 1. Let q be 0 + (-1 - -105)/2. Let n = c + q. Is n a multiple of 9? True Let t(g) = 3*g**2 + 35*g - 11. Let n = -11 + -4. Is 21 a factor of t(n)? False Suppose 3292 = 3*l - 4*d, -22*d = 5*l - 20*d - 5452. Is 28 a factor of l? True Let m be (-21)/(-4)*(-260)/(-39). Suppose 0 = m*o - 41*o + 1800. Is 66 a factor of o? False Suppose 104*u + 29*u - 390355 = 0. Does 11 divide u? False Let x(v) = 51*v - 22. Let c be x(2). Let n = -66 + c. Is n a multiple of 7? True Let i = -81 + 490. Let v = i - 283. Is 21 a factor of v? True Suppose -2*a - g - 11 = -2*g, a = g - 7. Does 8 divide (3*a/36)/(1/(-915))? False Suppose -16*d + 18090 = -11*d + 5*f, -3*d - 18*f + 10809 = 0. Does 16 divide d? False Let o(x) = x**3 - 16*x**2 - 20*x + 5. Let l = -134 + 152. Does 43 divide o(l)? False Suppose 19*x = 2*x + 132929 - 31269. Is 10 a factor of x? True Let g(p) = 3*p - 6. Let f(w) be the first derivative of -w**2 + 13*w + 7. Let x be f(5). Is 3 a factor of g(x)? True Suppose 145*p - 159378 = 179435 - 36053. Is 87 a factor of p? True Let u(m) = m**2 + 16*m - 2. Let h be u(-15). Let n be 7*13 - (-14 - h). Suppose -4*v + n = -72. Is 20 a factor of v? True Let c = 194 + -182. Suppose 16*r - c*r = 424. Is 16 a factor of r? False Let w(a) = 5*a**2 - 107*a + 400. Is 18 a factor of w(43)? False Suppose w + 6 = 4*g, w - 25 = g - 16. Let o(x) = x**3 - 14*x**2 + 12*x + 24. Does 5 divide o(w)? False Let h = -18 - -18. Suppose 15 = -5*y, 0*a + 2*a + 2*y + 6 = h. Is 27 a factor of a - (-2 + 2 - 53 - 1)? True Suppose 15*i - 506 = 1129. Let d = -7 + -53. Let a = d + i. Is a a multiple of 7? True Let t = -4478 + 7866. Is 14 a factor of t? True Suppose -6 = -11*i + 12*i. Does 6 divide -3*((-9)/(-27) - (-106)/i)? False Let m(z) = -z**2 + 8*z - 17. Let u be m(5). Does 8 divide (-265)/u - -4*(-15)/(-40)? False Suppose 368015 = 113*g - 246887 - 555778. Is g a multiple of 37? True Let s(i) = 2*i**2 - 3*i**2 - 4 + 5*i**3 + 2*i - i**2 - 4*i**3. Let p be s(2). Suppose -9*o + 372 + 312 = p. Is 20 a factor of o? False Let d = 4010 - 386. Is d a multiple of 12? True Suppose -132 = -5*i + 18. Suppose 0 = -29*f + i*f. Suppose 74 = c - 2*k, 3*k + 306 = -f*c + 4*c. Is 25 a factor of c? False Let n(p) = 36*p - 20. Let o(q) = -288*q + 159. Let u(d) = 33*n(d) + 4*o(d). Is 7 a factor of u(7)? False Let r be ((-7)/(-112)*8)/(2/(-356)). Let n = r - -148. Is 3 a factor of n? False Let a be 1/(4 + 45/(-12)). Suppose u + 336 = 3*n - 2*u, a*n - 2*u = 448. Does 14 divide n? True Let b(v) = -11*v - 48. Let k be b(-21). Let r = k + -129. Does 6 divide r? True Let r(q) = -4*q + 13. Let h be r(3). Let f(v) = 55*v**2 + 3*v - 2. Is f(h) a multiple of 7? True Let b = 46 - 0. Is b + -2 - (-3 + 2) a multiple of 9? True Suppose 4*f + 56*r = 54*r + 860, 5*r - 1070 = -5*f. Does 151 divide f? False Suppose -7*t + 378 = 7*t. Suppose -15*o + 14*o = -t. Is 3 a factor of o? True Is 12 a factor of ((-2)/(-2))/(-1) + (894 - (-140)/20)? True Let v = 208 - 210. Let b = v + 58. Does 7 divide b? True Let r(n) = n**3 - n**2 - 4*n + 8. Let w = -13 - -17. Let k be r(w). Let o = k - 15. Is 8 a factor of o? False Suppose 45*r = 16*r + 226896. Is 60 a factor of r? False Suppose 16*k - 21*k - 205 = 0. Let n = 50 + k. Is 26 a factor of 2/n + ((-966)/(-27) - 2)? False Let a be (6/(-5))/((-56)/43820). Let l = a + -407. Is 59 a factor of l? False Suppose 2*h = -4*c - 20, 5*h - 3*c = 4*h. Is 4 a factor of 1/(h - (-1348)/224)? True Let o = 62 - -12. Suppose -o = -2*x + 32. Suppose f + k = 22, f = 4*k - 11 + x. Does 22 divide f? False Let x(v) = 12*v + 7*v - 126 + 141. Does 29 divide x(5)? False Let b(z) = -z**3 - 47*z**2 + 61*z - 9. Is 3 a factor of b(-49)? False Let k = 24 - 27. Let d = k + 6. Is 3 + d + -2 - -23 a multiple of 4? False Suppose 3*a - 5*v - 95 = -31, -2*v - 10 = 0. Suppose a*d + 156 = 19*d. Is d a multiple of 13? True Suppose 0 = 24*i + 27*i - 14076. Is 12 a factor of i? True Let i(s) be the second derivative of -2*s + 0 + 5*s**2 + 17/6*s**3. Does 16 divide i(5)? False Suppose -20547 + 1697 = -2*r. Is 17 a factor of r? False Let f = 4135 + 6121. Is 4/(-10) - f/(-40) a multiple of 10? False Is 8 a factor of 703 + 6/((-3)/(-1) + -5)? False Does 6 divide 1 + 9/(27/5073)? True Let b(i) be the second derivative of -i**7/2520 - 5*i**6/144 - 7*i**5/30 - i**4/4 + 5*i. Let c(j) be the third derivative of b(j). Is 15 a factor of c(-19)? False Let y(i) = 142*i - 8 - 5 + 59*i. Is 23 a factor of y(1)? False Let c = 135 + -135. Suppose c = 4*r - 5*r + 19. Is 2 a factor of r? False Suppose 0 = 4*u - 5*o - 457, -7*o - 115 = -u - 5*o. Suppose 0 = 3*v + 4*j - 412, 0 = 2*v + 3*j - u - 161. Is 10 a factor of v? True Let g(u) = 16*u - 6. Suppose -3 - 18 = -n. Suppose -27 = -3*x - d + 4*d, 2*x = 3*d + n. Is g(x) a multiple of 15? True Let b(w) = w**3 - 10*w**2 - 9*w - 20. Let m be b(11). Let h be (-3)/m*32/(-6). Suppose 0 = -h*a + 3*a + 90. Does 15 divide a? False Let v = 6725 - -1645. Is v a multiple of 120? False Let g(q) = -1233*q - 384. Does 39 divide g(-3)? True Let p(w) = -40*w + 31. Let a(h) = 10*h - 8. Let n(z) = -9*a(z) - 2*p(z). Let k be n(5). Does 24 divide 18/(-5)*k/6? True Let v(q) be the first derivative of 0*q**2 + 2*q - 4 - 1/4*q**4 + 5/3*q**3. Is v(3) a multiple of 6? False Suppose -h - 24 = -41. Let b = h - 111. Let t = -48 - b. Does 10 divide t? False Let n(f) = -19*f + 16. Let p(w) be the second derivative of -3*w**3/2 + 4*w**2 + w. Let y(t) = -4*n(t) + 9*p(t). Is y(-2) a multiple of 9? True Suppose 0 = -13*s + 34*s - 68628. Does 19 divide s? True Let o(h) = 18*h**2 - 294*h + 24. Is o(20) a multiple of 12? True Suppose -22*s - 14*s = 21*s - 9576. Is 14 a factor of s? True Is 31 a factor of 9*1409*(-240)/(-1080)? False Suppose 3*l = 3*g - 11*g + 26276, -3*g = -3*l + 26331. Is l a multiple of 11? False Let b(m) = 4*m**2 + 22*m + 58. Does 87 divide b(-20)? True Suppose 148 = 2*n - n. Suppose 648*z - 2320 = 638*z. Let v = z - n. Does 21 divide v? True Let i be (45/(-6))/(2/4). Is 25 a factor of 302/6 + i/45? True Let w be (-10)/(-4)*4/5. Suppose 30*m - 162 = 12*m. Suppose -w*z - 882 = -m*z. Is z a multiple of 22? False Let n(k) = 197*k + 6. Let u be n(2). Suppose -2*l + i + 258 = 0, -3*l + u = -4*i + 9*i. Does 10 divide l? True Let v(d) = -d**3 + 7*d**2 + 22*d - 11. Let k be v(9). Let l = k - 36. Let r = l - -143. Is r a multiple of 33? True Let z = -69 + 81. Is ((-735)/(-45))/(2/z) a multiple of 5? False Let h(t) = 2*t + 1. Let j be h(7). Let s(g) = -7*g**2 - 9*g + 17*g**2 + 12 - 9*g**2. Is 28 a factor of s(j)? False Let q = 1002 + 5110. Does 32 divide q? True Does 22 divide 8/(-28)*(-203049)/9? True Suppose -20*j + 21*j = 67*j - 17094. Is 4 a factor of j? False Let o(i) = 30*i**3 - 3*i**2 - i + 8. Let s be o(3). Suppose 3*v - r - s - 383 = 0, 2*r = -2*v + 786. Is v a multiple of 23? True Does 14 divide (-89 - 1414)*(-1 + (-8)/3)? False Let q = -233 - -2574. Does 21 divide q? False Let u = 33 + -30. Suppose 8*o - 2060 = u*o. Suppose -6*b + o = 34. Is 7 a factor of b? True Let p(q) = -q**2 - 3*q + 17. Let v be p(-7). Let n = 20 + v. Is 11 a factor of (-4)/(-18) + 394/n? True Suppose 13*z + 53022 = 55*z - 102000. Is z a multiple of 33? False Let r(v) = 4*v**2 - 75*v - 493. Is r(-23) a multiple of 9? True Let s = 1212 - 182. Suppose -3*o + 2*u = -634, -2*o - 2*u + s = 3*o. Does 7 divide o? False Suppose -6*c = -4*c. Suppose 5*d + 22 - 317 = c. Is 30 a factor of d? False Let b(x) = 3*x - 23. Let s be b(6). Is 5 a factor of 3/(2/(-230)*s)? False Let a = 4713 - 3841. Is 4 a factor of a? True Suppose 3*m - 2 = -2*d + m, 0 = -3*m - 6. Suppose -d*z = 233 - 614. Let a = z + -39. Is 22 a factor of a? True Suppose w - 65 = 2*g, -5*g - 56 = 2*w - 3*w. Let q = 107 - w. Is (0 - -1)/(3/q + 0) a multiple of 5? False Let b = -5209 - -11149. Does 99 divide b? True Suppose 7 + 4 = 5*z - q, -2*z + 9 = -5*q. Suppose 2*u + 0*u = 5*y + 316, -157 = -u + z*y. Is u + (4 - 5)*-1 a multiple of 13? False Let t(w) = 27*w + 193. Is 41 a factor of t(73)? False Suppose -3*p = 2*a - 12, 0*p - 3*p = -2*a. Is (-253 - -1)/(-4) + p a multiple of 8? False Suppose 2*t = 1279 - 525. Is t a multiple of 8? False Is 1130 - 6 - (11 + 0) a multiple of 41? False Let t(a) = -6*a + 35*a**2 - 21 + a**3 - 8*a - 51*a**2. Let g be t(17). Is 15 a factor of (40/(-10))/(26/g + -1)? True Let t(d) = d**3 - 10*d**2 - 14*d - 24. Let h(z) = -z**2 + z + 1. Let r(b) = -2*h(b) - t(b). Is 27 a factor of r(12)? False Let g be (-6)/39 - (-996)/52. Let r = 113 - 88. Let x = r - g. Is 5 a factor of x? False Suppose 3*k = -3*f + 3, 9 = k + 5*f - 0*f. Let g be 52/((-161)/21 + 9). Let m = k + g. Does 20 divide m? False Let p(d) = d**3 + 4*d**2 + 3*d + 7. Let w(l) = l**2 + 9*l + 11. Let j be w(-7). Let u be p(j). Let v(z) = 11*z - 3. Is 14 a factor of v(u)? False Suppose 0 = 3*j - 2*j - 2. Let b be 11/5 - 5560/(-200). Suppose -j*r + 75 = -3*c, 5*r - 6*r + 3*c = -b. Is 8 a factor of r? False Suppose 0 = -4*w - 3*q + 6, -2*q + 11 = -0*w + 5*w. Suppose 28 = w*o - 50. Suppose -o + 106 = x. Is 40 a factor of x? True Let h(l) = -5*l**3 - 33*l**2 - 17*l - 11. Is h(-10) a multiple of 30? False Let y(k) be the second derivative of -2*k**4/3 - k**3/3 + 3*k**2/2 - 13*k. Let l be y(-3). Let s = l + 111. Does 6 divide s? True Suppose 2*j - 6 = 0, -3*h + 2 = -4*j + 11. Is 19 a factor of 974/(-4 - h - -7)? False Let z(o) = -56*o - 852. Is 12 a factor of z(-30)? True Does 38 divide 39/(4/26 - (-2915)/(-21736))? True Suppose -6*m - 2 = -7*m. Let l(o) = -1 + 201*o + 1 + o**m - 204*o. Does 9 divide l(6)? True Let q(d) be the first derivative of -d**2 + d + 1/3*d**3 - 14. Does 4 divide q(4)? False Suppose -7*a + 170 = -12*a. Let p = -39 - a. Let x = 46 - p. Is 18 a factor of x? False Is -6444*4/(-6)*(-5 + 6) a multiple of 52? False Let f(t) = 17*t + 59. Let m be f(-5). Does 13 divide m*(39/2)/(-3)? True Let y = -48 - -64. Let l(f) = -f + 16. Let m be l(y). Suppose -8*s + 230 - 38 = m. Does 4 divide s? True Let b(r) = 5 + 0*r + 4*r + r - 7*r. Let f be b(3). Does 30 divide (-1)/2 - (f + (-122)/4)? False Let d = -2410 - -3150. Is 4 a factor of d? True Let c(m) = 7*m**2 - m - 26. Let v be c(-9). Let o = v + -256. Does 14 divide o? True Let v = -31 - -37. Suppose 5*t = -3*u + 5, -t - 22 = -v*u + 2*u. Is 10 a factor of (0 - -5)/(t/(-20))? True Let b(t) be the second derivative of t**5/20 + t**4/2 - 17*t**3/6 - 31*t**2 - 11*t. Is b(-6) a multiple of 9? False Suppose 4*w - 2728 = -0*w. Suppose -5*j - 3*u - u = -674, 5*j + 2*u - w = 0. Let q = j - 88. Is q a multiple of 10? True Suppose y - 4*a = -2*y + 13, 4*y + 20 = -4*a. Let b(o) = 54*o + 4. Let d be b(6). Is 14 a factor of (d/16)/(y/(-2))? False Let l be 3/(-6)*(2 - (-3 - -21)). Suppose 0 = l*o - 7*o - 20. Is 28 a factor of (1 + 2/(-6))*(o - -109)? False Does 61 divide (-2)/((-15)/(495/(-44))) - 13426/(-4)? True Is 38 a factor of (232/(-10))/(19/((-28215)/18))? False Suppose -18*n + 39 = 3. Suppose 3*d - 44 + 11 = 0. Suppose -n*i - 306 = -d*i. Does 31 divide i? False Suppose 1975 + 4105 = 32*b. Does 21 divide b? False Let t(v) = v**3 + 31*v**2 + 41*v + 98. Let n be t(-30). Let c = -180 - n. Is c a multiple of 6? False Suppose 4*y = 3*k + 8, 6*y + 2 = 3*k + 7*y. Suppose -433 = -3*o + 3*z - 7*z, k = 3*o - 3*z - 405. Does 13 divide o? False Let v(l) = -4*l**3 - 7*l + 1. Let f(k) = -k**2 + 2*k + 5. Let w be f(-2). Is v(w) a multiple of 22? False Let t(b) = -157*b - 246. Is 9 a factor of t(-3)? True Let m(b) = -2*b - 3. Let r be m(-14). Let s(u) = 7*u + 0 - 18 + 5 - r. Is s(19) a multiple of 44? False Let m(l) = l**3 + 16*l**2 - 9*l - 12. Let v(d) = -10*d - 5 - 4 + 16*d**2 - 2 + d**3. Let a(n) = 6*m(n) - 7*v(n). Is a(-17) a multiple of 2? True Suppose -5*a - y - 4 = 0, -a - 2*a + 3*y + 12 = 0. Suppose a = -3*f + 5*j, 2*f + 7 = 2*j - j. Let g = 31 + f. Does 13 divide g? True Let m = -62 - -68. Is 45 a factor of (-45)/4*-3*(10 - m)? True Let z = 61 + -13. Let x = z + 91. Suppose u = -3*j + x, -177 - 91 = -2*u + 4*j. Is u a multiple of 34? True Let u be (-3)/(-4 - 148/(-40)). Is 11 a factor of (u/(-15) - 0)*-99? True Let q = 194 + -190. Suppose 6*t - 440 = q*t. Is t a multiple of 22? True Let k = 23 - 25. Let w(n) = 22*n**2 - 11*n - 28. Is 35 a factor of w(k)? False Let x = -4095 + 4826. Is x a multiple of 8? False Suppose 3899 - 1139 = 10*h. Let v = h - 146. Is v a multiple of 26? True Let t(r) = r**3 - r**2 + r + 152. Let w be t(0). Suppose -4*h + 2*h - 3*k - 76 = 0, -2*k = 4*h + w. Let m = 58 - h. Is 30 a factor of m? False Suppose 0 = 3*l + 5*g - 19 - 81, 0 = -5*l + 4*g + 179. Suppose k - 3*h + l = 102, 353 = 5*k + 3*h. Let a = 102 - k. Is a a multiple of 32? True Let w = 3 + 0. Suppose -4*p + 3 = -w*c - 5, 4*p - c - 8 = 0. Let n(o) = 6*o**2 - 3*o. Is n(p) a multiple of 3? True Let o = -642 - -1078. Suppose h + 0*h - 464 = 5*t, -2*t + o = h. Does 47 divide h? False Let h(v) = -3*v - 36 - 6*v + 2*v - 26*v. Does 13 divide h(-5)? False Let w(q) = q**3 - 27*q**2 + 2*q - 47. Let c be w(27). Suppose 13*h = c*h + 780. Is 10 a factor of h? True Suppose 14*b = 35*b - 82992. Is 152 a factor of b? True Suppose 2*f + 363 = w, 97*f = w + 96*f - 365. Is 16 a factor of w? False Let t(m) = -m**3 + 9*m**2 - 6*m - 6. Let k be t(8). Suppose 5*q + 1 = 3*u + 17, u = 4*q - k. Suppose -43 = -j + p + q*p, -4*j + p = -183. Does 23 divide j? True Let p(a) = -a + 6. Let n be p(5). Let v be 322/1 - (n + (1 - 4)). Is 5 a factor of (-72)/v - ((-245)/9 - 0)? False Let b be ((-44)/(-6))/(26/(-39)). Let c = 11 + b. Suppose -p + c*p = -4*y + 50, 2*p - 30 = -2*y. Is y a multiple of 2? False Let m(j) = j**3 - 10*j**2 - 28*j + 8. Let o be (-3)/9 + -3*(-129)/27. Is 15 a factor of m(o)? False Let g(r) = 2*r**3 + 3*r**2 - 6*r + 8. Let i(j) = j**3 + j**2 - 3*j + 4. Let t = -6 - -2. Let h(l) = t*g(l) + 7*i(l). Is 6 a factor of h(-6)? False Let s(f) = f + 12. Let a be s(-3). Let x be a - (-6)/(-1) - (-57 - 0). Suppose -9*u + 7*u + x = 0. Is u a multiple of 10? True Is (11698/3 - (-80)/(-240)) + (0 - -1) a multiple of 19? False Let c = 5357 - 980. Does 104 divide c? False Suppose -233*c + 238*c = -40. Let a(h) = -h**3 - 5*h**2 + 6*h - 36. Is a(c) a multiple of 9? True Let w(q) = -546*q + 302. Does 65 divide w(-10)? False Let y(o) = o**2 - 1. Let v(h) = -h**3 - h**2 - h + 4. Let w(c) = v(c) + 4*y(c). Let d be w(1). Is 10 a factor of (2 + d)*(17 - 6)? False Let n(x) = 104*x + 1. Let z be n(-4). Let h = z + 200. Is 19 a factor of 2 + (6 - 2)/((-10)/h)? False Let a = -573 + 860. Suppose 0 = h + 88 - a. Suppose 4*x - h - 101 = 0. Does 15 divide x? True Let z = 180 + -140. Does 23 divide 32/z + 2748/15? True Let h = 256 + -176. Suppose -3*j = z - 0*z - 135, 4*z = -2*j + h. Does 31 divide j? False Suppose 2*x = -2*y - x + 883, -4*y + 4*x = -1776. Is 19 a factor of (y + 1)/4 + 3? True Suppose -2*j + 8078 = 3*f, j - 4*f = 6*j - 20202. Is 59 a factor of j? False Let t = 7262 - 5051. Is t a multiple of 8? False Suppose k = -2*p + 68 - 207, 3*p - 9 = 0. Is 33 a factor of -4 - (k - (10 - 5))? False Suppose 21 = 3*g - 4*s, -3*g = s - 6*s - 18. Suppose -3*b + 2*j = -0*j - g, -2*b = -j - 6. Does 16 divide (b/1 + -2 + 0)*-50? False Let j(o) = -2*o**3 + 3*o - 4 + o**3 + o**2 + 2*o**2. Let x be j(-6). Suppose -4*r + 18 = -x. Does 16 divide r? True Let z be 56/(-21)*((-615)/2)/5. Suppose -4*q + 2*q = -z. Let v = q + -59. Does 23 divide v? True Let p = 4648 + -1401. Is p a multiple of 13? False Let o = 1555 + 2592. Is 13 a factor of o? True Let p(v) be the second derivative of -v**5/20 + 2*v**4/3 + v**3/2 - 8*v**2 + 14*v. Let o be p(8). Suppose 3 = -a, 5*m + 2*a + o - 47 = 0. Is m a multiple of 2? False Suppose 15*p - 108 = 282. Let m = 243 - p. Does 39 divide m? False Suppose -6 = 2*y, 0*f + 5*y = -3*f - 3. Suppose -3*p + 804 + 67 = 2*g, -1451 = -5*p - f*g. Is p a multiple of 21? False Suppose -635*w = -645*w + 24840. Is w a multiple of 23? True Suppose -623 = 3*a + 4*a. Let l = a - -29. Does 2 divide (8/(-6))/(8/l)? True Let q(d) = d**2 - 34*d + 5. Let g(m) = 2*m**2 - 66*m + 11. Let s(j) = 4*g(j) - 7*q(j). Is 7 a factor of s(32)? False Let m(a) be the third derivative of 71*a**4/24 - 14*a**3/3 - 43*a**2 - 2*a. Is m(4) a multiple of 16? True Suppose 13*o - 36*o + 95772 = 0. Does 22 divide o? False Suppose -74*t + 115648 + 19550 = 0. Is t a multiple of 108? False Let i = 75 - 128. Is 9 a factor of (1 + (-74)/(-10))*(-38 - i)? True Suppose 0 = -f + s + 685 + 870, -3*f + 4657 = 5*s. Is 6 a factor of f? True Suppose -23*k + 10*k + 12918 = 2245. Is 5 a factor of k? False Let p(w) = 613*w - 206. Is p(3) a multiple of 3? False Suppose -4*a + w - 4 = -2*a, 5*a - 2*w = -10. Is 30 a factor of ((-183)/(-3) - 1)*(-7)/a? True Let h = -63 - -27. Let f = -51 - h. Let j = 27 + f. Is j a multiple of 11? False Let t(k) = k**3 + 4*k**2 + k - 3. Let n be t(-3). Suppose -6*h + 145 = -827. Suppose x + h = n*x. Does 27 divide x? True Let i(f) = 2348*f - 352. Does 17 divide i(2)? False Let p = -89 - -390. Suppose 1576*h = 1558*h + 108. Suppose -1 + p = h*o. Is o a multiple of 11? False Suppose 0 = -22*s + 39787 + 13849. Is 26 a factor of s? False Is 45 a factor of (1224/(-32))/((-20)/160)? False Let o = -1290 - -2223. Is o a multiple of 118? False Let a be ((-9)/6)/(11/858*-3). Let k(q) = 5*q + 4. Let n be k(3). Let h = a - n. Is 16 a factor of h? False Let f = -15 - -17. Suppose r - 1 + f = 0, 0 = v - 2*r - 218. Is v a multiple of 21? False Let n(g) = -26*g + 61. Let h be n(-9). Let c = -159 + h. Is c a multiple of 17? True Let d be 2 + (6 + -2)*2. Suppose j = -j + d, 62 = f + 2*j. Is 10 a factor of 2/(-4)*(-12 - f)? False Let t(u) = 4*u + 9. Let z be t(1). Suppose -3304 = -21*a + z*a. Is a a multiple of 14? False Let y(m) = 3*m**2 + 3*m**2 - 18*m + m**2 + 25 - 6*m**2. Let w be y(21). Suppose -2*h + w = -h. Is h a multiple of 19? False Let f = -70 + 67. Let u(x) = 46*x + 6. Let q(m) = -1. Let a(v) = -3*q(v) - u(v). Is 45 a factor of a(f)? True Suppose -13*y = -15*y + 8. Let u be 12/y - (-79 - -3 - -3). Suppose -4*b - u = 3*n - 8*n, 2*n + b = 33. Is n a multiple of 16? True Let f = -3409 - -4044. Is 5 a factor of f? True Suppose 1154 = -15*r - 4*r + 16088. Is r a multiple of 3? True Does 36 divide (0 + -5)*-1021 - (-4 - 0 - 0)? False Let a = 46 - 87. Let m = 97 + a. Does 7 divide m? True Let q be (-2)/(6/(-765)) - -5. Let h = q + -187. Is 29 a factor of h? False Let s = -4627 - -5845. Is 87 a factor of s? True Suppose -5 = i, 0*h + 69 = h - 5*i. Let l = h - 42. Suppose -25 = -l*q + 61. Does 9 divide q? False Let l be 3 + 6/9*-6. Does 18 divide (262/6 - l)*90/60? False Suppose 9*o - 370 = 494. Let x = 121 - o. Does 3 divide x? False Let i(w) = 5*w**3 - 9*w + 16. Let y be i(4). Suppose 3*q - 680 = -4*m, y + 155 = 2*q + 3*m. Is q a multiple of 8? False Suppose t + 1060 = 5331. Is 13 a factor of t? False Suppose 4*j - 3100 = -528. Suppose 0 = -4*a + 3*o + j, a + o = -a + 319. Let q = a + -52. Is 12 a factor of q? True Suppose -195*m = -194*m - 5. Suppose 2*y = -0*y + 3*q + 504, 3*y = m*q + 754. Is y a multiple of 49? False Is 4 a factor of (-53526)/(-297) - 8/36? True Suppose -2*m - 110 = -0*q - q, -2*q + 232 = 2*m. Let p = q - 81. Suppose -p*h - 135 = -36*h. Is h a multiple of 16? False Let f be ((-12)/(-21))/((-22)/(-231)). Does 18 divide ((-6)/10)/(f/(-180))? True Let f = 12009 + -8459. Is 25 a factor of f? True Let f = 29 + 2996. Is 26 a factor of f? False Suppose c - 602 - 550 = 0. Suppose -36*b + c = -12*b. Is b a multiple of 24? True Let z(p) = -p**3 - 10*p**2 - 7*p + 18. Let g be z(-9). Suppose -206*q + 201*q + 1150 = g. Is q a multiple of 23? True Let t = 96 + -68. Let i = 169 + t. Is i a multiple of 15? False Let b(p) be the first derivative of 2*p**3/3 - p**2/2 + 20*p + 14. Let k be b(0). Is 9 a factor of ((-168)/k)/((-1)/5)? False Let d(s) = s**2 - 38*s - 138. Is 10 a factor of d(-18)? True Let v = 17090 - 11039. Is 69 a factor of v? False Let k(g) = -58*g**2 - g. Let t be k(-1). Let w = t - -111. Is w a multiple of 9? True Let w(z) = z**2 + 11*z + 2. Let j be w(8). Suppose -153*b = -j*b + 257. Is 10 a factor of b? False Let o(n) be the first derivative of 33*n**5/20 + n**4/12 + n**3/3 + 6*n**2 - 16. Let a(b) be the second derivative of o(b). Does 11 divide a(-1)? True Let x(t) = t**3 + 9*t**2 - 196*t + 43. Is x(17) a multiple of 89? False Is 3/21 - 1589540/(-532) a multiple of 9? True Is 20 a factor of ((-3248)/(1*-2))/(19/38)? False Let d = -3232 - -3682. Does 18 divide d? True Suppose -5*v = 8 - 23. Let x be (44/(-8) + 1)*(-20)/18. Suppose -v*h = 5*g - 2*g - 9, 0 = 3*h + x*g - 3. Is h a multiple of 3? True Does 8 divide 218050/231 - (-11)/(1452/8)? True Let p(s) = -33216 + s**2 - 12*s + 33211 + 6*s. Let x(h) = -h**3 - 3*h**2 - 4. Let c be x(-3). Does 28 divide p(c)? False Let c be 3284/(-36) - (-8)/36. Let m = -9 - -17. Is c/(-3) + m/(-6) a multiple of 3? False Let f be (-3 - -2)*1 + 5. Suppose 2*h + 90 = f*u, 2*u + h = 4*h + 51. Suppose d = 2*m + u, m + 12 = -d + 36. Does 9 divide d? False Let x(o) = -2*o**2 - 31*o - 12. Let p be x(-15). Suppose 5*v - 243 = -2*q, -4*q + 216 = p*v + 59. Does 15 divide v? False Let h = 15 - -37. Suppose -259 = h*l - 53*l. Does 51 divide l? False Let l(p) = -p - 1. Let r be l(4). Let t be -198*(1/r + 18/(-60)). Suppose -3*z + 2*z - v + t = 0, -2*z = 3*v - 203. Is 13 a factor of z? False Suppose -108*r = -84*r - 18048. Does 16 divide r? True Let z(n) = -n**2 + 20*n + 6. Let u be z(20). Suppose 4*s + u = -106. Does 20 divide (20/1)/(3 + 80/s)? True Let j(m) = -8*m - 38. Let r be j(-12). Let g = 40 - r. Let x = g + 39. Is x a multiple of 7? True Let v = 517 - -1292. Does 27 divide v? True Suppose 816 + 16773 = 34*m - 295. Is m a multiple of 4? False Is 46 a factor of (276/(-2))/((3 + 40/(-12))/11)? True Is 5 a factor of (1 + -2)/((-24)/34296)*2? False Let n(v) = 14*v**2 - 60*v + 334. Does 24 divide n(7)? True Let j = -1647 - -1844. Is j a multiple of 7? False Let v = 59 + 1909. Does 6 divide v? True Let f(n) = n**3 + 8*n**2 + 3*n. Let g be f(10). Does 39 divide (g/(-9))/(14/(-21))? False Suppose -3*c = -o + 9669, 319*c = 323*c - 20. Does 18 divide o? True Let t = -7408 - -14086. Is t a multiple of 85? False Let h(i) = -4*i - 33. Let d be h(-9). Suppose v + 2*y - 249 - 13 = 0, -3*y = -d. Is v a multiple of 20? True Let i be -3*(-10)/3*(-15)/(-10). Suppose 5*f = i + 10. Suppose 13 - 283 = -f*g. Is 11 a factor of g? False Let v(z) = 21*z - 21*z - z**2 + 1 + 0. Let b(n) = n**3 - 7*n**2 + 4*n - 3. Let s(t) = -b(t) - 2*v(t). Is s(6) a multiple of 17? True Suppose 0 = 3*x + h - 23, -4*x + 2*h = -0*x - 34. Let m(a) = -5*a + 24. Let f(z) = -2*z + 8. Let v(i) = x*f(i) - 3*m(i). Is v(-15) a multiple of 2? False Let u = 13427 + -8924. Does 11 divide u? False Suppose -i + 2*f + 312 = 0, 0 = 3*i - 3*f - 290 - 646. Let k = i + -162. Is k a multiple of 10? True Let c(d) = -24*d**2 + 3*d + 5. Suppose -4*n = m + 14, n + 5*m + 1 = 7. Let g(s) = s**2 - s - 1. Let i(v) = n*g(v) - c(v). Is i(1) a multiple of 4? True Let m = 190 - 121. Suppose 3*s - m = -f, -2*f + 3*s + 2*s + 138 = 0. Is f a multiple of 6? False Does 3 divide 27/5 + -5 - (-4899)/15? True Let s be 13580/(-15) + 4/(-6). Does 19 divide s/(-8) - (-12)/16? True Suppose 1541*u - 1553*u + 19548 = 0. Does 32 divide u? False Let q(o) = 1946*o**2 + 18*o - 46. Is q(2) a multiple of 61? False Is 15 a factor of 3*(-3)/18*6 - -1634 - -4? True Let p(b) = -88*b + 9. Let u be p(3). Let v be u/(-105) - 3/7. Suppose c = v, 3*w - 2*c + c - 340 = 0. Is 20 a factor of w? False Let t = 25766 + -15203. Is 24 a factor of t? False Let m(c) = -4305*c + 45. Let v be m(-3). Is v/132 - 3/((-33)/(-2)) a multiple of 11? False Let y(f) = 2*f**2 + 4*f + 3. Let t be y(-2). Suppose a + 6*j = 2*j + 86, -86 = -a + t*j. Is 4 a factor of a? False Suppose 0 = 44*b - 3731 + 816 - 6545. Is 3 a factor of b? False Let q(j) be the third derivative of -j**4 - 2*j**3 - 11*j**2. Is q(-8) a multiple of 9? True Let k(r) = -2*r - 15. Let y be k(-9). Let n be (-18)/27 + 2/y. Does 9 divide 4 - (n + 7) - -47? False Suppose -5*r = 2*r + 14. Let n(t) = 3*t**2 + 5*t + 4. Let c be n(r). Suppose 32 = c*b - 4*b. Does 8 divide b? True Let h(g) = -21*g**3 - g**2 + 40*g + 103. Is 87 a factor of h(-7)? False Is 14 a factor of (-2)/((-70)/(-15)) - 11178/(-14)? True Let u be 1/((-1)/(-15))*18/1. Suppose -k + 4*k = u. Is k a multiple of 18? True Is (2103 + -3)/(-7)*(-123)/6 a multiple of 15? True Suppose 2*d = 443 - 433, x - 6868 = -5*d. Is x a multiple of 37? False Does 13 divide (-36927)/(-22)*4/6? False Let l = 85 - 86. Let s(b) = 97*b**3 + 13*b + 11. Let y(a) = 49*a**3 + 6*a + 5. Let f(z) = 6*s(z) - 13*y(z). Does 7 divide f(l)? True Let r = 77 + -43. Let u = r + 1. Suppose 0 = 2*h - u - 19. Is 27 a factor of h? True Let z = -1936 + 2587. Does 21 divide z? True Suppose 4*u - 5 = -29. Let l(y) = 8*y + 64. Does 8 divide l(u)? True Let n be (-350)/45 - 6/27. Let h(d) = -4*d - 13. Let y be h(n). Let a = y + -10. Is 9 a factor of a? True Does 22 divide 50343/(-194)*16/(-3)? False Suppose -16*n + 176 = -320. Suppose -n*u = -27*u - 96. Does 24 divide u? True Suppose 7*r = -9 + 2109. Is r even? True Suppose 4*k = -k + 30. Let o(q) = -q**3 + 4*q**2 + 12*q + 5. Let n be o(k). Suppose -5*f = -n*p + 450, 3*f + 5 = -1. Does 25 divide p? False Let p be (15/30)/((-3)/(-48)*2). Suppose 5*d - 2*i - 450 = 0, p*d - 332 = -3*i + 51. Is 69 a factor of d? False Suppose -25 = -3*r + 59. Suppose 0 = -2*n - 2 - r. Does 2 divide ((-55)/n + -4)*-27? False Suppose -5*f = 5*b - 135, -3*f - 2*f + 5*b = -105. Let i be (4 + 1)*(f/(-10) - -2). Is 39 a factor of (552/12)/(i/(-3))? False Let s be 5 + -8 + (3 - 2). Does 11 divide s/7 - (3689/(-49) + 5)? False Let d(r) be the first derivative of -5*r**2 + 29*r - 59. Is 6 a factor of d(-4)? False Let g = 220 - 223. Is 16 a factor of 6*((-154)/g - -2)? True Suppose 8*h - 237 = -1189. Let b = h + 173. Is b a multiple of 18? True Let b = -2722 - -4230. Is b a multiple of 13? True Let x = 499 + -256. Suppose 4*g + x = 5*g. Is g a multiple of 27? True Let p(r) = -3*r + 36*r**2 - 2*r + 3 + 4*r - 37*r**2. Let u be p(-3). Does 5 divide (1107/(-12))/u + (-5)/(-20)? False Let v be ((-230)/69)/((-5)/(-3) - 1). Is 5 + 191 + v/1 a multiple of 21? False Suppose 105 - 4359 = 6*h. Let v = -505 - h. Is 19 a factor of v? False Suppose -8 = 12*f - 14*f. Suppose -f*j + a = -863 - 98, 0 = -j - 2*a + 238. Is 10 a factor of j? True Let k = 4655 - 4274. Does 21 divide k? False Let k be (889/7*1)/(1/3). Let d = k - 252. Is 3 a factor of d? True Let k be (4 - 1) + (8 - -37) + -2. Suppose 54*o = k*o + 3440. Does 43 divide o? True Let x be 14*(-3 - -30) + -2. Suppose 8*v - x = -4*j + 12*v, v = -3*j + 302. Does 33 divide j? True Let n(m) = 2*m**2 + 10*m + 45. Let z = -112 - -98. Does 33 divide n(z)? True Is 6 a factor of (5 + 4 + 9)*745/10? False Suppose 3*q + 40 = 6*q + 2*c, -3*c - 12 = 0. Suppose -13*u - 195 = -q*u. Does 13 divide u? True Let n = 214 + -195. Suppose 0*h = -n*h + 1748. Is h a multiple of 6? False Suppose 123*n - 619416 = -129325 + 167467. Is 22 a factor of n? True Suppose -4*j = k - 8312, 4*j - 20834 - 4134 = -3*k. Does 12 divide k? True Suppose 27*z + 1811 - 75 = 34*z. Does 8 divide z? True Let m = -17 + 24. Suppose -h + 1 = -3*q, 2*q - m*q = 5*h + 55. Is 8 a factor of 7 - -7 - h/(-2)? False Let m(b) = b**3 + 15*b**2 + 29*b + 9. Let l be m(-8). Let n = l + -218. Is 2 a factor of n? False Let w = -2015 - -4003. Does 4 divide w? True Let o be 8597/9 + 30/(-135). Suppose 4*x = -251 + o. Is x a multiple of 22? True Let k(v) = -74*v + 76 - 36 - 34. Is 27 a factor of k(-3)? False Let x(o) be the third derivative of o**6/120 - o**5/10 + o**4/6 - o**3/2 - o**2 - 3*o. Let l(n) = n**2 - 9*n - 4. Let f be l(10). Is x(f) a multiple of 6? False Suppose 0 = 7*k - 4*k - 3537. Suppose 19*d - k - 1101 = 0. Does 15 divide d? True Suppose 0 = -b + 8 + 1. Let c be -11 + 5 + (37 - -2). Suppose c = 12*a - b*a. Is 11 a factor of a? True Suppose -4*z + 2*k + 244 = 0, -2*z + 106 + 10 = 2*k. Let h = 32 - 20. Let r = z - h. Does 16 divide r? True Let w(d) = -572*d + 1100. Is w(-9) a multiple of 99? False Is 44520/21 - (-12)/2 a multiple of 26? False Suppose -5*o = 2*m + 3160 - 35249, -3*m - 12828 = -2*o. Is 31 a factor of o? True Let o(w) be the second derivative of 282*w**5/5 + w**3/3 + w**2 + 6*w. Let k be o(-1). Does 10 divide 1/(-4) + k/(-32)? False Suppose -i = -2*r - 2658, 2*i = -9*r + 8*r + 5301. Is i a multiple of 6? True Suppose -4*c - 3*q = -10332, 2*c - q = -2807 + 7963. Is 15 a factor of c? True Suppose -t - 30 = -5*y, -4*y + 51 = -4*t + 11. Is 18 a factor of 7562/190*1*y? False Suppose -6*c = -3*a - 5*c + 3179, -2142 = -2*a - 5*c. Does 18 divide a? False Let n(t) = t**3 - 21*t**2 + t - 3. Let u be n(21). Let k = u + 14. Does 16 divide k? True Does 19 divide (1/(-3))/((-2 - 0)*12/349416)? False Suppose -2*r - 14*o = -18*o - 10680, 0 = -2*o + 6. Is r a multiple of 18? True Let g(f) = f**3 - 9*f**2 + 9*f + 10. Let c be g(8). Let h be ((-10)/(-45))/(2/c). Suppose h*m - 45 = -3*m. Does 4 divide m? False Suppose -5*l + 1188 = -n - 43138, -5*l + 44310 = -5*n. Is 13 a factor of l? True Let i = -1043 - -3041. Is i a multiple of 25? False Let u(c) = 5*c - 27. Let p be u(6). Let x be p/12 + 56/32. Suppose 0 = 4*f - 2*f + 2, 171 = x*y + 5*f. Is 8 a factor of y? True Let l(d) = -d**2 - 11*d + 12. Let y(g) = g**2 + 4*g - 9. Let c be y(-6). Suppose -8 = 3*u + 5*a, -5*u - 5*a + 3 = -c*u. Does 3 divide l(u)? True Let m(j) = 11*j**2 - 48*j + 409. Is 18 a factor of m(7)? True Is 59 a factor of 2*6/8*(1 - -2477)? True Suppose 7415 = 2*o + 5*g, -109*o + g = -113*o + 14875. Is o a multiple of 120? True Let b = -48 - -71. Let h(i) = b + i - 3*i - 23. Is 2 a factor of h(-5)? True Let z be 638/3 - (-6)/(-36)*-2. Let o = 302 - z. Does 11 divide o? False Let h(q) = q**3 - 4*q**2 + 3. Let d be h(3). Let x(o) = -o**3 - 7*o**2 + 6*o - 11. Let p be x(d). Let a = 126 + p. Is 8 a factor of a? False Let u = -2910 - -3991. Is u a multiple of 8? False Let l be (-632)/(-88) - -3*2/(-33). Suppose 2220 = 5*t + l*t. Is 35 a factor of t? False Let b(h) = 5*h**2 + 6*h - 1. Let r(t) = t**2 + t + 2. Let j(q) = 2*b(q) - 4*r(q). Suppose 2*v - 4*v + 8 = 0. Does 21 divide j(v)? False Let f(v) be the third derivative of -v**6/60 - v**5/6 - 11*v**4/24 + v**3/3 - 70*v**2. Does 14 divide f(-6)? True Let b = 5 + -2. Suppose u = 5, -v - 2*u = 2*v - 58. Suppose 5*k = k + 3*x + v, 0 = -b*x. Is 4 a factor of k? True Let t = 253 - -1753. Does 59 divide t? True Let v be -1 + -4 + -1 + 2 + 0. Let y(n) = -39*n + 14. Is y(v) a multiple of 15? False Suppose 0 = -2*u + 4*t + 24, -2*u - 3*t - 8 = -u. Suppose -u*z + 91 - 23 = 0. Suppose 4*h - j = 2*j + z, 2*h - 14 = -4*j. Is h even? False Let z(r) = 26*r**2 + 5*r - 3. Is z(1) a multiple of 4? True Suppose -14*g - 12*g = -8*g - 15876. Does 9 divide g? True Let l(f) = -f - 40. Let h be l(-33). Let a(s) = s**2 - 25*s - 4. Is a(h) a multiple of 34? False Let u = 8702 - 3734. Is 46 a factor of u? True Let x = 13 - 16. Let c be 1*x + 8 + -3. Suppose -5*b + 0*b - 73 = -2*d, 0 = c*b - 2. Does 11 divide d? False Let a(f) = -f**2 - 21*f + 77. Let p(o) = -4*o**2 - 64*o + 231. Let y(z) = 7*a(z) - 2*p(z). Is 13 a factor of y(22)? True Let p be (-1564)/230*(1 - -9). Suppose -4 - 36 = 5*n. Is 12 a factor of (p/(-6))/(n/(-12))? False Is (-42)/30*5 - -9*191 a multiple of 16? True Let j(b) = -b**3 + b - 34. Let o be j(0). Let n(q) = 55*q + 8. Let v be n(-1). Let l = o - v. Is l a multiple of 8? False Suppose 0*k = -3*r - 2*k - 16, -5*k - 19 = 4*r. Let i(u) = u + 2. Let a(q) = -16*q - 8. Let o(p) = a(p) + i(p). Does 14 divide o(r)? True Let c(d) = d**3 + 4*d**2 - d + 18. Let s be c(-5). Does 17 divide (-1)/s*(398 + -4)? False Suppose b = -7*k + 4*k + 2516, -5*b - 2*k = -12619. Is 4 a factor of b? False Let c(x) = 58*x + 6. Let v be c(7). Suppose -3*b - 10 = 2*b, 5*g + 4*b = v. Is 14 a factor of g? True Does 5 divide (31 + -51)*5/(-4)? True Suppose -3668 = -6*o - 1220. Suppose 1662 = 9*a - o. Suppose -3*d = -a + 77. Is 10 a factor of d? False Let b = 128 + -119. Suppose 0 = -z - x + 191, 12*x - b*x = -3. Is z a multiple of 8? True Suppose 2*w - r - 1945 = 0, -4379 = -5*w - r + 494. Is 22 a factor of w? False Suppose -3*x - 94 = -5*u + x, -4 = -x. Does 12 divide ((-3570)/(-33) - -2) + (-4)/u? False Let c = -133 - -148. Let v(t) = 2*t**2 - 22*t + 6. Does 18 divide v(c)? True Does 8 divide (28/42)/((-2327)/1164 - -2)? True Let r(o) = o**3 - 20*o**2 + 2*o - 4. Let a be r(20). Let l = a - 20. Suppose -g + l = -2. Is 9 a factor of g? True Suppose -9*r - 3*r - 2520 = 0. Is (-128)/3*(9 - r/(-20)) a multiple of 4? True Let v(l) = -5*l + 20. Let s be 15/(1/(-3)*-3). Let m be v(s). Let f = -31 - m. Is 8 a factor of f? True Let f(l) = -17*l + 17*l - 9*l + 5 - 3. Let d = 31 + -32. Does 2 divide f(d)? False Suppose j = -g + 28, -3*j + 4*g - 2*g + 109 = 0. Suppose -4000 = 8*v - j*v. Is v a multiple of 46? False Does 17 divide (-10)/(140/3087)*(-204)/18? True Suppose 2*q + 0*q = 2. Suppose -2*c + l + 6 + q = 0, -3*l = -5*c + 19. Is -2 + c - (-14 + (-4)/(-1)) even? True Let b = 57 + -71. Let t = 68 - 43. Let x = b + t. Does 6 divide x? False Suppose 0 = v + 4*v + 20. Let u be 12/7*((-9)/(-3) - v). Is 2 a factor of -1 + -3*(-44)/u? True Let h(n) be the first derivative of n**3/3 + n**2/2 - 12*n - 15. Let j be h(-7). Suppose 22 = -p + 2*p - 5*l, -3*p - 3*l = -j. Does 6 divide p? True Suppose 3*b - 6*x - 17573 = -x, -29310 = -5*b + 4*x. Is b a multiple of 14? True Let b = 4450 + -2623. Does 9 divide b? True Suppose -5*w + t = -0 - 5, w = 3*t - 13. Suppose 232 - 1062 = -5*u + w*n, 0 = 2*n. Does 17 divide u? False Is (0 - (-16137)/6)*((-88)/(-33))/4 a multiple of 27? False Let t(z) be the first derivative of 8*z**3/3 - 5*z**2/2 + 6*z + 71. Is 2 a factor of t(2)? True Suppose 4*q + 2*h = 8922, 3*q + 3*h = 2*q + 2223. Suppose -5*r + v = -q + 395, 4*v + 1828 = 5*r. Does 46 divide r? True Let l = -4123 - -4981. Is l a multiple of 33? True Suppose 40*v = 44*v - 1184. Suppose -4*j - o + 214 = -24, -v = -5*j - 2*o. Is j a multiple of 7? False Let x(d) = -d**2 + 2*d + 4. Let f be x(0). Suppose -2*m + f*n + 30 = 0, m + 7*n = 5*n + 15. Does 5 divide m? True Let x(s) = -12*s - 64. Let q(y) = -y**2 + 9*y + 25. Let t be q(12). Is x(t) a multiple of 18? False Let r be (-270)/35 + (-4)/14. Let q(f) = -3*f - 19. Let o be q(r). Suppose 32 + 258 = o*d. Is d a multiple of 9? False Is (-315)/(-12)*(38 - -18) a multiple of 5? True Let g = -34 - -39. Does 41 divide (4 - g)/(3 + 754/(-251))? False Let h be (-2)/(-12) - (-10)/(-60). Suppose 4*n + 220 = 2*x, n = 4*x - h*n - 461. Suppose 3*i - 5*v = x, -2*v = v + 3. Does 7 divide i? False Suppose -4*r + 8 = 4*l, -2*l = -r + 1 + 1. Suppose l = -6*o + o + x + 1221, -960 = -4*o + 5*x. Is 31 a factor of o? False Let v(x) = x**3 - x**2 - 2*x + 4. Let k be v(3). Let u(h) = -22*h - 2. Let c be u(-2). Let g = c - k. Is 13 a factor of g? True Let v(t) = -t**2 + 2*t + 3. Let w be v(-1). Suppose -5*d = 2*j - w*j - 23, -5*d + 3*j + 28 = 0. Is 84 + (3 - d)*2 a multiple of 29? False Let h(k) = -k**3 - 23*k**2 + 50*k + 4. Let c be h(-25). Is c/(-6)*3 + -4 + 108 a multiple of 11? False Suppose -4*a = -2*g + 16844, 25316 = -18*g + 21*g + 4*a. Is 9 a factor of g? False Suppose -373 = 9*g - 940. Is 10 a factor of (-1364)/(-7) - (-9)/g? False Suppose 2*m - 4*a = 34, -3*m + 36 = -a - 2*a. Suppose m*d = 2*d + 180. Let j = 72 - d. Does 36 divide j? True Suppose 3935 = a - 174. Suppose -26*j + a + 285 = 0. Is j a multiple of 18? False Suppose -2 = -39*n + 38*n. Suppose i + 0*i = -2*g - 4, n*i - 12 = g. Suppose -37 = i*c - 169. Does 6 divide c? False Suppose -56*k + 75330 = 25*k. Is k a multiple of 31? True Let t be (-2)/(-4) + 26015/86. Suppose -4*s = -5*n - t, -3*s = -2*n - 6 - 216. Does 4 divide s? True Suppose 5*l + 4*n + 231 = 0, -3*l - 4*n - 145 = -0*n. Let g = l - -67. Does 12 divide g? True Let p = 27 - 27. Suppose -3*j + 0*l - l + 78 = p, -5*l = 0. Let t = 113 + j. Does 38 divide t? False Suppose -2*i = -3147 + 2967. Does 3 divide i? True Let t(l) = -l - 8. Let m be t(-10). Suppose 0 = -6*v + m + 1594. Suppose 7*a = v + 112. Is a a multiple of 20? False Let a = 16 - 11. Let s be a/10 + (-89)/2. Let o = -38 - s. Is 6 a factor of o? True Let u be -9 + 40390/90 + (-2)/(-9). Let k = u - 100. Is 20 a factor of k? True Let x(f) = 6*f**2 + 3 - 2*f**3 + 87*f - 86*f + f**3 - 5. Does 17 divide x(4)? True Suppose -5*t + 43 = 13. Suppose 2*v = 3*a + 17, v - a - 2 = t. Suppose v*x - 2*x + 103 = 2*h, 0 = h - 2*x - 53. Does 21 divide h? False Does 61 divide (-6)/(12/106)*(-131 - -9)? True Suppose -5*y + 0*y - 2*j = 3, -2*y - 14 = 4*j. Let z(d) = d**2 - 2*d. Let c be z(y). Is ((-1)/2)/(c/78) a multiple of 13? True Suppose 3*n = -5*n + 288. Suppose 0 = -5*g + 2*g - n. Does 18 divide (-873)/g + (0 - (-9)/(-12))? True Let s be (0 + (-5 - -6))/((-1)/77). Let j = s - -213. Does 24 divide j? False Suppose -5*x - 6*x - 3135 = 0. Let b = 450 + x. Is b a multiple of 11? True Let q(w) = w**2 + w + 3. Let x(k) = k**2 + 3*k + 2. Let m(r) = 3*q(r) - 4*x(r). Is 10 a factor of m(-4)? False Suppose 3*w = -0*w + r + 18, -4*w + 3*r + 29 = 0. Suppose 0 = 3*b + w*l - 827, 3*b - 2*l = 3*l + 847. Does 12 divide b? False Let q(j) = j**2 - 6*j - 10. Let i(l) = 3*l**2 - 18*l - 30. Let r(n) = 4*i(n) - 11*q(n). Let o be r(-6). Let u = -36 + o. Does 13 divide u? True Let l be (6/(-10))/(4/(-40)). Suppose 3*f + 0*g + l = -3*g, -4*g = f + 5. Is ((-4)/16 - -1)/(f/(-120)) a multiple of 15? True Suppose 0 = 8*q - 8460 - 1516. Is 19 a factor of q? False Suppose -y = 31 - 46. Is ((-102)/y - -2)/((-5)/300) a multiple of 48? True Let h = 4165 + -4162. Suppose 0 = 2*m - 6*m + 272. Suppose h*g - 148 = m. Is g a multiple of 12? True Suppose 8 = 4*y, -4*d + 1404 = 6*y - 896. Does 23 divide d? False Let g be 4 - (4 + 3/(-1)). Suppose -4*k - g*i = 0, 4 = -2*k - i + 6. Suppose 0 = k*z + u - 20, -10 = 2*z - 5*z + 4*u. Is z a multiple of 6? True Let o be 35/(-2) - (-3)/6. Let z(a) = a**2 + 18*a + 20. Let d be z(o). Suppose 24 = c - d. Does 9 divide c? True Suppose 5*n - 24 = 17*n. Is 5 a factor of -5 - (-107 + n/(-1))? True Let w(o) = -o**3 - 3*o**2 + 18*o + 16. Let q be w(-9). Let k = 592 - q. Does 9 divide k? True Let y = -67 + 95. Let x = 2 + y. Let h = x - -23. Is h a multiple of 24? False Let d(k) = 3*k**2 + 9*k + 2. Suppose 4*z - 251 = -219. Is 56 a factor of d(z)? False Let i(d) = -d**3 + d**2 - 3*d + 57. Let p(f) = f**3 - 2*f**2 - 4*f + 3. Let k(o) = -o**2 + 11*o + 3. Let q be k(11). Let r be p(q). Is i(r) a multiple of 21? False Let c = -5711 + 10046. Does 99 divide c? False Let d(a) = -18*a - 477. Is d(-77) a multiple of 29? False Let g = 2754 - 2659. Is 24 a factor of g? False Let f(v) = -v**3 - 3*v**2 - 27*v - 169. Is f(-10) a multiple of 13? False Suppose 5*h = 2*j - 143 - 136, 5*j = -3*h + 744. Is 13 a factor of j? False Suppose 15*f + 11693 = 64883 + 32490. Does 24 divide f? True Does 3 divide (2022/4)/(18/48)? False Let r(t) = -t**3 + 10*t**2 + 10*t + 13. Let k be r(11). Let p be -22*k/(-16) + 36/(-48). Suppose -46 = -a - 4*i, 5*a + p*i + 52 = 7*a. Is a a multiple of 15? True Suppose 0 = 3*m + 4*f - 417, 0 = 4*m - f - 396 - 179. Let a = -63 + m. Is 8 a factor of a? True Let w(g) = 5*g**2 + 6*g - 3. Let u be w(-2). Suppose 0 = 2*x - u*x - 5*l + 355, 0 = 2*x - 4*l - 244. Is 12 a factor of x? True Let x(c) be the second derivative of c**5/5 - c**3/2 + 2*c**2 + 15*c. Let k(o) = 21*o**3 - 14*o + 20. Let q(j) = -2*k(j) + 11*x(j). Is q(4) a multiple of 28? True Suppose -11*a + 39 = -7*a + b, -2*a - 4*b = -30. Suppose a*y = 284 + 94. Is y a multiple of 14? True Let q = 47 - 53. Let h(b) = 2*b**2 + 4*b + 11. Is 15 a factor of h(q)? False Let x(w) = 3*w**3 - 32*w**2 - 12*w + 204. Does 49 divide x(14)? False Let o = 791 + 2314. Does 5 divide o? True Let k(o) = -25*o**3 - 4*o**2 - 11*o - 131. Does 29 divide k(-6)? True Let s = 47 + -17. Suppose 3*w + s = -0*w. Does 17 divide 74 + 0*(-2)/w? False Let q(p) = -2*p + 874*p**2 - p**3 + 2 + 18 - 891*p**2. Is 63 a factor of q(-18)? False Let t = -33 - -27. Suppose 3*w + 4*i - 9 = 16, 5*i = 20. Is 29 a factor of (w/2)/(t/(-308))? False Let h(m) = -m**3 + 5*m**2 + 3*m. Let j be h(5). Let r(f) = 38*f + 4 + 1 - j*f - 7. Is r(1) a multiple of 6? False Is (-1*6)/(4 + ((-9534)/(-9546) - 5)) a multiple of 43? True Suppose 9*p - 4*p + 20 = 0, 4*p = 5*t + 1109. Let q = 247 + t. Is q a multiple of 6? False Let m = 2 - -5. Suppose 3*v - m*v + 8 = 0. Suppose -l = v*u - 139, 5*u + l = -0*l + 349. Is u a multiple of 14? True Let w(r) = -r**2 - 3*r - 82. Let u be w(13). Let z = 383 - 542. Let g = z - u. Is g a multiple of 34? False Let w(h) = h**2 - 10*h + 13. Let l be w(9). Suppose l*k = -3*k + 371. Let c = -23 + k. Is 10 a factor of c? True Suppose -7*q = 2*q - 1665. Let o = -175 + q. Is 9 a factor of o? False Suppose -1639 - 3897 = -2*n - 2*b, 13832 = 5*n + b. Is n a multiple of 16? False Let y(z) = -2*z**2 - 5*z - 1. Let x be y(-3). Let u be (1/(6 - 5))/((-2)/x). Suppose 11 = -n - 4*i, 5*n + u*i - 2 - 33 = 0. Is 9 a factor of n? True Let x(n) = n**3 - 10*n**2 + 9*n + 18. Let d be x(9). Is 72 a factor of (d + 0)/((-36)/(-552))? False Let b be 0*(15/5 + -2). Suppose b = o, -3*o + 53 = k + 10. Suppose -37 - k = -4*x. Is x a multiple of 7? False Let g = -768 + 2863. Is 24 a factor of g? False Let m be 6 - (0 + (1/(-1) - -2)). Let o(v) = -v**3 + v + 3 + 4 + 0*v**3 + 0*v**3 + m*v**2. Is 12 a factor of o(5)? True Suppose -12*c + 87683 = -27709. Is c a multiple of 33? False Let d(q) = -q**2 - 16*q - 38. Let o = -211 - -199. Is d(o) a multiple of 6? False Suppose -2*b = 2*b - j - 9, 2*b + j = 3. Suppose -4*w = 3*h - 5, 4*h - 2*h + 3*w = b. Suppose 0 = 5*x + 3*u - h - 139, 4*x = -3*u + 118. Is 16 a factor of x? False Suppose 2*t + 26 = 16. Let b(h) = -22*h - 72. Is 19 a factor of b(t)? True Let w = 242 + -233. Does 3 divide 169/w + (-8)/(-36)? False Suppose 0 = -2*g + 6, 3*n - 4*g - 60 = -0*n. Let u = -406 + 378. Is ((-91)/u)/(1/n) a multiple of 13? True Let j(d) = 50*d**3 - 12*d**2 + 20*d + 18. Is j(3) a multiple of 66? True Suppose 0 = 6*s - s + 2*y - 33955, -3*s + 20369 = 2*y. Does 33 divide s? False Does 41 divide (-491)/((-22)/(-84) - (-87)/(-261))? False Suppose -2*y - y = -5*v + 94, y - 2 = 0. Suppose -5*n = 2*z - 452, 4*n - 2*z - 338 - v = 0. Does 3 divide n? True Let v(h) = 261*h - 1053. Is v(31) a multiple of 51? True Let d(u) = -u - 75. Let t be d(-20). Does 37 divide (-2 - t/20) + (-1178)/(-8)? True Suppose 0 = 4*o - 2*q + 29 - 9, 2*o = 4*q - 22. Does 23 divide o + (-4 - -6) - -199? False Let t(i) = 392*i + 1. Is 45 a factor of t(7)? True Let l be (-30)/(-10)*(-87)/9. Let x = 34 + l. Suppose 4*z - 60 = -2*r, -2*r + x*r + z - 105 = 0. Is r a multiple of 9? True Suppose -o = 3*j - 9, 5*j + 0*o - 16 = -2*o. Suppose 0 = -3*i + j*i + 36. Suppose 5*p - 2*w = 588, 0 = -3*p + 5*w + 332 + i. Is p a multiple of 29? True Let q(g) = 19*g**3 - 25*g**2 + 143*g + 5. Does 24 divide q(7)? False Suppose -6*s - 4738 + 21920 = -4100. Is 10 a factor of s? False Let q = 10727 + -4117. Does 122 divide q? False Suppose -4*g + 12 = -4*f, 7 = 5*g + 5*f - 8. Let i be (-24)/(-18) - (-2)/g. Does 5 divide (13/i)/((-7)/(-14))? False Suppose -88688 = 19*f - 42*f. Does 7 divide f? False Let c(r) = -r**3 + 12*r**2 - 3*r - 3. Let w be c(12). Let m = 45 + w. Suppose -14*x + 792 = -m*x. Is x a multiple of 33? True Suppose 183*b - 136*b = 49961. Does 36 divide b? False Suppose 33 = 9*l - 462. Let i be 9/11 + 10/l. Does 25 divide 146 + 2 + (3 - i)? True Is (2 + 2963)/((-115)/(-46)) a multiple of 62? False Let p be ((273/14)/13)/(2/(-464)). Let j = -193 - p. Is 15 a factor of j? False Let r(f) = 19*f**2 - 16*f + 420. Does 57 divide r(16)? False Let w = 13 - 11. Let a be w/(-4)*2 - 89. Is ((-20)/(-15))/((-2)/a) a multiple of 10? True Let v(c) = -4*c - 12. Let w = 44 + -45. Let o be w + (-3 - -2 - 4). Does 3 divide v(o)? True Let k be (9 - -10) + (0 - -1). Suppose 5*a = u + u + k, -2*a + 9 = -u. Is 5 a factor of 0/a - (-3 + -22)? True Suppose 6 = -4*z + 14. Let f(x) be the third derivative of 7*x**4/24 - x**3/2 - 60*x**2. Is 11 a factor of f(z)? True Suppose 6*g - 3*g = -9. Let v be ((-3)/(-1))/(g - -4). Suppose v*i - 2*i = 50. Is 25 a factor of i? True Let h = -2941 + 4037. Is 137 a factor of h? True Suppose 5*z - 44 = 4*z. Let t = z - 50. Is 18 a factor of ((-36)/t - 17)/(2/(-4))? False Suppose 3*n - d = 5, -3*n - 3*d = -d - 17. Suppose 0 = -y + 5*o - 11 - 9, 4*o - 16 = -5*y. Suppose -n*t + w + 11 = y, w + 16 = 5*w. Is 5 a factor of t? True Let l(v) = -41*v + 1488. Is 49 a factor of l(10)? True Suppose 924 = 24*u - 31*u. Let p = 187 + u. Does 11 divide p? True Let c(i) = 14*i**3 - 3*i**2 + 40*i + 51. Does 110 divide c(7)? False Let p = 2770 - 2506. Does 33 divide p? True Let s = -16 - -50. Let n = s + -28. Suppose -n*x = x - 679. Is 11 a factor of x? False Let v(y) = 3*y**3 - 3*y**2 + 1. Let g be v(2). Let c(u) = g*u - 12 - 8 + 30. Does 8 divide c(4)? False Suppose -2*l - 3*l = -4*c + 3, 2*c + 11 = 5*l. Suppose -10*o + 177 = -c*o. Does 10 divide o? False Suppose -b - 2301 = -4*r, 2*r - 1118 = -2*b + 40. Does 32 divide r? True Let t be (-27)/(-4) - 2 - 5/(-20). Let g be t/(25/40)*9/4. Suppose 2*r + 0*r = -4*q + g, -5*r = 15. Is 6 a factor of q? True Let q(u) = 3*u + 13. Suppose -w = -i, -8*i + 7*i + 5*w = 0. Is q(i) a multiple of 13? True Let s(n) = -n - 4. Let h be s(-6). Let l(x) = -x**3 - 5*x**2 - 23*x - 113. Let p be l(-5). Suppose -p*g + 0*g - 10 = 0, -h*g = z - 30. Is z a multiple of 5? True Let d be (6/(-5))/(1/35). Let x = 52 - -25. Let f = d + x. Does 12 divide f? False Suppose 0 = -2*m + 73 + 1419. Is 17 a factor of m/11 - (0 + 2/(-11))? True Suppose 14*a - 16*a + 8 = 0. Suppose -36 = a*t - 0*t. Is (t/(-6))/((-3)/(-4)) - -49 a multiple of 15? False Does 18 divide ((-488)/6)/(-9*(-30)/(-19845))? False Suppose -5*b - 2*y - 1403 + 13431 = 0, 3*y - 12 = 0. Is b a multiple of 11? False Suppose 2*c + 7 = 19. Suppose 5*z = -c*j + 2*j + 542, 0 = j - 3*z - 144. Suppose 0 = 5*b - 5*t - 350, 1 = -2*b - t + j. Does 12 divide b? False Let a(c) = -79*c - 30. Suppose -z + 5*g = -2*z + 1, 0 = -2*z - 4*g - 4. Is a(z) a multiple of 9? False Let q be 156675/(-9) - (-7)/21. Does 34 divide (-4)/30 + q/(-510)? True Suppose -3*d - 4*a = -6984, 4*a = -4*d + 2*d + 4656. Is d a multiple of 14? False Let h = 15792 + -7704. Is h a multiple of 39? False Let a(j) = 5*j**2 + 12*j + 15. Let p(s) = -s**2 + 3*s + 5. Let m be p(4). Let u(i) = -i**2 - 1. Let t(q) = m*a(q) + 4*u(q). Does 11 divide t(-12)? True Suppose -83*v + 974 = -84058 + 1036. Does 23 divide v? True Let k(b) = -14*b - 13. Let t be k(-7). Let n = t + -76. Is n a multiple of 2? False Suppose 19*c - 2*h - 1724 = 8*c, -3*h = 3*c - 456. Does 39 divide c? True Let i(v) = -101*v - 134. Does 7 divide i(-5)? True Suppose 249*l - 251*l + 4336 = 3*u, -u + 1452 = -l. Does 16 divide u? False Suppose 0*n = 4*n + 20, -3*i + 3*n - 7755 = 0. Is 11 a factor of i/(-14) + (-6)/(-1*3)? True Let u = 31 - 29. Suppose -3*k = -5*k + u*p + 112, -4*k - 4*p + 256 = 0. Is 15 a factor of k? True Suppose 10 = -4*x + 26. Suppose 0 = 2*p - c - 18 + 4, 0 = x*p + 2*c - 20. Let f(b) = b**3 - 6*b**2 + 4*b - 8. Does 4 divide f(p)? True Suppose -166500 = -12*z - 25*z. Is z a multiple of 10? True Suppose 0 = 5*k + 3*f - 1626, 2*k - 5*f = 115 + 523. Is k a multiple of 36? True Does 6 divide 2/(-28)*-2 - (55432/7)/(-8)? True Let b(r) = r**2 + 19*r - 241. Is b(58) a multiple of 92? False Let r = 14 + -8. Suppose -r*g + 652 = -4*g. Is 17 a factor of (-3)/15 - g*(-3)/15? False Let c(p) be the second derivative of 1/4*p**4 - 2/3*p**3 + 17*p - 5/2*p**2 + 0. Does 3 divide c(-2)? True Let j be 423/4 + (-13)/(-52). Does 7 divide ((-2454)/4)/(-3) + (-159)/j? True Suppose -2*c = -50 - 6. Let w = 32 - c. Is (-1 - (-8)/(-3))/(w/(-36)) a multiple of 5? False Let s(f) = -124*f - 336. Does 13 divide s(-9)? True Let s(r) = 14*r - 10. Let x(k) = -k**2 + 6*k - 4. Let y be x(6). Let u(w) = 14*w - 9. Let h(i) = y*s(i) + 5*u(i). Is 11 a factor of h(5)? False Let r(v) = -v**3 - 4*v**2 - 5*v + 4. Let x be r(-5). Let h(k) = 55*k + 217. Let g be h(-4). Is 15 a factor of x - g*(-2)/(-3)? False Let p(m) = -428*m + 238. Is p(-4) a multiple of 50? True Suppose -c - 432 = -5*c - j, 3*c - 5*j - 301 = 0. Let o = -110 + 37. Let d = c + o. Does 17 divide d? True Let z(k) = 202*k - 6. Let h be z(-2). Let v be h/4 - (1/(-2) - 0). Let p = -71 - v. Is 12 a factor of p? False Suppose -5 = -0*r + 5*r. Is 23 a factor of 5202/(-12)*-1 - r/2? False Let n be 3 + -4*15/20. Suppose -9*r + 5 + 31 = n. Does 3 divide r? False Let w be 6*4/60 + 4146/(-15). Let y = -33 - w. Does 10 divide y? False Let j(q) = -3*q + 103. Let u be j(30). Suppose 883 = 5*f + 4*m, 0 = u*f - 16*f + 2*m + 521. Is f a multiple of 35? True Let f = 10628 - 4621. Is f a multiple of 130? False Let m = 169 - 168. Is (6/3 - m)*(9 - -9) even? True Let t(y) = 361*y**2 - 13*y + 31. Is 33 a factor of t(2)? False Let n(y) = y + 18. Let u(i) = i + 18. Let x(v) = 4*n(v) - 3*u(v). Let m be x(-13). Does 5 divide m/(-3)*(-7 + 1)? True Suppose -3*a = -2*c - 782, a + 4*c - 390 + 148 = 0. Suppose 3*p - 816 = -a. Is 15 a factor of p? False Let c = -6 + 12. Let q be 4/c + (-20)/30. Suppose -4*i - n = -q*n - 55, -i - n + 13 = 0. Is i even? True Let q be 0*(-4 - (-13)/3). Let u be 23 - (0 + 3 + -3). Suppose q = -u*y + 18*y + 265. Does 12 divide y? False Let i = 8252 + -2742. Is i a multiple of 95? True Let l(n) = 2*n**3 - 6*n**2 - 3*n + 15. Let w = 183 - 179. Does 6 divide l(w)? False Let u(y) = 650*y**2 - 82*y. Is 12 a factor of u(3)? True Let w be 4*1 - (4 + 588)/(-1). Let f = w + -355. Is 36 a factor of f? False Suppose -s = -3*s + 6. Suppose -5*i = 4*x - 366, 230 = s*i + 4*x + x. Suppose 4*h = -o + 57, 79 = 3*o + h - i. Does 8 divide o? False Suppose 23*o + 1662 = 9551. Does 5 divide o? False Suppose -5*k - 1871 = 2*o, 6*o = 3*o - 3*k - 2829. Does 21 divide o/(-5) - (-15)/(-25)? True Suppose 0 = -3*p + 2*d - 54, 15 = -4*d - d. Let z(b) = b**3 + 20*b**2 - 11*b + 10. Does 12 divide z(p)? False Let v(g) = -g**3 - 9*g**2 - 13*g - 124. Is v(-12) a multiple of 48? False Suppose -5*g - 17444 = -4*j, -20*g = -2*j - 16*g + 8722. Is 12 a factor of j? False Let w(r) = r**3 + 12*r**2 - 20*r - 40. Let o be w(-10). Suppose 4*g - 19 = 9. Suppose 2*q + o = g*q. Does 31 divide q? False Suppose 2*d + 2*h - 5*h - 4918 = 0, 0 = -5*d + 2*h + 12295. Is d a multiple of 26? False Let l(r) = -15*r + 72. Is 12 a factor of l(-8)? True Suppose 12*h - 1894 = 182. Suppose 5*i - 537 - h = -2*u, 0 = 5*i - 4*u - 740. Is 9 a factor of i? True Suppose 19*x = 36*x. Suppose 648 = -x*j + 9*j. Does 24 divide j? True Let h(r) = -22 - r**3 - 34*r + 40*r**2 - 24*r**2 + 38*r. Is h(16) a multiple of 14? True Suppose 318 + 218 = -4*b. Let t = b + 149. Is t a multiple of 2? False Suppose 3*c - 5*i = 5041 + 7479, -20896 = -5*c + i. Does 11 divide c? True Let u = 2301 + 116. Does 111 divide u? False Let i(k) = k**2 + 12. Let w be i(8). Let a = 202 - w. Does 7 divide a? True Suppose 2*h + 5*c = -h, 4*c = 2*h - 22. Suppose -v = t - 317, -h*t + t = v - 1277. Does 32 divide t? True Suppose 59*x - 26462 - 11062 = 0. Does 4 divide x? True Suppose 5649 = 33*d + 2085. Is d a multiple of 73? False Is (680/(-16))/(31/(-806)) a multiple of 5? True Suppose 0*a - 2*a + 477 = -5*r, -5*r = 25. Is 100 a factor of a? False Suppose 4*i + 184 = -4*y, -i + y - 15 = 39. Let f = i + 70. Is 3 a factor of f? False Let w be 3/5 + (-6)/10. Let r(u) = -u**3 + 2*u + 40. Let y be r(w). Let x = -33 + y. Does 2 divide x? False Let v(x) = 255*x + 377. Does 14 divide v(5)? True Let b(l) = -l**2 + 6*l + 12. Let w be b(-11). Let p = w - -190. Is p a multiple of 2? False Suppose -11*z - 3*r = -6*z + 1166, -r = -5*z - 1158. Let j = -204 - z. Is j a multiple of 23? False Suppose -60599 = -914*m + 895*m + 57068. Does 87 divide m? False Let z(t) = 2*t. Let d be z(3). Let n(q) = -q**3 - 56*q**2 + 57*q - 24. Let m(f) = -14*f**2 + 14*f - 6. Let b(j) = -9*m(j) + 2*n(j). Is 6 a factor of b(d)? True Let f(u) = -11*u**2 - 143*u + 6. Let c be f(-13). Let z(v) = -2*v - 5. Let x(o) = o. Let j(a) = 5*x(a) + z(a). Does 7 divide j(c)? False Let h(l) = -l - 14. Let v be h(-8). Let c be v/(-2)*-1 + (9 - 2). Suppose -3*o - 3*z + 24 = 0, c*o + 3*z - 14 = 23. Is 12 a factor of o? False Let t(p) = -2*p**3 + 64*p**2 + 9*p + 47. Let j(u) = 2*u**3 - 64*u**2 - 10*u - 48. Let r(i) = -3*j(i) - 2*t(i). Is r(32) a multiple of 14? True Suppose 3*w = -w + 2*f + 17832, -3*w + 2*f = -13374. Is 11 a factor of (2/3)/(-5 - w/(-891))? True Suppose -x + 0*g - g + 1276 = 0, g = 1. Is 25 a factor of x? True Let r(j) be the third derivative of -j**5/60 - 5*j**4/3 - 13*j**3/2 - 21*j**2. Is 12 a factor of r(-37)? True Suppose -3 + 4 = -t, 3*u - 4755 = 3*t. Let s = -1072 + u. Does 16 divide s? True Let i(k) = k**3 + 7*k**2 + 6*k - 2. Let p be i(-6). Let h be p/(0/1 - 1). Suppose -28 = -h*y + 42. Does 7 divide y? True Let i be 9/6*(-68)/(-51). Suppose 3*d + i*a - 49 = 0, 5*d - 4*a = -3*a + 86. Is 17 a factor of d? True Let s(l) = -354*l + 542. Is s(-18) a multiple of 29? False Suppose 5*y - 5 = 2*n, -5*y + 3*n - 9 = -3*y. Let j be 4 - (y + -6 - -4). Suppose z - 5*v - 57 = 0, -114 = z - j*z + 5*v. Does 19 divide z? True Suppose 202 = -4*z + 5*b, -4*z - 42 = -4*b + 162. Let l = z - -261. Does 8 divide l? True Let u be 14/(-84) + (-3553)/(-6). Suppose -h = 5*t - 208, -3*h + 3*t + u - 4 = 0. Is h a multiple of 11? True Suppose -2*h + 16 = -2*g + 4, 4*h = 5*g + 28. Suppose -2*n = -2*k + 824, -2*k - 1656 = -6*k + h*n. Does 10 divide k? False Is 127 - 39/9*-3 a multiple of 20? True Let c be 33 + (3/(-2))/(1/(-2)). Let f = c + -40. Let z(h) = 5*h**2 - 2*h - 5. Is 17 a factor of z(f)? False Suppose 0*n - 24 = -4*n. Suppose -n = -6*d + 96. Suppose 3*i - 5*g - 16 = 25, -3*i - g = -d. Is i even? False Suppose 0 = -19*l + 20*l + 3, 0 = 5*f + 2*l - 40844. Is 95 a factor of f? True Let d be 10*6*((-16)/6)/(-4). Let m be 3*d + 3 + -3. Suppose -4*s - 48 = -2*a, 5*a + 2*s + s = m. Is 8 a factor of a? True Let x be (3/9)/(1/9 + 0). Let f = -7 - x. Let z = 2 - f. Is z a multiple of 4? True Let i = 15352 - 6582. Does 48 divide i? False Suppose -2*y + 0 - 2 = 4*z, -5*z - 5*y = 5. Suppose z = 4*w - 4*h - 16, -2*w - 4*h = 3 - 17. Is 8/w*105*2/4 a multiple of 21? True Is (2/8)/((-173)/(-771580)) a multiple of 31? False Let m(n) = -2*n + 3*n - 5 + 0. Let z be m(4). Is 14/(z/(15/(-10))) a multiple of 21? True Let m = 2542 - 1150. Does 12 divide m? True Suppose -5*w - 4*k = -1216, 4*k + 494 = 2*w + 2. Suppose 5*s + 0*b = b + w, 12 = -3*b. Is 8 a factor of s? True Suppose 0 = -729*a + 714*a + 25245. Is 23 a factor of a? False Suppose b - 2*z = 527, -4*z = 10*b - 6*b - 2120. Does 23 divide b? True Let y(h) = 4*h**2 - 16*h + 5. Let s be y(5). Does 28 divide 1902/15 - ((-20)/s)/4? False Suppose 0 = 20*c - c - 3135. Suppose c = -3*z + 546. Does 15 divide z? False Let t(d) = -d**3 - 18*d**2 - 2*d - 24. Let v be t(-18). Let a = 14 - v. Suppose q - 15 = a. Is q a multiple of 8? False Let z be 30/(-210) - (0 + 36/(-7)). Suppose y - z*s = 100, y - 2*s - 119 = -34. Is 3 a factor of y? True Let k(p) = 3 + 8 - 282*p + 0 - 8. Is k(-1) a multiple of 19? True Suppose -24*z = -16*z - 6008. Let i = z + -531. Does 22 divide i? True Suppose -18986 = -2*f - 4*m, 2*f - 5*f + 28488 = 3*m. Is 161 a factor of f? True Suppose 0*g = 3*g - 3*k + 3, 3*g = -2*k + 2. Let m be 3 - (g - 400)/(-5). Let b = 189 + m. Is b a multiple of 14? True Let a(k) = -2*k**3 + 7*k**2 + 2*k - 9. Let f(b) = -60*b + 3 + 58*b - 6*b**2 + 2 + 4 + b**3. Let h(i) = 2*a(i) + 3*f(i). Is 17 a factor of h(-4)? True Let m be (-59)/4 - (-4)/(-16). Let a be (3 - 505/25)*m. Suppose a = 5*n + 23. Is n a multiple of 16? False Let d(m) be the third derivative of m**5/60 + m**4/12 + 11*m**3/2 + 48*m**2. Does 6 divide d(-11)? True Let x be 15/105 - (-40)/14. Let m be -1*4/x*(-9)/6. Suppose 4*h - 474 = m*i, 160 = h - 2*i + 34. Is 29 a factor of h? True Suppose 118*y - 97*y - 38430 = 0. Is y a multiple of 61? True Suppose 4*c = 8, 5*c + 2294 = 2*k - 0*c. Is k a multiple of 6? True Let m = -440 + 2552. Does 64 divide m? True Let h be ((-48)/(-9))/((-2)/(-3)). Suppose 0 = h*d + 789 + 35. Let n = -51 - d. Is n a multiple of 16? False Suppose 5870 - 41900 = -5*w - 5*y, 2*y + 21628 = 3*w. Is w a multiple of 50? False Let f(v) = -7*v - 28. Let o be f(-8). Suppose -2*u + 24 = 4*w, w + o = u - w. Does 24 divide 2612/u + (-4)/(-10)? False Let x(l) = 344*l - 663. Is x(15) a multiple of 5? False Suppose 3771 + 5755 = 4*b + 2*x, -2*x = 10. Is 16 a factor of b? True Let t be (-22)/10 + 2 - (-8393)/(-35). Does 21 divide ((-36)/(-15)*1)/((-9)/t)? False Let y(u) be the second derivative of 11*u**4/12 - u**3/6 + 9*u**2/2 + 27*u - 2. Is y(-3) a multiple of 26? False Let h = -2621 + 4851. Is 49 a factor of h? False Suppose 20040 = 22*z - 62398 + 5020. Is z a multiple of 51? True Let n be 17/(102/(-4)) - (-22)/6. Suppose 0 = t - 5*y - 271, 2 - 11 = -n*y. Is t a multiple of 26? True Let r(i) = -20*i**2 - 2*i - 1. Let p be r(-1). Let v = p + -4. Let u = 38 + v. Is u a multiple of 3? True Let b(o) = -o**2 - 10*o + 16. Let r be -5 - ((-90)/(-27) + 4/6). Is 6 a factor of b(r)? False Let c(d) = -4*d**2 - 17*d - 1. Let t be c(-4). Is 12 a factor of ((-620)/(-5) - 5) + t? False Let l(d) = -5*d + 23. Let t(p) = 4*p - 22. Let x(c) = -4*l(c) - 3*t(c). Let b be x(11). Suppose -b = -h - 0*h + 3*y, -4*h = 3*y - 173. Is 12 a factor of h? False Suppose -1163 + 23093 = 17*h. Is 15 a factor of h? True Let h = -76 - -78. Suppose -g + 3*q = h*q - 106, 0 = 5*g + q - 524. Is g a multiple of 35? True Let n(w) = -w**3 - 2*w**2 - 58. Let z be n(0). Let h = z - -38. Let q = 41 + h. Does 3 divide q? True Suppose 3*d = 1892 - 443. Is 69 a factor of d? True Let g(v) = 4*v**2 + 2*v + 3. Let q(b) = 2 + 2*b - 2*b + 5*b**2 + 5*b - 3*b. Let s(y) = -6*g(y) + 5*q(y). Is s(10) a multiple of 8? True Suppose -5*w + 7 = -a, -2*a = -2*w - 1 - 1. Suppose a*s = -0*c + 2*c - 825, 2*c + 5*s - 801 = 0. Does 12 divide c? True Suppose 5*b - 1336 = -3*o + 60, 3*o = -3*b + 1404. Does 2 divide o? True Suppose -2*s + 8 = 2*s. Suppose 0 = -s*a - 9*a + 2420. Does 44 divide a? True Suppose 0 = -121*n + 132*n - 45914. Is 7 a factor of n? False Let h(q) = -2*q**3 - 3*q**2 + 5*q - 28. Let y(x) = x**2 - 2*x + 10. Let u(l) = -4*h(l) - 11*y(l). Suppose -4*b + 2 = -3*b. Is u(b) a multiple of 19? False Suppose 3*d = 2*z + 7 - 30, 2*z - 33 = 5*d. Suppose z*p - 3*i - 276 = i, 5*i - 355 = -5*p. Is p a multiple of 10? True Suppose -3*w - 2*w = -50. Let p(c) = 0 + w - 35*c + 34*c. Does 5 divide p(-5)? True Let j = 45 + -43. Suppose -s + 3 = 0, 3*s - 4 = -j*y + 19. Suppose 0 = -2*k + k + y. Is k a multiple of 7? True Let l(k) = -15*k + 19. Let y = -172 - -159. Is 9 a factor of l(y)? False Let t(b) be the first derivative of -5*b**2/2 + 27*b - 42. Does 14 divide t(-17)? True Let l = -1989 - -3537. Does 12 divide l? True Let h(y) = -y**2 + 8*y. Let k be h(8). Suppose 2*c - 34 = -4*o, -58 = -9*c + 5*c + 2*o. Suppose t - 49 - c = k. Does 10 divide t? False Let s(t) be the second derivative of 5*t**3/2 + 21*t**2/2 - 3*t. Suppose 6*v - 10*v + 36 = 0. Does 39 divide s(v)? True Let v(h) = h**3 - 12*h**2 + 13*h + 5. Suppose -2*i = -t + 6*t - 7, -4*i = 2*t - 38. Is 6 a factor of v(i)? False Let n(a) = a**2 - 2*a + 4. Let l be 2 + 0 + 1 - (-9 + -3). Let x = 20 - l. Is 19 a factor of n(x)? True Let b = 198 + -196. Suppose -b*q + 4*s - 13 + 121 = 0, 2*s - 4 = 0. Is 11 a factor of q? False Let d = -22 - -197. Let l = d - 90. Is l a multiple of 9? False Let z = 5848 + -3107. Is 72 a factor of z? False Suppose 51*h + 82*h - 83250 = 96*h. Does 50 divide h? True Suppose 2*y - 5*w + 36 = 0, 4*y - w + 36 = -0*y. Let r be 467/4 - 2/y. Suppose o = -2*o + r. Is o a multiple of 8? False Does 21 divide (-56)/16 + 4 - (4 + 57636/(-8))? False Let d(g) = -g**3 + 37*g**2 - 3*g + 342. Is 76 a factor of d(30)? False Let m be 122/(-4) - 3/6. Let r = 192 + -113. Let f = r + m. Does 24 divide f? True Suppose 0 = 2*x + 2 + 6. Let k = x - -8. Suppose -2*f - k*f = -438. Is f a multiple of 23? False Suppose -7 = 3*v + 2*k + 93, 3*k = -4*v - 134. Let x = v - -78. Is 17 a factor of x? False Let w = -3449 - -5814. Does 43 divide w? True Suppose -5*h + 1481 = -2*a, -2*a - 10 = -14. Let y = h + 9. Is 34 a factor of y? True Suppose -4*d + 5*q = -18, -6 = -5*d - q - q. Suppose 168 = d*n - 8*n. Is (-2 + -1)/1*n/3 a multiple of 7? True Suppose -45*n - 13*n + 219000 = 2*n. Is 67 a factor of n? False Let i = 177 - 156. Suppose 4*s = i*s - 510. Is s a multiple of 16? False Let m be 9 + -4 - (1 + -2). Is 32 a factor of 245/(-42) + m - 5181/(-18)? True Let o = -126 - -32. Let s = -49 - o. Suppose -3*k = -s - 27. Is k a multiple of 8? True Let b(p) = 8*p - 9. Let f be b(-11). Let s = -370 + 547. Let t = s + f. Is t a multiple of 16? True Let t(c) = 3*c - 2. Let n be t(4). Suppose -n*m + 15*m = -210. Let r = -31 - m. Does 2 divide r? False Suppose q - 3*m + 129 = -4*q, 99 = -4*q + m. Does 2 divide 355/20 + 2*(-3)/q? True Let d be (252 - 0) + ((-75)/5)/(-5). Let t be (d/(-10) - -6)*2*-1. Let c = t - 12. Does 9 divide c? True Let c(w) = w**3 + 19*w**2 - 10*w + 24. Let f be c(-20). Is 22 a factor of ((-8)/16)/(1/f)? True Let w = 93 + -89. Suppose 5*q - 383 = -3*y + 135, -w*q = 8. Is 16 a factor of y? True Let y(n) = 37*n + 2127. Does 79 divide y(0)? False Let r = -12 + 12. Suppose r*q - 2*q + 4 = 0. Suppose l = -5*h + 455, -q*l = h - 32 - 68. Does 30 divide h? True Suppose -c - 104 = -q, -3*q = c + 107 - 419. Is q a multiple of 26? True Let u(t) = 4*t + 62. Let w be (-224)/42*27/(-12). Does 7 divide u(w)? False Let m = 614 + -354. Let k = m + -170. Is 15 a factor of k? True Let a(y) = 113*y**3 - y**2 - 2*y + 2. Let r = -9 - -24. Let c be (2/(-4))/((r/(-6))/5). Is a(c) a multiple of 14? True Suppose -6*h + 8224 + 1322 = 0. Does 43 divide h? True Suppose 20*w - z - 1487 = 24*w, -z - 1115 = 3*w. Let s = w - -732. Does 15 divide s? True Suppose -l - 2*h + 1359 = 12500, 0 = 4*l + 5*h + 44564. Does 17 divide (-1)/((-14)/8) + l/(-91)? False Is 25 a factor of 6354 + (-9)/(63/28)? True Does 24 divide 7205 + 1 + (-66)/(13 - 2)? True Let n(m) = -65*m + 265. Let h(b) = -98*b + 398. Let r(t) = 5*h(t) - 8*n(t). Does 16 divide r(15)? True Suppose -12*l = 8*l - 6120. Let i = 446 - l. Is 14 a factor of i? True Let l(w) = 3*w - 12. Let s be l(11). Let t = s + -19. Suppose -q = 4*q - t*v - 420, -5*q + v = -420. Is 19 a factor of q? False Let p be (0 + (-1360)/(-25))*1665/6. Is 11 a factor of (p/30)/2 + 6/15? False Let w(c) = 12*c**2 + 2 - 43 - 11*c**2. Does 4 divide w(7)? True Suppose -13 = -4*b + 7. Let j(q) = -2*q + q + 11*q - 27 - b*q. Is j(12) a multiple of 11? True Let u = 4378 + -1371. Is u a multiple of 19? False Does 20 divide 11 - (-24387)/(1 + 2)? True Let l(m) = -m - 19. Let n be l(-17). Let p = n - -7. Suppose t + p*q = 23, -2*t = q + 4*q - 36. Does 13 divide t? True Suppose 12*j + 2*j = -15*j + 118610. Does 11 divide j? False Suppose 0 = 5*u - 4*k + 2, -u - 11 = -5*k + 2. Suppose -430 = -5*s - 5*n, -3*s = -u*s + 4*n - 80. Is 22 a factor of s? True Let c(k) be the first derivative of -k**4/4 + 7*k**3/3 + 5*k**2/2 + 11*k + 53. Is c(7) a multiple of 8? False Suppose -3739 = -18*v + 7421. Is 10 a factor of v? True Let a(b) = b**2 + 18*b + 70. Let d be a(-13). Suppose d*u - 520 = 5*c, -c = 2*u - 2*c - 206. Does 17 divide u? True Let w(x) = -x**3 + x**2 + x + 2. Let a be w(0). Suppose i + 14 = a*u + 2*u, -2*i = 5*u - 37. Suppose -3*k - i = 0, -7 - 10 = -3*s - 2*k. Does 7 divide s? True Let s(m) = m**3 + 2*m**2 - 7*m + 4808. Is 25 a factor of s(0)? False Suppose -p + 5*p = -2*p. Suppose -3*x = -6, -x + p = 3*v - 2. Is 2 a factor of 1/(-3)*(v - -1)*-21? False Let j(f) = -3*f - 6. Let k(q) = 10*q + 19. Let u(x) = -7*j(x) - 2*k(x). Let l be u(-8). Does 41 divide 123/l*8/6*-3? True Suppose -2*l = 5*x + 3*l - 805, 808 = 5*x + 4*l. Let i = x - 61. Is 5 a factor of i? False Suppose 18*w = 21*w + 3*q - 10587, 2*q = 4*w - 14092. Does 12 divide w? False Let r(w) = 17*w**2 + 8*w + 18. Let g be r(-6). Suppose -9*d - g = -1959. Does 17 divide d? True Let z(c) = -2*c**3 - 4*c**2 - c. Let f(q) = 3*q + 25. Let v be f(-9). Let j be z(v). Suppose -7*y - b = -j*y - 397, 2*y + 2*b - 154 = 0. Is y a multiple of 16? True Suppose 2*i + 2860 = 10*d - 6*d, -d - 11*i = -669. Is 44 a factor of d? False Let m = -54 + 218. Suppose 4*i - g - 1154 = 0, i - 130 = 3*g + m. Does 12 divide i? True Let a(l) = -13*l + 13. Let w = 187 - 190. Does 26 divide a(w)? True Suppose 390 = -3*x + 393. Suppose -4 - 8 = -h. Is x/4 + 1821/h a multiple of 38? True Does 3 divide 1*-35*(141/10)/((-189)/252)? False Let k = 65 + -127. Let i = k + 89. Is 9 a factor of i? True Let h be (-5 - -7)*(2 - 1). Suppose -3*y - h*o - 1 = -103, 2*o = 2*y - 68. Is 3 a factor of y? False Suppose -2*j - 26 = -2*x - 3*x, -15 = j - 3*x. Let w be (16/6)/(j/(-18)). Let l(q) = 2*q - 28. Does 3 divide l(w)? False Let s(x) = 5 + 8 - 10 - 3*x. Let m be s(-2). Suppose -2*o + 57 - m = 0. Does 6 divide o? True Suppose -b + 5*n - 3131 = 3*b, 0 = -2*b - 3*n - 1571. Let q = -447 - b. Is 15 a factor of q? False Let t(a) = 2*a**3 + 18*a**2 + 19*a + 2. Is t(-6) a multiple of 4? True Let u be (-27)/(-3) + 1 + -5. Suppose -u*i + 2 = -13. Suppose 0 = g - 0*b + 4*b - 18, g - 18 = -i*b. Is 6 a factor of g? True Suppose -3*d = j + 57, -3*d + 4 = -4*d. Let x = 20 - j. Let l = -11 + x. Does 18 divide l? True Let x(c) = 5*c + 114. Let g be x(-10). Does 7 divide 1328/g - 5/(-4)? False Let g(j) = 60*j**2 - 323*j - 9. Is 45 a factor of g(13)? False Let t be ((-4)/8)/(3/(-48)). Is 4*(4 - 95/t*-2) a multiple of 8? False Let r = 146 - 244. Let d = r + 162. Is 8 a factor of d? True Let k(o) = 7*o**2 + 3*o + 9. Let g be k(12). Suppose 4*y - 2*x - g + 293 = 0, -x + 580 = 3*y. Does 9 divide y? False Let w = -70 - -111. Let j = 28 - w. Let i = j - -46. Is i a multiple of 15? False Let w(n) = 26*n**3 + 2*n**2 + 18*n - 24. Is 11 a factor of w(4)? False Let g(x) = -x**3 - 9*x**2 + 11*x + 13. Let i be g(-10). Suppose -i*m = -7*m + 12. Suppose m*k + 2*k - 120 = -5*t, 4*t = 5*k - 93. Is k a multiple of 21? True Let r be 3*16/(-12) - -4. Let c be (r - 4)/4*-8. Suppose 3*g + 390 = c*g. Does 39 divide g? True Suppose 4*c + 5*b = 18, -4*b + 16 = 4*c - 0*b. Suppose 0 = -4*i + 3*l + 107, -15 = 2*l - 7*l. Suppose 96 = 3*j + c*p - 42, -5*p = -j + i. Is j a multiple of 10? False Let s be ((-121)/(-22))/(1/2). Suppose -2376 = 2*r - s*r. Is 24 a factor of r? True Let c = 12294 + -6305. Is 53 a factor of c? True Let j(t) = t**2 - 2*t + 68. Let m(y) = -y**2 + 12*y + 28. Let a be m(14). Let c be j(a). Let k = 127 - c. Is 38 a factor of k? False Suppose 2*v + 12*v = 3556. Suppose -w + 166 + v = 0. Does 20 divide w? True Let c be 1 + (1 - (1 + (15 - 2))). Let r be (-880)/14*126/c. Suppose -r = y - 6*y. Is 24 a factor of y? False Let r = -62 - -96. Suppose -r*x = -39*x + 1080. Is 25 a factor of x? False Let t be 433/4 + 4 - 15/(-20). Let p = t - -142. Does 15 divide p? True Suppose -2*h - 11 = 3*m, -3 = -m - 0*h - 2*h. Suppose -6*c = -15*c + 315. Let q = m + c. Is 28 a factor of q? True Let j(d) = -3*d**2 + 8*d + 7. Let f be j(-5). Let t(a) = a**3 - 3*a**2 + 22*a - 96. Let w be t(4). Is w/10 + f/(-15) a multiple of 3? False Let s(h) = -h - 3 + 2*h + 21. Does 13 divide s(-5)? True Let q = 10216 - 7288. Is q a multiple of 16? True Let l(b) = b**2 + 16*b + 378. Is 75 a factor of l(36)? True Let n(r) = 4 + 15 + 15*r - 5*r**2 + 3*r**2 + 8 + 3*r**2. Let h be 0 + 0 + 0 - 16. Does 8 divide n(h)? False Suppose -14797 - 12880 = -13*s. Is 10 a factor of s? False Let w = -20 - -44. Let a = -56 + w. Let x = 47 + a. Is 5 a factor of x? True Let u = 72 - 63. Let w(g) = 21*g - 9. Does 8 divide w(u)? False Let a be ((-4)/(-6))/((-14)/(-12621)). Let b = a - 277. Suppose -8*w + b = -4*w. Does 15 divide w? False Let v = 186 - 184. Does 16 divide 193 - v - 1 - (0 - 1)? False Suppose 15*z + 5 = 35. Suppose -5 = -z*t - 13, 0 = -3*d - 5*t + 772. Is d a multiple of 44? True Let y(d) = -2*d + 48. Let f be ((-8)/((-32)/30))/(3/(-4)). Is 4 a factor of y(f)? True Suppose 2 = 2*u, 0 = -4*a - 8*u + 3*u - 19. Is 2 a factor of 1485/65 - -3*a/(-117)? False Let n(s) = s + 17. Let z be n(-12). Suppose z*c - 4*q - 4890 = -1102, 3*c = -q + 2266. Suppose -7*y + y = -c. Does 13 divide y? False Let f = -17281 + 26370. Does 41 divide f? False Suppose -2*q + 6*d = 4*d - 8, -3*q + 2*d + 12 = 0. Is 70/q*540/75 a multiple of 4? False Let b(a) = -a**3 - 25*a**2 + 31*a + 10. Let w(x) = 2*x**3 + 38*x**2 - 47*x - 15. Let s(g) = -7*b(g) - 5*w(g). Is s(-7) a multiple of 20? False Does 9 divide (-2)/(1/73*-2)? False Suppose 5*j = 3*j + 448. Suppose -7*r - j = -11*r. Is 2 a factor of (-30)/(-14) - 8/r? True Let i = 4481 - 2250. Does 15 divide i? False Let d be (-28)/49 - (4776/28)/(-1). Is (-5*2/(-20))/(1/d) a multiple of 8? False Suppose 8*j + 18 = -j. Let q be j/(((-15)/(-10))/((-3)/1)). Let d(t) = 14*t. Is d(q) a multiple of 14? True Let n(b) = 10*b**3 + 6*b**2 - 9*b + 3. Suppose 0*y + 2*y = -3*j + 21, 0 = -4*y + 4*j + 12. Let a be n(y). Does 19 divide 2/7 - (0 + a/(-21))? False Suppose 2*t - 310 = -6*i + i, 3*i - 775 = -5*t. Let u = t - 82. Is 14 a factor of u? False Let z = 54 + -3. Let w be 1/((-8)/(-966)) - z/68. Suppose 2*h = 96 + w. Is 36 a factor of h? True Let n(c) = -2 + 20 - 7*c + 14*c - 4. Let k be n(-4). Let m = k + 91. Does 7 divide m? True Suppose 0 = 2*o - 10 + 2, -3*z = -o - 71. Suppose -4*k - k + 10 = 2*v, z = 5*v - k. Does 5 divide v? True Suppose -21*k - 21*k = 54*k - 731808. Is 63 a factor of k? True Suppose -3*y = -5*v - 16, -3*y - 6 = -6*y. Let f be 2*v/4 - (-3 + -15). Suppose 6*s = f + 37. Is s a multiple of 2? False Suppose -8*k = -10*k - 4*z - 16, 2*k + 21 = -5*z. Suppose -7*v + k*v = 4*x - 473, -5*v - 3*x = -476. Is v a multiple of 9? False Let a(t) = 2*t**3 - 5*t**2 + 18*t - 17. Let c be a(4). Suppose -5*w = -c + 68. Does 7 divide w? True Suppose 43*b - 44*b = 95. Let u = 311 + b. Is u a multiple of 27? True Suppose 97 = 4*t - 199. Let w(n) = -n + 0*n**2 - t + 3*n**2 + 67. Is 14 a factor of w(3)? False Let a(h) = 44*h**2 - h + 5. Let z be a(2). Let f = z - 152. Is 3 a factor of f? True Suppose 0 = -2*n - 3*g + 4611, -4*g - 6154 = -6*n + 7744. Is 16 a factor of n? False Let i be (25/4)/(17/68). Suppose -i*r = -20*r - 435. Let x = -62 + r. Does 17 divide x? False Suppose -2*t = -3*f - 6*t + 170, 4*f - 2*t - 212 = 0. Let c = -23 + f. Let x = c - -19. Is 7 a factor of x? False Suppose -40680 = -105*g + 16650. Is g a multiple of 13? True Let l be (-8)/10 + (-16)/5. Let n(i) = -i**3 - 5*i**2 - 2*i + 12. Let z be n(l). Suppose 3*p = -2*h + 77, -z*p = h - 0*h - 101. Is p a multiple of 25? True Suppose 0 = 8*v + 1813 + 3275. Let i = v - 200. Is i/(-14) - 16/(-56) a multiple of 8? False Let i(m) = 0*m**2 - 3 - 3318*m + m**2 + 3319*m + 17. Suppose -2*v = 17 - 1. Is 7 a factor of i(v)? True Let s = 217 + -207. Suppose 20*d = s*d + 1100. Is d a multiple of 11? True Let h be (-4)/((-8)/10 - 0). Suppose -h*n - 8*y + 912 = -4*y, -2*n = 2*y - 366. Is 6 a factor of n? True Suppose 4*t = -5*u + 7191, -5*t - u = -7754 - 1219. Does 26 divide t? True Let d(b) = -b**2 + 7*b - 6. Let a(z) = -z + 1. Let y(m) = -6*a(m) - d(m). Let x(s) = 4*s**2 + 21*s - 28. Let g(p) = x(p) - 5*y(p). Is g(21) a multiple of 24? False Let q(u) = u**3 + 3*u**2 - 11*u - 1. Let x be q(-5). Suppose -3*o + t - 1 + 4 = 0, x*t = -3*o + 18. Suppose 3*h + 0*h = -5*j + 264, o*j = 0. Does 19 divide h? False Is (-112920)/(-36) - 0 - (-4)/(-6) a multiple of 14? True Let a = 229 + -229. Suppose 4*s - 2*z = -a*s + 134, -97 = -3*s - 2*z. Does 19 divide s? False Let o = 13 + -11. Let z(c) = 32*c**3 + 12*c + 6*c - 16*c - o - c**2. Does 5 divide z(1)? False Let z(t) = -t**3 + 3*t**2 + 20*t + 14. Let k(p) = -p**3 - 2*p**2 + p - 1. Let q(s) = 2*k(s) - z(s). Is q(-7) a multiple of 9? False Suppose z = 3*k - 2 + 3, k = -5*z - 27. Is (k/4 + 2)/((-51)/(-544)) a multiple of 11? False Suppose 4897 = o - 3*a + 1358, 0 = 5*a + 15. Is 20 a factor of o? False Is 55 a factor of (-8359)/(-4) - (-51)/(-68)? False Suppose -32*m = -14*m - 198. Let q = 71 - 20. Suppose -2*x - a = -q - m, 2*x = -3*a + 66. Is 10 a factor of x? True Suppose -3*t = -3*w + 1746, -5*w + 4*t = -7*w + 1152. Is w a multiple of 29? True Is 142 a factor of (-213)/(4/((-64)/6))? True Let j(n) = n**2 - 5*n + 4. Let c be 2/3 - (-10)/(-15) - -4. Let y be j(c). Suppose y = 5*a + 85 - 385. Is 12 a factor of a? True Does 34 divide 55071/81 + 2 + (-1 - 16/18)? True Does 107 divide (-2461)/4*((-130)/16 - (-6)/48)? True Let r(v) = 129*v - 355. Does 10 divide r(42)? False Let s = 5571 - 1622. Is 99 a factor of s? False Let p(b) = -5*b**3 + 14*b**2 - 6*b + 12. Does 15 divide p(-6)? False Suppose 8*g - 80 = -24. Suppose -2*w + 2*r + 28 = 0, -2*w - 3*r - 68 = -g*w. Suppose -4*u = -w*u + 756. Is u a multiple of 21? True Let j = 17 + 1. Let l(p) = p**3 - 18*p**2 - p + 19. Let o be l(j). Is 25/(o + 1/(-2)) a multiple of 10? True Let m = 127 + -89. Let b = m - -28. Is 3 a factor of (b/(-8))/(21/(-56))? False Let w(h) = -83*h + 3. Let b(a) = -a. Let q be (2*1)/(-9 - -8). Let d(p) = q*b(p) - w(p). Is d(1) a multiple of 16? False Suppose -y + 2*r = -6088, -23*y = -26*y + 2*r + 18248. Is y a multiple of 35? False Let f(w) = 107*w + 3. Let s be (-11)/(-9) - 3*2/27. Is f(s) a multiple of 8? False Suppose -2*p = -0*p - 4*p. Let z be 2/7 + 19/7. Suppose p*d - z*d + 219 = 0. Is 19 a factor of d? False Let d = 18 - -8. Suppose 2*n - d - 30 = 2*u, -120 = -5*n + u. Is 23 a factor of n? True Suppose 2*g = 3*f - 4827, -2*f - 5*g + 1488 + 1749 = 0. Is 9 a factor of f? True Suppose -12796 = -2*t + 2*y, 5*t + 5*y + 1192 = 33162. Is t a multiple of 123? True Suppose -2*k - 48 + 52 = 0. Suppose k*m = -5*w + 4*m - 216, 4*w + 174 = m. Let s = -10 - w. Is s a multiple of 28? False Suppose 135*d + 28717 = 148*d. Is d a multiple of 21? False Suppose 5*a = 3*l - 553, -l + 3*l - 332 = 3*a. Let z = a - -224. Is z a multiple of 13? False Suppose 3*y - 37*y + 130661 = 3365. Is 52 a factor of y? True Let s = -4079 - -5775. Is 32 a factor of s? True Suppose a + 6 = 13. Let n be -1 - (75 + 1) - 0. Does 16 divide 149/a + 22/n? False Let a = 11 - 16. Let l(z) = -2*z**3 + z**2 + 11*z + 10. Let b(v) = 3*v**3 - 2*v**2 - 17*v - 15. Let n(s) = 5*b(s) + 8*l(s). Is n(a) a multiple of 13? True Let s be (-340)/(-56)*174 - (-3)/(-7). Suppose 7*l + s = 15*l. Does 4 divide l? True Let c(m) be the first derivative of -m**4/4 + 28*m**3/3 + 9*m**2/2 + 28*m - 32. Does 10 divide c(28)? True Let y = 687 + -674. Suppose 0 = -0*i + i - 7. Suppose p - y - i = 0. Is 5 a factor of p? True Suppose 0 = -9*w - 5040 + 73305. Is w a multiple of 37? True Suppose -5*s + 47 - 7 = 0. Suppose 6 = f + s. Is 3 a factor of f - (-3 + 1 + -1) - -20? True Let u(k) = -5*k - 37. Let d = 133 + -160. Is 14 a factor of u(d)? True Let h = -45 + 47. Let f be (h*(3 + -4))/((-2)/3). Suppose f*n + 104 = m, -5*n = 3*m - 189 - 81. Is 20 a factor of m? False Let f(a) = 59*a + 2750. Does 22 divide f(0)? True Is 70 a factor of 4 + (-1105)/(-68)*8 + 1*6? True Let d(x) = 4*x**3 - x**2 + 8*x + 8. Let y(b) = 2*b**3 - 18*b**2 + 4. Let i be y(9). Is d(i) a multiple of 35? True Suppose -10*z = -12095 + 2695. Suppose z = 4*n + 4*f, 0*f = 5*f - 15. Is n a multiple of 29? True Let v = -4 + 224. Let i = 393 - v. Does 18 divide i? False Let p(j) = 117*j**2 + 4*j - 7. Let c be p(-5). Is 3 a factor of 2/(-3) + c/54? False Let i = 26 + -34. Let z = i - -38. Is z a multiple of 15? True Suppose -2*j = -b - 478, -966 = -4*j - 15*b + 12*b. Is 30 a factor of j? True Let s(h) = 2*h - 16. Let q be 18 - 0 - (-88)/(-22). Let x be s(q). Suppose -x = -0*g - 3*g. Is g a multiple of 2? True Let a(u) = -4*u**2 + u + 3. Let q(f) = -f - 1. Let d(m) = -a(m) + 4*q(m). Let z be d(-3). Let r = z + -24. Is 7 a factor of r? False Let f be 2*-1*(735/10 + -3). Let p = 261 + f. Does 20 divide p? True Suppose 0 = -92*p + 819040 + 77776. Is 13 a factor of p? False Let v = 31 - 73. Let w = v - -42. Is 8 a factor of 24/(-15)*(0 + -30 - w)? True Let m = -133 + 137. Suppose 0*v - 3*b + 75 = 3*v, -m*v + 4*b + 92 = 0. Does 6 divide v? True Suppose i - 3*n - 80 - 354 = 0, 2*i + 3*n = 832. Let a = i - 110. Does 24 divide a? True Suppose 3*n + 536 = 2*l + 3030, 3 = 3*l. Does 64 divide n? True Let s = -3 + 3. Suppose 0 = -v + 4*w + 45, -10*w + 11*w - 2 = 0. Suppose 0 = -2*g - 5*l + v, 2*g - 43 = 5*l - s*l. Is 5 a factor of g? False Let k be (2/(-8))/(6/(-96)). Let c be (-10)/(-8)*16/k. Suppose z - c*z = -60. Is z a multiple of 2? False Let p be (-2)/(-10) + (2 - (-11)/(-5)). Suppose -3*k - 4*s + 8 = -p*k, -4*s = -4*k - 8. Let d(x) = -x**3 - x**2 + 22. Is 6 a factor of d(k)? False Suppose -5*z + 10387 + 11498 = -9990. Does 125 divide z? True Suppose 2*d + 0*r = -5*r + 33, -5*r + 25 = 0. Is 58 a factor of (278/(-4))/((-5 - -3)/d)? False Let g(m) = -m**2 + 12*m - 9. Let k(v) = v**3 - 15*v**2 + 13*v + 5. Let p be k(14). Let j be (3/(-1))/(p/30). Is g(j) a multiple of 4? False Suppose -195*q + 197*q - 3*f - 3510 = 0, -5265 = -3*q + 3*f. Is q a multiple of 3? True Let r be 9/6 - (-2)/4. Suppose 2*t + 2*l = l - r, 5*t - 2 = l. Suppose -b - b + 20 = t. Is b a multiple of 4? False Let u = -1 - 2. Let a(i) = 5*i**2 - 27 + i - 4 + 29. Is a(u) a multiple of 10? True Suppose -y = -f + 7509, 0 = 4*f - 56*y + 55*y - 30030. Is 13 a factor of f? False Let a(c) be the second derivative of 0*c**2 + 1/20*c**5 - 1/2*c**4 + 0 - 1/2*c**3 + 18*c. Does 10 divide a(7)? False Let q(r) = -275*r - 1639. Is 49 a factor of q(-23)? False Let c(i) = -2*i - 1. Let z be c(0). Let g = 9 + z. Suppose -2*r + 30 = 5*k, -3*k - 2*r - 50 = -g*k. Is k a multiple of 3? False Let h be 16/(-96) + 97/6. Suppose 0*i + 9 = 2*i - m, 3*i - h = -m. Suppose t - 24 = 5*s, -2*t + 2*s - 21 = -i*t. Does 4 divide t? False Suppose 156*i - 178024 = 100*i. Is i a multiple of 11? True Let p be 35/(-28) - (-315)/12. Is 17 a factor of (2 + -27)*((-315)/p + 0)? False Let f(n) = -n**3 - 8*n**2 + 3*n + 26. Let h be f(-10). Let r = h + -188. Is r even? True Let p = -4378 + 4588. Is p a multiple of 7? True Suppose -4*h = 5*n - 34, 6*n - 3*n - 10 = -5*h. Suppose n*t - 11*t + 86 = 0. Let o = t + -41. Is o a multiple of 9? True Let b(x) = x**3 + 6*x**2 + x - 38. Let l(y) = 2*y**3 + 12*y**2 + 2*y - 77. Let s(r) = -9*b(r) + 4*l(r). Does 5 divide s(-6)? True Let i be 6 - 32/4 - -270. Is i/22 - (-36)/(-198) a multiple of 6? True Let v be -160 - (-6 + 7 + 3). Suppose -5*c + 1781 - 611 = 0. Let z = v + c. Is 10 a factor of z? True Suppose 3*v + 36 = 4*f - f, -5*v = 2*f - 45. Suppose -2*k - 5*r - 4 = -3*r, -4*k - 3*r - 6 = 0. Is (k + 1)*(-5)/(f/(-171)) a multiple of 10? False Suppose 2*z = -3*d + 7925, 25*d - 22*d - 11880 = -3*z. Does 82 divide z? False Let i(u) = -u**2 - 144*u - 180. Is 19 a factor of i(-99)? True Is 14 a factor of 2 + (-1675980)/(-250) - 6/(-75)? True Let k = -43 + 36. Does 5 divide (-831)/k - (-40)/140? False Let q(z) = 27*z**2 - 2*z - 1. Let i be q(-1). Suppose 127 - 124 = l. Suppose -117 = -l*s - 5*b, s + 2*b + i = 2*s. Does 30 divide s? False Suppose 4*c + 61 = 5*v, 4*c - 30 = -2*v - 0*c. Let i = v - 9. Suppose 5*j + 6 = -i, -4*f - 5*j = -214. Does 28 divide f? True Let u(j) = -j**3 + 19*j**2 + 17*j + 166. Is 2 a factor of u(20)? True Let f(m) = -3*m**3 - 136*m**2 - 64*m - 188. Is f(-45) a multiple of 3? False Suppose -4*j = 27 - 7. Let r(x) = 3*x**2 + 7*x - 12. Is 14 a factor of r(j)? True Let y be ((-12)/(-15) - 1) + 1295/(-25). Let t be 2/10 - 429/(-5). Let q = y + t. Is q a multiple of 9? False Let g(c) = 2*c**2 - 10*c - 6. Let t(q) = -2*q**2 - 14*q - 4. Suppose 0 = -5*y - 14 - 16. Let w be t(y). Is g(w) a multiple of 15? False Suppose -7072 = -32*p - 38*p + 18*p. Is p a multiple of 17? True Let y = 584 - -1591. Is y a multiple of 44? False Let d(g) = g - 6. Let l(j) = -j + 7. Let w(s) = 6*d(s) + 5*l(s). Let t(o) = 2*o - 9. Let y(z) = -2*t(z) + 2*w(z). Is y(7) even? True Let c = 44 + 1. Suppose -58*p = -c*p - 143. Is p a multiple of 2? False Suppose -5*s = -3*z + 162, -4*s + 68 = -6*s + 2*z. Let o = -40 - -42. Is (o + (-5)/2)*s a multiple of 15? True Is 5450 + 7/(56/(-24)) a multiple of 17? False Let k be 6/(-9)*(-2 - (-509)/(-2)). Suppose -k = -n + 126. Does 38 divide n? False Let i(z) be the first derivative of z**4/4 - 11*z**3/3 + 8*z**2 - 14*z + 65. Is i(10) a multiple of 10? False Let d = -206 + 213. Let s(b) = b**3 - 6*b**2 + 9*b - 22. Is 6 a factor of s(d)? True Is (-69892)/(-42) + (-132)/1386 a multiple of 64? True Let n(v) = v**2 + 4*v + 4. Let k be n(-5). Suppose -15*b + k*b = -180. Suppose 32*q = b*q + 48. Does 8 divide q? True Suppose 63*i - 21*i - 116170 + 20914 = 0. Is i a multiple of 7? True Let c be 2/3 + 10/(-15) + -4. Let j = 8 + c. Suppose j*m - 52 = -2*w + 2*m, 2*m + 109 = 5*w. Does 23 divide w? True Suppose -5*n + 62 = f, -3*n + 10 = 5*f - 36. Is 34 a factor of 16030/60 + 10/n? False Suppose -7 = -4*q + 4*d - 3, 1 = -d. Suppose -3*k + 2*k + 5 = 0, q = -4*y + k + 7. Does 3 divide (-97)/(-4) - y/12? True Let u be (-7)/((-140)/(-16))*(-740)/8. Is 4 a factor of (-3)/(-3)*(1 + 0 + u)? False Let z be (-5)/(3*(-25)/30). Suppose -3*h + 15 = z*h. Is 19 a factor of (-96)/(-6) + h + 0? True Suppose -2*c + h = -34, -2*c + h - 5*h = -44. Is 15 a factor of (24/c)/((-4)/(-361 + 1))? True Let l(h) = -159*h + 679. Let u be l(4). Let q(x) = 31*x**3. Let s be q(-1). Let r = u + s. Is 12 a factor of r? True Let r be (30/(-25))/(-1 - 37/(-40)). Suppose -3*f - f + r = 0, -v - 4*f = -18. Suppose 2*w + v*w = 344. Does 14 divide w? False Suppose 11*g - 417 = 1354. Suppose 4*u - 5*u - g = -5*i, i - u = 33. Does 9 divide i? False Let b(f) = 2*f**2 + 7*f - 10. Let w(v) = 3*v**2 + 6*v - 9. Let x(l) = -4*b(l) + 5*w(l). Is x(-7) a multiple of 18? True Suppose 3*o - 646 + 103 = -b, 4*b + o = 2161. Is 60 a factor of b? True Let o be 10/(4/12*-3). Let h(t) be the first derivative of -t**4/4 - 3*t**3 + t**2/2 - 5*t + 3. Is h(o) a multiple of 17? True Let f(w) be the first derivative of 2*w**3/3 + 15*w**2/2 - 22*w + 15. Let h be f(-9). Suppose o + 2*z - 92 - 17 = 0, -505 = -h*o - 2*z. Is o a multiple of 29? False Suppose 17786 = 6*k + 17642. Does 4 divide k? True Suppose 4*g + 5*y + 6 = 0, 2*g + 5*y = 3*y - 2. Is 14 a factor of 7 - (-68)/2 - g*-1? True Is (-5372)/3*((-459)/54 + 1*7) a multiple of 17? True Let p(w) = w**2 + w + 5. Let s(y) = 37*y - 68*y + 36*y - 18. Let v be s(5). Is 25 a factor of p(v)? False Let l = 382 + -168. Suppose 388 = -7*k - l. Is 17 a factor of (2 + k)/(-1 - 0)? False Suppose -4*l - 16 = 0, -o - 4*l = -681 + 68. Is 4 a factor of o? False Let t(s) = -s**2 + 75. Let y be t(-8). Suppose n = y*n - 4000. Is n a multiple of 40? True Let d be 1/(6/(-6)) + -65. Let o = -20 - d. Does 8 divide o? False Let i = -49 - -177. Let a = 140 - i. Is a a multiple of 3? True Let b(m) = -m**3 + 10*m**2 - 8*m - 7. Let i be b(9). Suppose 12 + i = 2*u - 2*f, 2*u - 3*f = 18. Suppose -u*t + 1 = o - 1, -25 = -4*o + 5*t. Does 5 divide o? True Let o = 11874 + -5545. Is 139 a factor of o? False Suppose 2*z + 4*k = 454, -5*z - 474 = -7*z + k. Is 6 a factor of z? False Suppose 0 = 14*c - 15*c + 2. Let v be ((-11)/3 - 2) + c/(-6). Let t(b) = 2*b**2 - 6*b - 8. Does 10 divide t(v)? True Is 14 a factor of (-1)/(-2) - 23/(828/(-135))*362? True Let j be (-20)/(2 + (-16)/9). Suppose -3*a + w - 5 = 0, 0 = -3*w + 8*w + 5. Let x = a - j. Does 18 divide x? False Let j(p) = -p**2 - 8*p + 13. Let v be j(-17). Let q = -23 - v. Does 12 divide q? False Suppose -21*c = -16*c. Suppose c = 4*v - 28 - 0. Suppose 5*d = -5*z + 115, 2*d - d + v = 5*z. Does 9 divide d? True Suppose 0 = -2*l - 4*z + 74, l + 3*z - 3 - 31 = 0. Let v = -38 + l. Suppose 40 = v*i - 35. Is i a multiple of 15? True Is -2*((-12030)/12 + -2 + -3) a multiple of 65? True Suppose -24417 = 5*x - 4842. Is 27 a factor of 6*(-3)/48 + x/(-72)? True Let r be 27/(-18) + (51/(-2) - -3). Is 2/(-3) + (6 - 5080/r) a multiple of 31? True Let k = 640 + -412. Let f = k + -212. Does 6 divide f? False Let q be 4*((-5)/2 + 4). Is 24952/88 - q/11 a multiple of 15? False Let j(n) be the second derivative of -n**4/6 - 3*n**3/2 - 7*n**2/2 - 18*n. Let p be j(-6). Let f = p - -46. Is 3 a factor of f? True Is 35 a factor of (-298)/(-4768) - (-9455)/16? False Let r(f) = 82*f + 37. Let s be r(15). Suppose -g - s = -3*b - 3*g, 3*b = 2*g + 1283. Is b a multiple of 17? True Let m(t) = 114*t**2 - 4*t - 1. Suppose s + 4*s + r + 2 = 0, -2*r = -5*s - 11. Does 13 divide m(s)? True Let p be 2/(-5 + 3) - -2. Let a(b) = 4*b - 1. Let f be a(p). Suppose l + 2*l = -y + 48, 168 = 5*y - f*l. Is 4 a factor of y? True Let u(d) = 67*d**2 - 3*d + 2. Let q be u(-4). Let x = 1894 - q. Does 4 divide 3/4 - x/(-32)? False Let l be (-4)/16 - (-42)/8. Suppose -6*z + 2*z + 5*a = -1936, -2*z + 938 = 5*a. Suppose -l*c + 46 = -z. Is 47 a factor of c? False Let j(w) = -60*w + 282. Is 75 a factor of j(-36)? False Let k(v) = -10*v + 1 - 14 - 6. Suppose -30 = 8*p - 3*p. Is 17 a factor of k(p)? False Let k be (4*6/28)/(2/7). Suppose 0 = 7*j - k*j + 332. Let n = -8 - j. Does 22 divide n? False Is 113 a factor of ((-1)/3*-4)/((-76)/(-141417))? False Let r(o) = o**3 + 5*o**2 - o + 6. Let w be r(5). Suppose -4*z - 406 = -z + 5*v, -112 = z - 3*v. Let i = z + w. Does 14 divide i? False Suppose 3*m + k = 2926, -5*m - 251*k + 4905 = -255*k. Is 2 a factor of m? False Suppose 7 = -p - 2*s - 18, 7 = -p + 4*s. Let z = -16 - p. Is (-4 + 7 - -90) + z a multiple of 16? True Let v(a) = a**2 - 22*a - 23. Let n be v(13). Let p = 161 + n. Does 14 divide p? False Let i(u) = -10*u**3 - u**2 - 10*u + 11. Does 5 divide i(-4)? True Let h = -170 - -1944. Does 14 divide h? False Suppose 0 = -5*j, 4*r + j = -4*j. Suppose -5*v + 85 = -4*a, -2*a - 4*v + 3*v - 39 = r. Is (-28)/a + -1 - 428/(-5) a multiple of 43? True Suppose -5*o = -4*m + 233, 4*o - 30 - 158 = -4*m. Let x(b) = -b**3 + 2*b**2 + 8*b - 7. Let c be x(5). Let s = m + c. Is 7 a factor of s? False Let q be (8 + -9)/(113/(-112) + 1). Suppose -3*x + d - 34 = -4*x, -5*d = 3*x - q. Let h = x - 17. Does 12 divide h? True Suppose 3*n + 72 = -n - 4*q, 0 = 3*q + 15. Let i(l) = -l**3 - 12*l**2 + 9*l - 13. Let s be i(n). Suppose -s = 4*k - 151. Does 14 divide k? True Suppose -23*p + 166332 = -46188. Does 140 divide p? True Let l = -67 + 51. Does 2 divide 153/2*l/(-24)? False Is (-84)/12 - 2 - -2634 a multiple of 25? True Let y be (-46918)/(-10) + (-4)/(-20). Does 10 divide y/21 - 6/14? False Let b be 7662/42 - (-4)/(-28)*3. Let k = b + -135. Is k a multiple of 2? False Let a be 2 - (4 + -9 - -3). Suppose -a*p = -2*b - 506, -3*p + 55 + 324 = -b. Does 18 divide p? True Suppose 3*z = -4*v + 42, -3*z = 2*v - 2*z - 22. Let p be v/8 + (90/4 - -2). Suppose 82 = q + p. Does 14 divide q? True Let t(i) = 380*i + 278. Is 4 a factor of t(2)? False Suppose -56*r - 3490 = -124302 - 27028. Does 16 divide r? True Let s(j) = 3*j**3 - 7*j**2 - 5*j - 7. Let p(n) = 10*n**3 - 22*n**2 - 14*n - 21. Let a(l) = 2*p(l) - 7*s(l). Let d = -813 - -818. Is 14 a factor of a(d)? True Suppose -4*k + 26 = -t, 5*t + 20 = t - 5*k. Let v(y) = -15*y - 24. Is v(t) a multiple of 18? True Let x = -6902 + 9981. Is x a multiple of 39? False Let b be 2*2/6 + 120/(-180). Is 59 - (-5 - (b + -1)) a multiple of 21? True Let f = -5 + -33. Let q = 53 - 10. Let y = f + q. Does 2 divide y? False Does 16 divide 24/((-6)/3) + 460? True Let y be (8 + -8)/(0 + -1). Suppose 14*k - 5*k - 360 = y. Does 10 divide k? True Suppose 0 = -2*p + j + 1247, -5*j - 4 = 11. Suppose 4*u - 1290 - p = 0. Suppose 4*k = 4*m - 472, 4*k + u = 4*m + 2*k. Is 11 a factor of m? True Suppose 0 = -2*y - 2*i + 330, 8*i = 7*i - 2. Suppose 2*k + 5*t = y, -2*k + 5*t = 3*t - 146. Is k a multiple of 2? True Let q(r) be the first derivative of -r**3/3 - r**2/2 + 20*r + 6. Let a be q(4). Suppose -4*f = -a*f - 112. Does 11 divide f? False Suppose 17*v + 4095 = 24*v. Suppose -20*l = -25*l + v. Is l a multiple of 13? True Let l = -577 + 1851. Is l a multiple of 32? False Suppose -7*f + 24 = -4*f. Suppose 2*d = -0*d + f, -a = -2*d. Let x(j) = -j**3 + 9*j**2 + j - 9. Is x(a) a multiple of 7? True Is (-178966)/(-172) + (-1)/(-3)*(-3)/2 a multiple of 80? True Let w = 627 - 635. Let i(h) = -13 - 18*h + h - 7. Is i(w) a multiple of 29? True Suppose -35*g - 98 = -33*g. Let j = g - -89. Is j a multiple of 10? True Suppose -21589 = 20*p - 58649. Is p a multiple of 58? False Let k(r) = 3*r**2 + 18*r - 6. Suppose h - 4*y = -y, -9 = 3*y. Is k(h) a multiple of 3? True Let p = -213 + 204. Does 20 divide (-633)/(-18)*9*(-6)/p? False Let k = 188 - 188. Suppose 0 = -5*q + a + 394, k = 3*q + 2*q + 5*a - 370. Is 7 a factor of q? False Suppose -b = 2*t - 0*t - 270, 0 = -5*t + 20. Suppose 260*s - b*s = -82. Does 26 divide s? False Is 0/((1 - 9) + 6) - (-1 - 4375) a multiple of 44? False Suppose -206*a + 633752 = -338774. Is a a multiple of 30? False Suppose 2*y + 0 = 10. Does 58 divide (y - 117/6)/((-2)/40)? True Let y = 69 + -67. Let q(x) = -x**3 + 19*x**2 - 19*x + 18. Let a be q(18). Suppose a = -2*j + 4*z + 24, 3*z = y*j + 2 - 28. Is 8 a factor of j? True Let s be 20/(-10)*(-2 - -4). Let z be s/2*-20 + -2 + 3. Does 19 divide z*(5 + -2)/((-21)/(-14))? False Let x = 90 + -27. Suppose 0 = 8*h - 5*h - x. Is h a multiple of 2? False Suppose 0 = -9*f + 844 + 12071. Suppose -3948 + f = -7*l. Is 53 a factor of l? False Let u(n) = -43*n + 80. Suppose 5*w + 23 + 1 = -2*b, 24 = -4*b + 2*w. Is 15 a factor of u(b)? False Suppose -667*f + 669*f = -h + 1521, 4*f = 5*h + 3021. Does 6 divide f? False Let y be -3*(-1)/5*(19 + -9). Does 14 divide 27/(38/6 - y)? False Let m(y) = y + 11. Let z be m(-13). Let c(l) = 9*l**2 + 9*l + 14. Is c(z) a multiple of 6? False Let j = 2851 - 1399. Is 12 a factor of j? True Let x = -1262 - -2321. Does 28 divide x? False Suppose -170*o + 174*o - 2251 = -x, 2*x + 5*o = 4499. Is x a multiple of 3? True Let o(y) = -4*y - 7. Let r be o(-3). Suppose f = f + r*f. Suppose -7*m + 10*m - 84 = f. Is 7 a factor of m? True Let b(x) = 137*x**3 - 4*x**2 + 18*x - 40. Is 32 a factor of b(4)? True Suppose 5*k + 6533 = j, 32623 = 5*j - 4*k - 0*k. Does 11 divide j? True Suppose 21*m - 33164 = 103483. Is 9 a factor of m? True Suppose -2 = 2*l, -5*b + 0*b = 5*l - 1760. Suppose -4*d = q + q - 1442, -d + b = 2*q. Does 31 divide d? False Let c be 3 + 3/(-12)*-4. Suppose 16 = -4*o, c + 4 = x - 2*o. Suppose x = 2*y - 2*s - 110, -2*y - 9 = -4*s - 119. Is y a multiple of 12? False Suppose 12 = 5*j + k, -5*k + 18 = 5*j - j. Let b(g) = 1 + j + g - 3*g. Is b(0) a multiple of 2? False Let z = -97 + 102. Suppose 3*o + 206 = -4*v + 5*v, -210 = -v + z*o. Is 25 a factor of v? True Suppose -6994 = -5*f + 9176. Is 7 a factor of f? True Let d = -32 + 32. Let p(w) = -w**3 - w + 104. Let o be p(d). Suppose -5*l - 2*m + 207 = 0, 4*l + 5*m - 48 = o. Is l a multiple of 11? False Suppose b - 2 - 2 = 0. Let m(q) = q**2 + q - 2. Let r(v) = 2*v**2 + v - 2. Let l(a) = -4*m(a) + 3*r(a). Is 5 a factor of l(b)? True Let l(a) = -8*a**2 - 210*a - 8. Is l(-8) a multiple of 3? False Let w = 10 - 15. Suppose 160*a = 158*a - 80. Let g = w - a. Does 11 divide g? False Let u(a) = 3*a**3 - 3*a**2 - 25*a + 14. Let v be -57*(-4)/42 - 6/14. Is u(v) a multiple of 7? True Let k(j) = j**2 - 9*j + 13. Let c be k(8). Suppose 5*s = c*p - 125, 3*s + 124 = 4*p + 19. Is 4 a factor of p? False Let n = -478 - -295. Let r = 307 + n. Does 19 divide r? False Let k = -16 - -20. Suppose 4*c = -k, 3*c + 657 + 1756 = 5*b. Suppose 3*n - 162 = 2*m + 205, 4*n - b = -m. Is n a multiple of 18? False Let w = -164 - -172. Is (-2)/4 - 284/w*-5 a multiple of 38? False Suppose -52374 = 14*u - 146818. Does 85 divide u? False Suppose 7 = -2*v - 221. Let n = 180 + v. Suppose -8*m = -2*m - n. Is 11 a factor of m? True Let s(p) = p**3 + 6*p**2 - 10*p - 16. Let q be 106/(-16) - (-6)/(-16). Let t be s(q). Suppose -5*u = 4*w - 44, -3*u = t*w - 0*u - 55. Is w a multiple of 5? False Let b = -19 + -37. Let j = 37 + b. Let v = 30 + j. Is v a multiple of 2? False Suppose -9*w + 61932 - 21388 + 54136 = 0. Is 16 a factor of w? False Let l(o) = -o**3 + 42*o**2 + 204*o - 209. Does 126 divide l(45)? False Suppose 4*a + a + 2*h = 0, 2*a = -3*h. Suppose a = z - 113 - 487. Suppose -3*r + 9*r - z = 0. Does 24 divide r? False Let s = -97 - -139. Let h(f) = -s*f - 9*f**3 - 4*f**2 + 2*f**2 + 39*f. Does 14 divide h(-2)? True Let s = -157 + 206. Let j = s - -79. Does 8 divide j? True Suppose 5*z + 15 = 0, 2*o = 21*z - 19*z + 11494. Does 16 divide o? True Let k(z) = z**3 + 94*z**2 + 427*z - 210. Does 29 divide k(-89)? True Suppose 2*n + 0*p + 14 = 4*p, -4*p = 5*n + 91. Let f = 1 - n. Is f a multiple of 2? True Is (-1 + (-682)/(-10))/(-14 + 4413/315) a multiple of 98? True Let t = -2913 - -3082. Is t a multiple of 7? False Let u(m) = 10*m - 76. Let c be u(8). Suppose 0*s + n - 114 = -c*s, 54 = 2*s - n. Is 7 a factor of s? True Suppose -74 = -5*k - 24. Let y be -4 + 15/(k/2). Does 30 divide -4 - -4 - 150/y? True Suppose -1851*f + 1858*f - 2352 = 0. Is f a multiple of 42? True Let z = -223 + 479. Let s = 429 - z. Is s a multiple of 28? False Suppose -5*s + 566 = 4*w, 5*w - 4*s - 637 = 50. Let n = 216 - w. Is n a multiple of 8? False Let s(y) = 6*y**3 - 3*y**2 - 13*y + 14. Let t(f) = -7*f**3 + 2*f**2 + 14*f - 13. Let k(n) = -6*s(n) - 5*t(n). Let i be (-9)/3*(-16)/6. Does 5 divide k(i)? True Is 59 a factor of ((-1164)/(-970))/(-1*(-4)/14190)? False Suppose -12 = 4*m, 1 = u - 3*m + 32. Let f be ((-12)/48)/(2/u). Suppose -127 - 503 = -f*g. Is 42 a factor of g? True Suppose -100*q + 25*q + 27540 = -39*q. Is 3 a factor of q? True Suppose 32*w - 103634 = 35822. Is 10 a factor of w? False Let g(j) = 126*j + 641. Is g(44) a multiple of 33? False Let s(h) = 4*h - 3. Let m(k) = 3*k + 15. Let b be m(5). Let o = 32 - b. Does 3 divide s(o)? False Suppose -86 = 2*t - 78. Is t + (-10)/5*-64 a multiple of 6? False Let m be ((-5)/6 + (-10)/60)*35. Is (-4333)/m - (4/10)/(-2) a multiple of 13? False Let s be (-9)/15 - -3*(-6)/(-5). Suppose 0 = -c + 1, -s*c - 280 = -4*r + c. Let b = r - -16. Is 14 a factor of b? False Suppose 3*h + 9 = -3, 2*h = -2*j - 8. Suppose -z + 0 + 155 = j. Does 13 divide z? False Suppose -o - 6762 = -3*h, 2*h - 13*o = -18*o + 4508. Does 46 divide h? True Suppose 2 = -2*a - 4, 5*l - 4*a - 2962 = 0. Is 3 a factor of l/30 + 0 + (-4)/6? False Let q = 1120 + -1660. Let a = -264 - q. Does 46 divide a? True Suppose 0 = 4*g - 19*g + 540. Is 3/(18/57) - g/(-24) even? False Let j(q) = 9*q - q**3 + 5*q + 0*q**3 - 9 + 7*q**2. Let f be j(8). Let r = f + 57. Is r a multiple of 24? True Suppose -29*q + 9*q + 409300 = 80*q. Is q a multiple of 27? False Let s be ((-2)/3)/((-35)/105). Is 29 a factor of ((-2260)/(-8))/5*s? False Let o(x) = -277*x - 2 - 8 + 54*x**2 + 266*x. Does 5 divide o(-1)? True Suppose -4*k - 3*r = -7663, 39*k - 41*k + 3821 = 5*r. Is k a multiple of 7? True Let f = -39 + 40. Let i = f + 9. Is 2 a factor of 184/18 + i/(-45)? True Let l(c) = c**3 + 14*c**2 + 3*c - 1. Let h(s) = -s**2 - s - 1. Let o(d) = 2*h(d) + l(d). Is 7 a factor of o(-11)? False Let b be 3/15 + 24/5. Suppose -5*c - 4*p = -619, -c + 6*p = b*p - 131. Is (-1 + 3)*-1 + c*1 a multiple of 13? False Let c = -2571 + 2976. Is 9 a factor of c? True Let y(n) = 152*n - 368. Does 52 divide y(12)? True Let t(p) be the third derivative of 4*p**3 + 0*p + 0 - 1/8*p**4 - 15*p**2. Is t(0) a multiple of 3? True Is 8/(-10) + 389186/70 a multiple of 14? False Let u = -532 + 3272. Does 33 divide u? False Suppose 0 = -u - 2*m + 22, 0 = 4*u + 3*m - 26 - 42. Suppose -q = q + u. Is 21 a factor of 81 + (q/(-2) - 1/2)? True Let y = -2571 + 2795. Is y a multiple of 2? True Suppose 0 = -5*u - 4*i + 30, -5*u + 5 = -2*i - 25. Let s(n) = 2*n**3 - 5*n**2 + 20*n + 6. Is s(u) a multiple of 42? True Suppose 3*o = -5*x + 40, o = 4*x - 3 - 12. Suppose 2*m - o = -23. Is 4 a factor of ((-9)/3)/(m/87)? False Suppose 1286 = w + 2*m, -m + 877 + 406 = w. Does 80 divide w? True Suppose 3*p + 2*f + 1 = 0, -2*f = -3*f - 5. Let w be 4/8*24/p. Suppose 142 + 142 = w*d. Is 22 a factor of d? False Suppose 0 = -5*y - 65 - 175. Does 23 divide 3/12 - 7716/y? True Let a = -4122 + 6700. Is 45 a factor of a? False Let q be 212/12 + 1/9*3. Is 19 a factor of q/9 - (-414)/2? True Let i = -20 + 24. Suppose 4*a + t = -2*t + 215, -i*t - 12 = 0. Is a a multiple of 2? True Let s be -5 + 3 + 48/8. Suppose -7*n + s*n - 1241 = -4*p, 4*n + 12 = 0. Is 20 a factor of p? False Suppose 9*z + 3*r + 12534 = 12*z, 0 = 13*z + 4*r - 54348. Is 29 a factor of z? False Suppose -56 + 6 = 5*c. Let r = -3 + c. Let h = 25 + r. Is h a multiple of 12? True Is 73 a factor of (-1 - (-2)/((-10)/(-13873))) + (-8)/(-20)? True Suppose -k + 4*v + 471 = -1433, -5*k - 2*v = -9608. Is 4 a factor of k? True Let x = 193 + -203. Is x/((-422)/70 - -6) a multiple of 35? True Let c(y) = 18*y**2 + 26*y - 4. Is c(1) a multiple of 5? True Suppose -249 = 2*s - 5*s. Let z = 323 - s. Does 7 divide (1/(-2))/((-3)/z)? False Suppose 3*h + 2*g - 2 = 0, h - 2 = g - 3*g. Suppose 3*o + 7*w - 556 = 8*w, 0 = 5*o - 3*w - 932. Suppose -2*c + 10*c - o = h. Is 6 a factor of c? False Let v = -125 + 128. Suppose -2*a = -v*b - 7*a + 495, 0 = b - 4*a - 148. Is 31 a factor of b? False Let a(i) = 14*i**2 + 59*i - 425. Is 20 a factor of a(9)? True Let z = 9016 + -1435. Does 115 divide z? False Suppose 4*n - 4512 = -2*h, n = 5*h + 4*n - 11315. Is 69 a factor of h? False Let f = -636 - -1134. Suppose 4*i + f + 461 = 5*y, -i = -4. Is 39 a factor of y? True Does 23 divide (222/(-148))/((-3)/10744)? False Suppose z = -b + 1852, -5*z = 3*b - 5799 - 3457. Does 22 divide z? False Let m = 51 - 16. Suppose -u - 18 = -10*u. Suppose m = u*t - 11. Is t a multiple of 19? False Suppose -4*u = 35 + 69. Let g be (-33)/(-44) + u/(-8). Suppose 5*b - g = 346. Does 10 divide b? True Let y(n) = n**3 - 3*n**2 - 4*n. Suppose -2*v - 4*w = -4, 0 = 7*v - 3*v + 5*w - 14. Is y(v) a multiple of 6? True Let v = 2589 - 2548. Is 4 a factor of v? False Does 15 divide 2/4 + ((-2245023)/(-22))/27? True Is 96 a factor of 1/1*(-33900)/(-113)? False Suppose -3*r + 1 = 4, -g + 20 = -2*r. Is g + -15 - (-2 - (-2 - -157)) a multiple of 8? True Suppose 19*r - 10800 = 9*r. Suppose 0 = 2*x - 3*g - r, 5*x - g - 2689 = g. Is x a multiple of 68? False Let p(v) = -139*v**3 + v**2 + 5*v + 3. Let l be p(-2). Suppose 276 = -7*i + l. Does 7 divide i? True Let l = 107 - 66. Let y = l + -35. Suppose -136 = 4*h - y*h. Is 23 a factor of h? False Suppose -g = 9*v - 34269, -5*v + 14541 = 5*g - 4484. Is v a multiple of 78? False Let n(s) = -7*s**3 - 4*s**2 - 2*s + 1. Let m(g) = g**2 - 10*g + 13. Let p be m(8). Let l be n(p). Suppose -3*y - l = -8*y. Is y a multiple of 11? False Let a be 20272/49 + -1 + 18/14. Let v = 587 - a. Does 14 divide v? False Let v(a) = a**2 - 7*a + 213. Does 17 divide v(42)? True Let w(a) = a**2 - 4*a - 40. Let g be w(0). Does 21 divide (1 - -86) + 5*24/g? True Suppose -25*f - 41*f = -155694. Is 135 a factor of f? False Is (2 - 429/(-6))*(-7 + 23) a multiple of 3? True Let j(a) = a**3 - 3*a**2 + 5*a + 12. Let i be 6/5*70/21. Suppose 0 = 2*g + i*n - 22, 0 = -5*g + n - 3*n + 31. Is 29 a factor of j(g)? True Suppose -8*m + 577 + 767 = 0. Let d = m + -81. Is 7 a factor of d? False Is 32 a factor of (-41)/(205/(-17490)) - 10? True Suppose -4*u + 933 = 5*h, 14*u + 429 = 16*u - 5*h. Suppose 232*z - u*z = 890. Does 12 divide z? False Suppose -n = -o - 7, n + 3*o + o + 13 = 0. Suppose t = n*y + 6*t - 128, 0 = -2*y + 4*t + 56. Is 18 a factor of y? True Let y(k) = k**3 - 16*k**2 + 2*k + 73. Does 32 divide y(22)? False Let w(l) = -l**3 + 7*l**2 + l - 1. Let k = 37 + -30. Let q be w(k). Suppose -q*p - 105 = -11*p. Is 3 a factor of p? True Let q(f) = 88*f + 8. Let l be q(10). Suppose 0*k + 2*k - 440 = 2*u, 2*u + l = 4*k. Does 16 divide k? True Let l be 208 - -1 - (-4 - (-10 - -5)). Let w = 31 + l. Is 18 a factor of w? False Let p(q) = 2*q - 6. Let x = 43 - 37. Let k be p(x). Let t(f) = 4*f**2 + 3*f - 20. Is t(k) a multiple of 26? False Suppose 4*r = -3*c + 693, 5*c + 5*r = 7*r + 1155. Suppose -1095 = -4*o - c. Does 27 divide o? True Let b be 7/(-2 - (-18)/8). Let t = 73 + b. Suppose 35 = 4*n - t. Is n a multiple of 8? False Suppose -3*a - 3 + 15 = 0. Suppose 2*k = -a*b + 4*k - 62, -3*k + 21 = -2*b. Is 15 a factor of 4842/81 - 4/b? True Let m(f) be the first derivative of 20/3*f**3 + 3 - 1/2*f**2 - 1/4*f**4 + 24*f. Does 3 divide m(20)? False Suppose 9 = 3*o - 2*g - 76, 35 = 2*o + 3*g. Suppose -2*b + 33 + 34 = 3*n, -n = 2*b - o. Suppose 33 = 3*x + 2*j, 4*x - n = -3*j + 23. Is x even? False Let x(i) = -3*i - 19. Let g be x(-9). Suppose -2*l = l - 6, -4*o + g = 4*l. Suppose -5*f - 94 = -3*r, 3*f - 5*f + 8 = o. Does 17 divide r? False Let y(a) = 87*a**2 + 24*a + 166. Is y(-5) a multiple of 56? False Let k(o) = -o**3 - 4*o**2 + o. Let c(b) = -b**2 + 4*b - 2. Let n be c(2). Suppose 0 = 2*x + n*t + 16, -x + 5*t + 0 + 10 = 0. Is k(x) even? True Let w(r) = r**2 - 9*r + 19. Let i be w(5). Does 34 divide ((-2)/12)/(i/1362)? False Suppose -20*o - 2152 = -24*o + 2*z, -3*o = z - 1614. Is 33 a factor of o? False Suppose 2*h - 5*h + 4*v = -13769, -v - 2 = 0. Is 38 a factor of h? False Suppose -2*n + 5*z = -31, -n - 14 = -4*n + z. Suppose 0 = n*w - 9*w + 924. Does 14 divide w? True Let v = 1106 + 73. Suppose -2*w = -2*d + 588, -v + 272 = -3*d - 2*w. Is d a multiple of 13? True Let x(j) = -j - 8. Let z be x(-13). Let p be (-2 - 1)*5/(-5). Is (-8)/z*(-2 - p) a multiple of 3? False Let s be (-984)/(-15) + (-9)/15. Let r = 21 + s. Does 5 divide r? False Let k(f) = 368*f + 6. Let i be k(1). Suppose 5*g - 105 = -4*x + i, 4*x = -2*g + 470. Does 49 divide x? False Suppose 2*m - 64 = 2*j, 0 = -2*m - j - 18 + 94. Let k(p) = p + 91 - m + p + p**2. Is 11 a factor of k(0)? True Let p = -2854 - -4139. Is 57 a factor of p? False Let n(y) = 24*y**2 - 5*y - 315. Does 91 divide n(18)? True Suppose 5*x - 26 = -4*l, -3*l + 37 = -0*x - 5*x. Let c be ((-9)/(-3))/((-3)/l). Is (140/(-15))/(2/c) a multiple of 7? True Let m(g) = 127*g**2 + 11*g + 37. Is 55 a factor of m(6)? True Suppose 9 = -3*p - 66. Let f = 30 + p. Suppose 4*y = f*i + 473, -2*y - 590 = -7*y + 5*i. Does 24 divide y? False Suppose 9*l - 21*l - 5916 = 0. Let a = -268 - l. Does 14 divide a? False Suppose 5*m + 3*o = 24068, 4*m - 4*o - 19248 = -0*m. Is m a multiple of 6? False Let w(i) = -216*i**3 + i**2 + 2*i + 1. Let j be ((-6)/8)/3 - 21/28. Does 17 divide w(j)? False Suppose 270*m - 9873 = 241*m + 36817. Is 115 a factor of m? True Suppose 3*w - 120 = -2*i + 5*i, -i = 2*w - 74. Suppose -42*u + 132 = -w*u. Does 16 divide u? False Suppose -t + 2*k = -481, -5*k = 528*t - 525*t - 1498. Is t a multiple of 13? False Let u = 64 + -82. Is 13 a factor of (-732)/u - (-1)/(-3)*2? False Does 12 divide (-14 - -13)*(-6914 + 1 + -4 + 5)? True Suppose -6*i = -5*o - 11*i + 12655, 4*i + 7565 = 3*o. Is 19 a factor of o? True Let f be (-17 - -87)*1*29. Suppose -12*h = -5*h - f. Does 29 divide h? True Let u(l) be the third derivative of -l**7/2520 - 7*l**6/360 - l**5/12 + 8*l**2. Let p(f) be the third derivative of u(f). Is 17 a factor of p(-18)? False Suppose 12*m = 8*m + 228. Suppose 308 = m*x - 53*x. Does 32 divide x? False Suppose -2*n + 26 + 182 = 4*g, -5 = g. Does 2 divide n? True Let w(h) = -24*h**3 - 23*h**2 - 27*h + 2. Does 17 divide w(-4)? False Let d(q) = -69*q + 16. Let m be d(-3). Let j = m + -206. Is 17 a factor of j? True Suppose 2*f = -3*l - 22, 3*f - l = -59 + 26. Let n(p) = -26*p + 46. Does 54 divide n(f)? False Suppose 0 = -79*x + 44*x + 202825. Does 11 divide x? False Suppose 47*x + 20*x + 12852 = 103*x. Is 17 a factor of x? True Let n be (-3168)/(-6) + -2 + 8. Let y = -124 + n. Is y a multiple of 41? True Let o(y) be the first derivative of -y**3/3 + 15*y**2 - 19*y + 6. Does 16 divide o(25)? False Suppose 784 = -13*n - 15*n. Is (-8)/n + (-558)/(-7) a multiple of 16? True Suppose -5*l + 4809 = 3*n - 7755, -l + 16769 = 4*n. Is n a multiple of 14? False Let j(t) = 3*t**3 + 53*t**2 - 18*t + 37. Let p be 132/(-8) + -2 - 2/(-4). Is 8 a factor of j(p)? False Suppose 0 = l - 3*v - 12, 0 = 7*l - 2*l - 3*v - 12. Suppose 5*i - 97 = 4*b, -4*b + l = -8. Is 7 a factor of i? True Suppose -4*h + r + 9424 = 0, -r - 7068 = -152*h + 149*h. Is h a multiple of 19? True Let p = -2028 - -2865. Let t = p - 453. Does 24 divide t? True Let s = -1407 - -2621. Suppose -4*f + p = -s, -3*f + 2*f = -4*p - 296. Suppose -d + 111 - 3 = -4*n, -2*n = -3*d + f. Does 23 divide d? False Let s(i) = -i. Let o be s(-2). Let g(c) = -c**2 - 5 + 13*c - o - 1. Is g(7) a multiple of 10? False Suppose 0 = -4*s + 8*s. Suppose s = -4*i + 8*i - 64. Suppose -13*b - 84 = -i*b. Is 6 a factor of b? False Let c(j) = 3*j**2 + 4*j - 1. Let k be c(1). Does 9 divide ((7104/20)/8)/(k/15)? False Suppose -10506 = -5*c - 2*f, 149 = c + 5*f - 1966. Suppose -4*m - 3*m = -c. Is m a multiple of 55? False Let f(i) = 7*i - 13. Let x be f(10). Let c = x - 28. Suppose r - 141 + c = 0. Does 36 divide r? False Does 2 divide (21/6)/(-7) + (3785/10 - 3)? False Let x be (-7)/((10 - 12) + 354/176). Let t = 896 + x. Is 8 a factor of t? True Let z = -13 - -16. Suppose -z*i + 23 + 130 = 0. Is 17 a factor of i? True Let o be 10/25 - (-94)/(-10). Let j = o + 15. Suppose j*z - 3*z = 324. Is z a multiple of 15? False Let y(s) be the first derivative of -107*s**2/2 + 6*s - 54. Is 24 a factor of y(-5)? False Let n(o) = -3*o**3 + 18*o**2 - 15*o - 27. Is n(-10) a multiple of 9? True Let g(k) = -36*k - 9. Let u be g(-11). Suppose -323 = 2*j + 4*n - 59, 3*n = -3*j - u. Is 22 a factor of (-395)/(-6) - 21/j? True Let c be -1*(-15)/(-2)*2. Let m = -12 - c. Suppose a = -m*a + 52. Is a a multiple of 4? False Suppose -u + 4*g = -9452, 4*u + 12*g = 14*g + 37780. Does 11 divide u? False Suppose -23*q + 32 = -15*q. Let d(h) = 16*h + 15. Is d(q) a multiple of 4? False Let c(v) = 6*v**2 + 18*v + 14. Let q(d) = 6*d**2 + 18*d + 13. Let i(y) = 7*c(y) - 6*q(y). Is i(-10) a multiple of 22? True Suppose -49*u + 46*u = 462. Let t = u + 231. Is t a multiple of 10? False Suppose -355 = 6*w + 509. Let u = w + 240. Is 12 a factor of u? True Does 10 divide -4088*(30/(-40))/(3/2)? False Let t = 833 + -837. Let f(r) = 10*r + 3. Let k(m) = -9*m - 2. Let q(v) = 3*f(v) + 4*k(v). Is q(t) a multiple of 25? True Does 87 divide 435/((90/1575)/(8/14))? True Let v be ((7 + -34)*1)/(6/(-20)). Let l = 159 - v. Is 5 a factor of l? False Let r = 9029 - 1199. Does 29 divide r? True Let x(b) be the second derivative of b**4/12 + b**3/6 + 63*b**2/2 - 5*b + 2. Is x(0) a multiple of 7? True Suppose 4*i - 4*t = 0, -2*t = 2*i + 10 - 22. Suppose 18 - i = 3*x. Suppose -q + 432 = x*q. Does 8 divide q? True Let s(d) = -d**3 - 2*d**2 + 2*d - 3. Let l be s(-3). Suppose -4*i = w + 9 - 61, l = i + 5. Suppose 74*p - 120 = w*p. Does 20 divide p? True Suppose -6*f + 2*f - 2*h = -4368, h = -4. Is 24 a factor of f? False Suppose r - 2*b = 1213 + 519, -2*r + 5*b + 3462 = 0. Does 96 divide r? False Let v(z) = 787*z**2 + 21*z + 120. Is 34 a factor of v(-3)? True Let i(l) = 4*l**3 + 12*l**2 - 20*l - 9. Let x(m) = m**3 + m**2 - 2*m + 1. Let u(y) = i(y) - 3*x(y). Is 6 a factor of u(-9)? True Let s(q) = 47*q**2 - 7*q - 7. Let g(d) = -d**2 + 8*d + 68. Let w be g(-5). Does 22 divide s(w)? False Let n(w) be the first derivative of -w**4/4 - 11*w**3/3 + 27*w - 45. Suppose 2 + 9 = -s. Is 3 a factor of n(s)? True Let r be (1 - 1) + -243 + -3. Let c = 185 - 287. Let p = c - r. Does 35 divide p? False Let h = 2 - 0. Suppose -75 = 4*z + h*d - 7*d, 2*z + 45 = -5*d. Let u = -14 - z. Is 6 a factor of u? True Suppose 5*x = -4*n - 18 - 4, 2*n = 4. Let s(v) = -v**2 - 4*v + 6. Let q be s(x). Is 28 a factor of -20*(15/q - 3)? False Let w(z) be the second derivative of z**4/12 + 13*z**3/3 + 21*z**2/2 + 2*z + 24. Does 9 divide w(-29)? True Let w(t) = -27*t - 59. Let r be w(5). Let v = 644 + r. Is v a multiple of 50? True Let u be 0 - (-997 + 2 + 1). Let h = u + -552. Is 26 a factor of h? True Suppose -c = 3*j + 5, 5*j - 25 = -6*c + c. Let v = -309 + 312. Suppose v*s = 14 + c. Is 2 a factor of s? True Is 3 a factor of (-10)/52*(-32)/(-40) + (-4918)/(-26)? True Let s = -410 - -146. Let o = -102 - s. Does 27 divide o? True Suppose -435*r + 282037 = -392*r. Does 53 divide r? False Suppose 0 = -30*u + 29*u - 2. Is ((-108)/u)/(0 + 1) even? True Suppose 5*j + m = -5 - 0, -3*j - 3*m + 9 = 0. Does 7 divide (-3718)/(-52) - j/4? False Suppose -160*i + 7007 = -159*i + 5*x, 2*x = 5*i - 35089. Does 48 divide i? False Is (-30)/(-345) + 336154/161 a multiple of 9? True Let w(s) = -74*s - 39. Is w(-39) a multiple of 43? False Suppose 38*f - 77616 = 14*f. Does 49 divide f? True Let s = -150 + 262. Let t = s + 268. Is t a multiple of 10? True Let b = -4926 + 8286. Is b a multiple of 48? True Suppose -22281 = 36*g - 169161. Does 12 divide g? True Let d(g) = 13*g**2 + 152*g + 71. Does 79 divide d(-25)? False Is (293 + -73)*(3 + 0) a multiple of 3? True Suppose 0*f - f = -10. Let o(d) be the first derivative of 5*d**2/2 - 23*d + 6. Does 4 divide o(f)? False Is 1046/3*(-204)/(-136) even? False Suppose 0 = 81*p - 84*p + 828. Suppose -5*w - p = -716. Is w a multiple of 7? False Let z = -3294 - -4819. Does 38 divide z? False Is 16 a factor of 16/10 - (-138072)/55? True Let o(j) = 108*j**2 + 106*j + 13. Is o(-5) a multiple of 37? True Suppose m + 5 = -j - 2*j, j + 20 = -4*m. Suppose j = -7*x - 222 - 310. Let g = -51 - x. Is g a multiple of 7? False Does 5 divide -2*(-1 - -2596)*(8/16 + -1)? True Let h = 4 - 12. Let n(r) = 8*r**2 - 11*r**2 + 18 - 10 + 5*r + 4*r**2. Is 9 a factor of n(h)? False Let f(l) = 2*l**3 + 8*l**2 + 5*l - 26. Let z be f(8). Suppose v - 4*p = 220, 4*v + 648 = 5*p + z. Is v a multiple of 12? True Let m be (-5 - 12/(-2))/((-2)/(-12)). Suppose 5*j = -4*q + 1164, -m*j = -j - 20. Does 11 divide q? True Let a(g) = -423*g - 474. Is 15 a factor of a(-13)? True Suppose i - 29 = -101. Is i/10*(-60)/24 a multiple of 8? False Let h be (-10)/(-25) - 233/(-5). Let p = h + -41. Is ((-52)/p)/(8/(-36)) a multiple of 13? True Suppose -4*n + 5860 = 5*z, -4*z - 19*n + 23*n = -4724. Does 12 divide z? True Suppose -10*r = -0*r - 120. Suppose -18 = -t + r. Is 5 a factor of t? True Let o(b) = 13*b + 94. Let j be o(-7). Suppose -14*r - j*r = -3281. Does 30 divide r? False Let r = 143 - 143. Suppose r = 447*z - 449*z + 308. Is 14 a factor of z? True Let v be (4 - (-1 + 0))*1. Let c(u) = 11*u - 17 + 21*u - 27*u. Is 6 a factor of c(v)? False Let i(o) = -o**3 + 9*o**2 - 9*o - 8. Let f be (-9)/((-27)/12) + 24. Suppose -4*v - v - 2*l = -35, -4*v = 5*l - f. Is 8 a factor of i(v)? False Let c = -21 - -34. Suppose -c*b + 65 = -8*b. Let p = -1 + b. Is p a multiple of 12? True Is 33*(-1417)/(-819) + 2/(-21) a multiple of 4? False Let y(b) = 3874*b - 68. Is 11 a factor of y(1)? True Suppose 5*f - 14*f + 122094 = 9*f. Is 119 a factor of f? True Let c(i) = -i**3 + 18*i**2 + 21*i - 36. Let z be c(19). Suppose -f + 2*f + 199 = -5*y, 31 = -y + z*f. Let a = 87 + y. Does 12 divide a? True Let b = 56 + -93. Let d = b + 42. Suppose -d*i + 9*i - 544 = 0. Is 17 a factor of i? True Let r be -3*(-3 + (-33)/(-9)). Let o be (1/(-2)*2)/(r/(-6)). Let s(t) = -t**3 - 2*t**2 - 3. Is s(o) even? True Suppose 0*v - 3*v + 3 = 0. Let m be (v/2)/(11/154). Does 7 divide 35 + ((-4)/(-2) - (9 - m))? True Suppose 132 + 71 = 7*z. Suppose z = b - 13. Does 6 divide b? True Let c be 408*-10*20/(-75). Is 15 a factor of (c/(-20))/((-1)/5)? False Let l(g) = g**2 - 2*g + 32. Let h be l(11). Let v = h - 100. Is 17 a factor of v? False Let i(p) = -2*p**3 - 3*p**2 + 5*p - 2. Let c(m) = m**2 - m - 24. Let f be c(-4). Does 8 divide i(f)? False Let d(g) = 2*g**3 - 63*g**2 + 42*g + 7. Is d(32) a multiple of 99? False Let h = -14 - -14. Suppose -3*w - 3 + 231 = h. Does 8 divide w? False Is -9 - (-800 - (-13 + 11)) a multiple of 6? False Let z be ((-25)/(-10))/((-1)/(-34)). Suppose 10*r = z + 2315. Is 40 a factor of r? True Let q(r) = 2*r**2 + 42*r + 153. Does 20 divide q(-41)? False Let i(z) = 101*z - 23. Let g(a) = -100*a + 24. Let d(j) = -4*g(j) - 5*i(j). Is d(-5) a multiple of 16? True Suppose -32*y + 29*y = -21. Suppose y*o - 1218 = 882. Is 65 a factor of o? False Suppose 37*y - 57180 - 31805 = 0. Does 20 divide y? False Let f(a) = 3*a - 7. Let d be f(3). Suppose -4*s - d*v = -0*v - 342, -3*s - v = -258. Does 32 divide s? False Let g = 11 + -20. Let o(j) = j**3 + 14*j**2 + 12*j - 10. Let f(h) = -h**3 - 13*h**2 - 12*h + 9. Let v(a) = -3*f(a) - 2*o(a). Does 19 divide v(g)? False Let a = 4964 + -3649. Does 13 divide a? False Suppose 16*h - 148 = 380. Suppose 9 = b + 4*x, -2*b + 5*x = 2 - h. Is 5 a factor of b? False Suppose 2*g = -5*w + 1913, -2*w = -6 - 4. Suppose g + 4752 = 16*c. Is c a multiple of 50? False Suppose -12048 = -4*b + 5*l, -3*b + 1820 = 4*l - 7185. Suppose 353 = 8*o - b. Is 54 a factor of o? False Suppose -22*p = -15*p + 2441 - 27991. Is 5 a factor of p? True Let q be -5 + 0 - (-20 + 163). Let j = q - -300. Does 19 divide j? True Suppose -3*k - k = 4*b - 396, 5*b = 5*k + 505. Suppose 0 = 5*x - 5*t - 165, 3*x - 97 = -4*t - 19. Is 6 a factor of b/x*(-18)/(-5)? True Let b be ((-4)/(-10))/(5 - (-1120)/(-225)). Suppose -25*m + b*m = -2527. Is 65 a factor of m? False Let c(h) = -31*h**3. Let f be c(1). Let s = f - -33. Suppose i - 74 = -0*i - s*a, a = 4. Is 33 a factor of i? True Is 4*10/(-80)*-4314 a multiple of 3? True Suppose -2*j - 4*y = -3*j + 1036, -2*j + 5*y + 2057 = 0. Is 8 a factor of j? True Suppose -895 = -5*g + 1245. Let m = 955 - g. Is m a multiple of 31? True Let a(i) = -2*i**3 + 29*i**2 - 8*i. Is 11 a factor of a(11)? True Suppose 16*c = -0*c - 9*c + 15050. Is 43 a factor of c? True Suppose 0 = 4*w - 2*s - 60, 5*w - 4*s - 13 = 59. Suppose 20*x - w*x + 8 = 0. Is 60 - (-1 - (x - -4)) a multiple of 7? True Let d(q) = 734*q + 2. Is 26 a factor of d(4)? True Let g = 7324 - 4105. Does 37 divide g? True Let t(q) = 437*q + 593. Is 10 a factor of t(3)? False Let y(i) = -1128*i - 2. Let v be y(-1). Let w = v - 706. Is (-3)/24*2 - w/(-16) a multiple of 4? False Suppose 0*r + 3*r = 5*y + 25, -y - 7 = -r. Suppose 0 = 5*l - 10, -9*v = -11*v + r*l + 926. Is v a multiple of 21? False Suppose 5*m = 5*g + 42900, 0 = -2*m + 304*g - 307*g + 17175. Is 170 a factor of m? False Is 9549/7 + 426/497 a multiple of 65? True Suppose -2*r + x + 3 = -0, -r = -3*x + 6. Suppose -4*w + 22 = -3*q, -r*q + 1 = 7. Suppose 2*k + 2*h = w*k, 3*k - 5*h + 10 = 0. Is 2 a factor of k? False Let p = -73 + 47. Let r = p - -71. Is 15 a factor of r? True Let q be 2/(2*3/12). Let v(p) = -p**3 + 3*p**2 + 17*p - 11. Let s be v(5). Suppose -2 + q = -d, 2*d = -2*w + s. Does 14 divide w? True Suppose -87202 = -13*l - 51*l + 231198. Does 8 divide l? False Let s(q) = q**2 + 14*q - 1. Let h be s(-14). Let w(u) = -u + 1. Let o be w(h). Suppose 4*f - 3*t = 191, 3*f - 143 = -0*t + o*t. Does 9 divide f? False Let c(x) be the first derivative of 3*x**2/2 + 26*x + 1575. Let v be -1 + -2*14/(-4). Does 5 divide c(v)? False Let l(q) = -q**2 - 23*q + 16. Let b be l(-19). Let v(w) = -92 + w + 8*w**2 + w**3 + b. Is 8 a factor of v(-6)? False Suppose 0 = 3*u + 11*u. Suppose 0*y = 3*y - 9, u = 4*r - 3*y - 39. Does 9 divide r? False Let x = 3163 - -3645. Is 8 a factor of x? True Let p(q) = -q**2 + 9*q + 3. Let d be p(6). Let k(s) = 10 - d - 18*s - 9. Does 9 divide k(-4)? False Let l = 955 + -512. Let c = l + -198. Does 49 divide c? True Suppose 0 = -2*d + 4*f + 2916, 2*f - 2909 = -2*d - f. Does 104 divide d? True Let h be 2/(-10) - 81213/(-165). Suppose 0 = 9*n - h + 87. Does 9 divide n? True Suppose 2*u = 687 + 1667. Let o = -770 + u. Is 37 a factor of o? True Suppose -4*y + 10*r - 8 = 5*r, -y + 23 = 5*r. Suppose 115 + 941 = y*c. Does 22 divide c? True Suppose 0 = 5*u - 3*m - 603, 6*m + 595 = 5*u + m. Let p be -4 + (0 - 0) + u. Let a = p - 24. Does 19 divide a? True Let m be -2 + (3 - (-3 + -1)). Suppose 0 = -4*j - 3*a + 1755, -9*j = -m*j - 5*a - 1747. Does 16 divide j? False Let a(w) = 112*w**2 + w + 1. Suppose 4*h + 15 = -3*y + 4, -5*h - 20 = 5*y. Does 13 divide a(h)? False Let n = 629 + -402. Let q = n + -192. Does 4 divide q? False Suppose 18*l + 10*l = 39788. Suppose 0 = 5*j - 4*j + s - 472, 3*j = -4*s + l. Is 15 a factor of j? False Let s(a) = -a**3 + 7*a**2 - 6*a - 5. Let h be s(5). Let u be ((-20)/h)/(2/(-3)). Suppose 0 = u*c - 16. Is 8 a factor of c? True Let o(y) = -21*y**3 - 2*y**2 - 36*y + 14. Is 81 a factor of o(-6)? False Let y(h) = -h**3 - 2*h**2 - h + 378. Let b(k) = -k**2 + 14*k + 32. Let l be b(16). Is y(l) a multiple of 30? False Suppose 0 = h + 36 - 41. Suppose 0 = h*r + 362 - 2072. Is r a multiple of 25? False Suppose 4*j - 280 = -12. Let z be j + 2 + 9/(-3). Is 36 a factor of (-8 - -5)*z/(-2)? False Let p(l) = 2*l. Let w be p(-9). Let c = 114 + -50. Does 5 divide (c/(-24))/(2/w)? False Let m(a) = -a**3 - 11*a**2 - 3*a + 5. Let k be m(-12). Suppose 3*s + 384 = -3*y, -7*s - 380 = 3*y - 2*s. Let u = k + y. Does 11 divide u? True Suppose -3*u + z + 30 = 0, 4*u = -4*z - 0*z + 40. Let v be (-470)/(-4) + 5/u. Suppose -20*b + 18*b + v = 0. Does 9 divide b? False Let s = 4980 + -4324. Is s a multiple of 8? True Suppose 9*j = 3*j + 54. Is ((-224)/(-12))/(-1 - (-12)/j) a multiple of 56? True Let r(b) = 38*b**3 + 11*b**2 - 5*b - 15. Is 5 a factor of r(3)? True Let d = -100 - -114. Suppose 205 + d = y. Is 6 a factor of y? False Let a be (-187)/17 + 4 + -1. Let w be (-2)/4*a/1. Suppose 0 = -w*m + 13 + 3. Does 2 divide m? True Suppose 3*t = -f + 3358, 3 = 2*f + 7. Does 16 divide t? True Suppose -88*s = -87*s + 319. Let y = -115 - s. Does 34 divide y? True Suppose 5 = 2*k + l, -l - 3*l - 32 = -5*k. Let q(x) = -7*x + 0*x + 23 + k. Is 10 a factor of q(-10)? False Suppose -3*n + 5*n - 246 = -2*m, 0 = -4*m - n + 507. Let c = -436 - -361. Let h = c + m. Does 6 divide h? False Let j = 3055 - 2561. Is j a multiple of 20? False Let t be (16/40)/((-8)/(-20)). Is t/(0 - 1/(-89)) a multiple of 6? False Let w = -17 + 20. Suppose -w*g + 81 = -123. Suppose -17*n + 18*n - g = 0. Is n a multiple of 17? True Suppose -24911 = -24*u + 17497. Is 6 a factor of u? False Suppose -43*b - 22*b - 77*b = -265398. Is b a multiple of 40? False Suppose 310*t = 2*q + 313*t - 2784, 4*q - 2*t = 5536. Is q even? True Let z(d) = -2*d**3 - 17*d**2 + 10*d - 7. Let v be z(-9). Is 25 a factor of (-8)/v + 5/2 + 163? False Let x be (4 - (-132)/(-30))*5*-1. Suppose 0 = x*t + t + 96. Let u = t - -34. Is u a multiple of 2? True Let f = 186 - 186. Is 21 a factor of -4 + f + 860/4 - 2? False Let u = 2891 - 2429. Is u a multiple of 13? False Let n be (3595 + 0)*8/(-20). Is n/(-5) + (-33)/55 - 1 a multiple of 22? True Does 9 divide ((-781)/(-55) + -22)/((-1)/15)? True Let y(x) = 6*x + 34. Let g be y(-5). Suppose -68 = -a - 3*w, 0*w + 238 = g*a - 5*w. Is 12 a factor of a? False Let u(n) = -n**2 - 7*n + 13. Let f be u(-8). Suppose -11 + 1 = -f*s. Suppose -7*y = -s*y - 200. Is 8 a factor of y? True Suppose -29*c - 15*c + 77665 + 115935 = 0. Does 50 divide c? True Suppose 2 = k - 2. Suppose k*d - 70 = -5*g, g - 3*d + 1 + 4 = 0. Is (88/g)/(4/10) a multiple of 11? True Let d(a) = 548*a**2 + 23*a + 2. Is 7 a factor of d(2)? True Suppose -37*v = -60*v + 368. Does 2 divide v? True Let i = -43 - -46. Suppose -4*p + 888 = 4*b, i*p + 5*b - 3*b - 666 = 0. Suppose 5*k - 88 - 278 = 2*o, p = 3*k - 2*o. Is 12 a factor of k? True Let c(m) = -m**2 - 3*m + 19. Let f be c(-5). Suppose f*u - 682 = 155. Is u a multiple of 11? False Suppose 0 = 2*a - 4*j - 132, 0 = -2*a - a - 5*j + 154. Let r = -18 + a. Suppose -9*f + 8*f = -r. Does 8 divide f? True Suppose 28*l + 29*l - 97224 = 45*l. Is l a multiple of 17? False Suppose 3*i + 385 + 1528 = m, -8*m + 15304 = 3*i. Is 75 a factor of m? False Let b be (-9)/(-9) + 149/(1 + -2). Let u = b + 448. Does 30 divide u? True Suppose 15791 = 106*q + 845. Suppose -5*u + 78 - 33 = 0. Let v = q - u. Does 33 divide v? True Does 12 divide (4/10)/(45/(-2325))*(-1185)/10? False Let z = -16 + 29. Suppose -z + 61 = 2*k. Let b = 12 + k. Does 23 divide b? False Suppose 3*c = -4*y - 370 - 865, -2*c + 6 = 0. Let u = y - -477. Is u a multiple of 10? False Suppose 0 = 19*r - 17*r - 8640. Is r a multiple of 60? True Suppose 22*o - o + 21*o - 127092 = 0. Is o a multiple of 89? True Suppose -212 - 438 = -3*p + s, 0 = 4*p + 2*s - 860. Does 26 divide 5/(30/p) + -5? False Does 11 divide 2251072/4352 + (-2)/(-4)*1/(-2)? True Let j(s) = 6*s**2 + 0*s - s**2 + 1 - 4*s**2 - 2*s. Is j(5) a multiple of 9? False Let p = 3284 - 2924. Is p a multiple of 6? True Suppose -27*n - 31 = -112. Suppose -4*s - 3*a + 660 = 0, -3*s + a = -n*a - 520. Is s a multiple of 56? True Let a be (-549)/(-8) + 48/128. Suppose 4*t + 0*t = -100. Let z = t + a. Is z a multiple of 11? True Let p(y) = 15*y**3 - 6*y**2 + 71*y + 18. Is 68 a factor of p(6)? True Let n(j) = -j**3 + 8*j**2 - 12*j - 2. Let k be n(6). Let q be (-102)/(-27) - k/9. Does 3 divide 5/(20/3) - (-69)/q? True Is 10 a factor of (-228)/570 - (-11454)/10? False Let u be 1 - (12/8 + (-3)/6). Suppose u = a - 2*x - 33, 2*x + 150 = 6*a - 2*a. Does 30 divide a? False Suppose -5*w = -2*n - 2*n + 45, -5*n = -w - 30. Let z be (-1)/((16/24)/2). Is 12 a factor of z/n + 8037/95? True Suppose 2*t - 2*y - 2 = -t, -t - 21 = -5*y. Suppose -12 = -t*z + 3*n - 3, 4 = 4*n. Suppose -d - z*d + 272 = 0. Does 17 divide d? True Is (0 - 27/(-6))*3176*(-3)/(-6) a multiple of 18? True Let i be (3/(-9))/((-1)/18*1). Suppose 0 = 34*z - 36*z + i. Is 280/(-30)*2/((-4)/z) a multiple of 5? False Let y = -12043 - -18212. Is 31 a factor of y? True Let o be (-25)/(-10)*-8*(-4)/2. Suppose 3*g - o = -g + 4*h, -2*g + 5*h = -35. Let f(w) = w**3 + w**2 - w + 2. Is f(g) a multiple of 21? True Suppose 14*g = -23*g - 0*g + 241351. Does 151 divide g? False Let c(v) = -22*v + 6. Suppose -9*k - 168 = -15*k. Let i = -31 + k. Is 8 a factor of c(i)? True Suppose 74*r + 24 = 78*r. Is 42 a factor of (-3)/r + (-505)/(-2)? True Let k = -208 + 213. Suppose 3*c = k*p - 0*c - 1388, -5*c = -4*p + 1100. Does 28 divide p? True Suppose 0 = 12*i - 15*i + 5*w + 100, -5*i + 148 = w. Is 6 a factor of i? True Let d(p) = -p**3 + 87*p**2 + 511*p + 157. Does 13 divide d(92)? True Suppose -28 = b + 4*n + 10, 3*n + 3 = 0. Let s = b - -35. Does 6 divide (s/(-2) + -4)/((-3)/16)? True Let c(d) = -d + 39. Let i be c(5). Suppose 392 = -30*s + i*s. Is 14 a factor of s? True Suppose 300*a = 294*a + 41712. Does 22 divide a? True Let t be 4 - 2*3/(-6). Suppose 2 - 12 = t*w. Is 11 + -14 - (-156 + w) a multiple of 31? True Let f(n) = -n**3 + 5*n**2 - 8*n + 29. Let o be f(5). Let x(c) = -c**3 - 8*c**2 - 5*c - 2. Is x(o) a multiple of 13? True Suppose 2*k + 3*m - 985 = 0, -k - 5*m + 319 = -156. Is 100 a factor of k? True Let c(y) = 25*y - 20. Let n be c(14). Let t be -2 - (4 + n/(-5)). Let s = t + -17. Does 15 divide s? False Let s = 213 + -208. Suppose 2*g - k = s*g - 653, -241 = -g - 5*k. Is g a multiple of 24? True Let b(z) = z**3 + 17*z**2 - 49*z + 57. Is b(-13) a multiple of 14? False Suppose c + 0*x - x = 24, 5*c = 2*x + 114. Suppose 0 = -17*j + c*j - 2365. Suppose 175 = 6*r - j. Does 12 divide r? True Suppose 0 = -5*d - 3*b + 10407, 2*d - 8*b - 2*b = 4118. Is 33 a factor of d? True Let v(x) = x**3 + 17*x**2 + 16*x - 6. Let c be v(-16). Let h be c/15 + -3 + 2216/(-10). Let k = h + 339. Does 12 divide k? False Let n(j) = 3*j**2 - 8*j + 28. Let q(p) = 5*p**2 - 2*p - 3. Let r be q(-1). Does 15 divide n(r)? False Let y(k) = 2*k**2 + 23*k + 7. Let l be y(-11). Does 8 divide 16/(((-18)/(-81))/(l/(-3)))? True Let h = 54 - -517. Let k = -66 + h. Suppose -2*o + g = -251, 2*o + 2*o = 5*g + k. Is o a multiple of 26? False Let z(i) = i**2 + 5*i + 15. Suppose c = 6*c - 10. Suppose 0 = -7*s + c*s + 35. Is 11 a factor of z(s)? True Let f(h) = 7*h - 56 + 67 + 5*h**2 - h**2 - 3*h**2. Is 32 a factor of f(14)? False Let r = -128 - -196. Let d = r + -48. Is 4 a factor of d? True Let k = 32 - 27. Suppose -82 - 28 = -k*v. Is v a multiple of 17? False Suppose -l + 0*r + 5*r = 25, 10 = -5*l + 2*r. Let c = -3 - l. Is 13 a factor of (-1)/2*(2 + c - 165)? False Let l = 5901 + -2806. Is l a multiple of 24? False Let g(l) = 79*l - 1. Let t be g(1). Let u be (12/4 - 0) + 4. Suppose 8 = -u*v + t. Is v a multiple of 5? True Let n(k) = k**3 - 19*k**2 + 12*k - 168. Does 14 divide n(21)? True Suppose -4*u + 26 = -0*y + 3*y, 0 = 4*u - 4*y - 40. Suppose -1787 = -u*t - 27. Is t a multiple of 22? True Let u = -314 + 591. Suppose 0*w + u = 3*b - 4*w, -w = 3*b - 257. Does 11 divide b? False Let i(o) = 9*o**2 - o - 2. Let m be i(-1). Is 22 a factor of 1/(-1) + (-7 + m)*43? False Suppose -127722 = 8*g - 20*g - 2*g. Is g a multiple of 25? False Suppose 0*m + 3*m + 4*y = -13, -4*m - 4 = 2*y. Is 51 a factor of 0 + 0 + (m - 0 - -305)? True Let h be (-7 - (-6)/2)*15/(-20). Let f(d) = 3*d**3 - 6*d**2 + 5*d + 6. Is 4 a factor of f(h)? True Suppose -3*g - 5*i = -53 - 40, 2*i = 0. Suppose -8*u + g*u - 115 = 0. Is 2 a factor of u? False Let w = 18 + -14. Suppose -4*c + 25 = -5*g + 5, -w*g - 42 = 2*c. Does 4 divide g/16 - (-50)/4? True Let s be (-12)/4 + 4 + -219. Let k = -108 - s. Does 22 divide k? True Let f(h) = 911*h + 286. Is f(4) a multiple of 42? False Let w(i) = i**3 - 6*i**2 + 9*i - 32. Let g be w(4). Let m = 79 + g. Is 21 a factor of m? False Let i(y) = 2*y**2 - 61*y + 2487. Does 12 divide i(0)? False Suppose -22*j = 1336 + 2338. Let y = 246 + j. Is 6 a factor of y? False Suppose -11*y - 9*y + 100 = 0. Suppose -u + 5*a = -31, y*u + 3*a - 285 = 2*a. Is 14 a factor of u? True Suppose -13*n + 27*n = -420. Does 5 divide (-1046)/(-14) - n/105? True Let d(i) = -2*i**3 - 3*i**2 - 20*i - 61. Is 16 a factor of d(-6)? False Let p(k) = 25*k**2 + 39*k + 140. Is p(-11) a multiple of 3? True Suppose -r - 19 = k, -4*k = -0*k + 20. Let m(z) = -z**2 - 12*z + 75. Is m(r) a multiple of 13? False Let s = -4571 + 8523. Does 76 divide s? True Suppose 4*m - 2*a - 1230 = 0, -5*a + 1213 - 4 = 4*m. Suppose -27*p = -29*p + m. Is 10 a factor of p? False Let t = -126 + 166. Let y = t - 3. Does 6 divide y? False Let w be (-172 - 1) + 3 + (4 - 7). Let y = 191 + w. Does 15 divide y? False Suppose 4*v - 1049 = -z - 108, 0 = 6*z - 5*v - 5675. Is 9 a factor of z? True Let h(r) = r**2 - 3*r - 91. Let s be h(11). Does 11 divide (-11)/s*(24 + 15)? True Does 16 divide 1 + (3/6)/((-1)/(-1450))? False Suppose 0 = -z - 0*z - 2, -2*y = 5*z - 1422. Suppose 0 = -j - 3*j + y. Is 21 a factor of j? False Suppose -234 = -5*b - 2*u, 4*b - b + 4*u = 132. Let p = b - 36. Suppose p*s - 72 = 9*s. Is s a multiple of 8? True Let q(s) = 42*s**2 + 7*s + 8. Let j be q(-2). Let z = 14 + j. Does 22 divide z? True Suppose 0 = -d + 5*p + 1822, -5*p = -3*d + 1767 + 3659. Is 8 a factor of d? False Suppose -5*s + 11 = -2*o, 0 = 2*s + s + 2*o - 13. Suppose u = 2*j - 5*j + 29, -s*u = -5*j - 59. Let m = 58 - u. Does 35 divide m? True Suppose -13*t = -14*t + 373. Suppose -4*q + t = 9. Does 4 divide q? False Let s(c) = -c**2 - 7*c + 18. Let v be s(-9). Let p be (v + 0 + 0)/(-2) + 4. Suppose -390 = -0*a - 4*a + 3*b, 3*a = -p*b + 280. Is 24 a factor of a? True Let h = -258 + 137. Let l = h - -261. Is l a multiple of 35? True Let y = 56 + -44. Suppose -y*l + 347 = -229. Does 3 divide l? True Let j be (4/(-2))/(114/(-22) + 5). Suppose 5*f - 14 - j = 0. Suppose -f*y + 75 + 245 = 0. Does 8 divide y? True Suppose -12 = -2*p - 4*m - 0*m, 5*p = -m + 3. Suppose p*w = 4*w - 716. Let s = w + -124. Is 13 a factor of s? False Let q = -1696 + 4278. Is 150 a factor of q? False Let z be 90/2 + (-22)/11. Let o = z - 40. Suppose o*c - 178 = c. Does 15 divide c? False Suppose 0 = -2*x - 8, 11*x = b + 9*x - 1802. Is b a multiple of 27? False Suppose -14*v + 23917 + 83435 = 0. Is v a multiple of 36? True Suppose -5*m - 1 = -11. Let k be ((-4)/2 + 2)/m. Suppose -c = -3*w - 72, k = -3*c - 2*c + 3*w + 384. Is 26 a factor of c? True Let w(k) = k**3 + 11*k**2 + 20*k + 21. Let n be w(-9). Suppose -2*m = -0*r + 4*r - 282, -n*m + 408 = r. Is m a multiple of 15? True Let n(a) = -a**2 - 9*a - 17. Let h be n(-5). Suppose 0 = -h*b - b. Suppose 0*r + 4*r - 12 = 0, b = u + 5*r - 32. Is 5 a factor of u? False Suppose 2*k = 5*k - 15, -3*u = k - 5. Suppose u*c + 73 = c. Let m = -19 + c. Is 9 a factor of m? True Let h(s) = -3*s + 1. Let g be h(-3). Let n = g + -10. Is 4 a factor of (-22)/33*(-6 - n)? True Suppose -2*t + 20 = 2*v + 2*t, -5*v = -2*t - 14. Suppose 0 = -o + 2*s + 1, -3*o - v = o - 4*s. Is 11 a factor of (-3 + (-189)/o)*1? False Suppose 8966 + 12034 = 5*x. Does 100 divide x? True Suppose 4*q = -16, -4*q = -33*i + 34*i - 2226. Does 19 divide i? True Let m = 2328 - 1856. Is m a multiple of 8? True Let b be -1 - -5 - (5 - 4). Suppose -m + 5 = -b. Suppose 5*k + 530 = -3*w + m*w, -w - 2*k + 103 = 0. Does 15 divide w? True Let q(b) be the second derivative of -b**5/10 + 5*b**4/2 + 3*b**3 - b**2/2 - 67*b. Is q(15) a multiple of 15? False Let i be 248 + ((-7)/2 - (-16)/(-32)). Suppose 0 = -5*d + i - 9. Is 5 a factor of d? False Let g(w) = -5*w**3 + w**2 + 3*w + 6. Let b be g(-2). Let m = 33 + b. Is 7 a factor of m? True Suppose 7*o = 2*o - 2*x - 26, 3*x = -4*o - 25. Does 15 divide 75/(-50) - ((-3522)/o)/(-3)? False Suppose -256 = -0*x - 2*x. Suppose -78 = l - 2*v, v + 66 = 3*l + 290. Let a = x + l. Is a a multiple of 9? True Let r be (-4 - -250) + 5 - 5. Is 31447/r - (-1)/6 a multiple of 12? False Let q(u) = -4*u**3 - 2*u**2 - 9*u + 1. Let a(i) = 9*i**3 + 4*i**2 + 19*i - 1. Let o(c) = 6*a(c) + 13*q(c). Suppose -16 = -2*l - 2*l. Is 13 a factor of o(l)? True Let y(t) = -t**3 + 6*t**2 + 8*t - 12. Let i be 4 - (1/2)/(1/(-6)). Let d be y(i). Is 5 a factor of ((-10)/25)/(1/d) - -26? False Let c(f) = f**3 - 5*f**2 + 12*f - 1. Let i be c(4). Suppose o = m + i + 353, -o - m + 380 = 0. Does 35 divide o? False Suppose 74*l - 131795 - 135543 = -51998. Does 8 divide l? False Suppose -p = 1, -3*h + 0*h - 3*p + 3 = 0. Let l(g) = -8*g**3 + g**2 + 5*g + 8. Let w(k) = k**3 - 2*k - 1. Let y(b) = -l(b) - 4*w(b). Is 15 a factor of y(h)? True Let r(q) = -q**2 - 4*q + 3. Let z be r(0). Suppose -2*h + 3*s = -25, -5 = 5*h + z*s - 15. Suppose h*w = w + 212. Is 9 a factor of w? False Let j(q) = 254*q**3 - q**2 + 2. Suppose 2*d + 4*w = 3*d + 3, 0 = -4*d - 2*w + 6. Is 15 a factor of j(d)? True Is 99 a factor of (-2)/8 + (25083/252 - 4/14)? True Let v be 746/(-14) - 2/(-7). Let u be ((-3 - v)/((-1)/2))/(-1). Suppose -3*j - u = -7*j. Is j a multiple of 20? False Let r(l) be the second derivative of l**2 + 8*l + 11/3*l**3 + 0. Does 9 divide r(3)? False Let n(i) = -15*i - 9. Let a be n(-7). Let r(b) = 2*b**2 - 97*b**3 + a - 96. Is 9 a factor of r(-1)? True Suppose -3*p - 291 = 3*f, -5*p - f - 458 = -5*f. Let h = p + 168. Does 4 divide h? False Suppose -4*g + 11*g = 35. Suppose l - 6*l + 5 = -g*o, 0 = 3*o + l - 13. Suppose 0 = -o*y - 2*y + 300. Does 10 divide y? True Let r(s) be the first derivative of s**4/4 + 11*s**3/3 + 19*s**2/2 + 12*s - 1. Let z be (-114)/14 - (-27 - (-752)/28). Does 13 divide r(z)? True Suppose i + 0*i + 6 = -3*l, i = -2*l - 3. Suppose -i*t = 3*v + 6, 0 = 5*t + 1 - 21. Is 3 a factor of (-18)/(-15)*(-80)/v? False Let t(w) = -w**3 + 10*w**2 + 15*w - 5. Let r be t(11). Suppose -r = -4*k + 233. Suppose 3*u - m - k = 58, -2*m = 0. Does 21 divide u? True Suppose 38 = 5*a - 4*r, -r = -4*r - 6. Suppose -38 = -2*f + a. Does 25 divide (-4)/f - (-4135)/55? True Suppose 13*y + 14*y - 3013 = 2009. Is 26 a factor of y? False Suppose -2*y + 4691 + 7107 = -4*k, 0 = -2*y + k + 11789. Is y a multiple of 83? True Let p = -1356 - -2573. Does 10 divide p? False Suppose 49 = b + 13. Suppose -b = 24*n - 27*n. Suppose n*l - 9*l = 174. Is 11 a factor of l? False Let r = -2572 + 3112. Does 9 divide r? True Suppose 2*s = 4*s. Suppose 5*h = -u + 441, -2*u - h - h + 842 = s. Does 19 divide u? False Let m be 44 + (-3 - -1)/1. Let i = 88 - m. Suppose 3*s - 17 - i = -3*k, -3*k + 15 = s. Does 8 divide s? True Let x(k) = -k**3 - k**2 + 3. Let l be x(-3). Suppose 2*i + i = -l. Let z(q) = -q**3 - 5*q**2 + 11*q - 3. Does 9 divide z(i)? True Let d be 360/168 + 1/(-7). Suppose -7 = -t + w - 6*w, w + d = 0. Is t a multiple of 3? False Let h be (-50 - -14)*1/(-4). Suppose -3*f = -h*f + 1314. Does 12 divide f? False Suppose 2*j + 11 = 13. Let r be j/1 - -3 - 7. Is 20/r*(-18)/5 a multiple of 4? True Suppose 0 = -4*y - 22*y - 16*y + 179928. Is 34 a factor of y? True Suppose 3*c + 4*t - 7234 = 0, -5*c - 147*t = -152*t - 12115. Does 106 divide c? False Suppose 2*k + 7371 = 3*c, 8*c - 3*k = 12*c - 9811. Does 5 divide c? True Suppose -2*q = -2*f + 4, 3*f + 0*f = 2*q + 9. Let m(i) = -2*i + 8. Let a be m(q). Is 3 a factor of a/(-2*2/(-6))? True Let f(x) = 30*x + 38. Let q be f(9). Suppose 0 = 5*z + 4*i - 518, 4*z - z - q = -i. Is z a multiple of 51? True Suppose -4*i + 1680 - 388 = 2*d, -3*i = -d - 974. Let n = 594 - i. Is n a multiple of 54? True Suppose 3*t - 22623 = 3*n, 37705 = 15*t - 10*t - 3*n. Does 74 divide t? False Suppose 21*s + 664392 = 162*s. Is 19 a factor of s? True Let v = 81 + -73. Suppose -v*o + 696 = 4*o. Is 29 a factor of o? True Suppose a - 7093 = 30*t - 25*t, 0 = a + 4*t - 7057. Does 12 divide a? False Let f = -18 - 14. Let z = f - -27. Let r = z + 107. Is r a multiple of 17? True Let m(n) = 3*n**3 - 11*n**2 + 17*n - 18. Suppose 3*g - 12 - 9 = -4*f, 0 = 3*f + 4*g - 14. Does 16 divide m(f)? True Let t = 6184 + -4421. Is 4 a factor of t? False Let y = 251 + 1177. Does 4 divide y? True Let a be -3*(4/(-15))/((-2)/65). Let n = -26 - a. Suppose 5*h - 10 = n, -5*q + 452 = -2*h - 504. Is q a multiple of 33? False Suppose 3*u + 4*q - 313 - 7519 = 0, 4*u - 2*q - 10450 = 0. Does 12 divide u? False Let m(l) = 3*l**3. Let w be m(-1). Is 15 a factor of (-286)/w + (-8)/(-3) + -2? False Suppose -2*k + 8 = -0*k - 2*d, -4*k = -d - 28. Suppose 4104 = -k*t + 20*t. Is 22 a factor of t? False Let y(t) = 2*t**2 - 8*t - 10. Let x be (-1*(5 - 3))/(4/10). Let g be y(x). Suppose 8*b - 3*b - g = 0. Is b a multiple of 5? False Let f be -2 + (-18)/(-1 - 2). Does 5 divide (f/(-2) - -96)*2/4? False Let c be (-4 - 56/(-12))*3. Suppose 0 = -2*s - k + 7, -3*s - c*k = 3*k. Suppose -l + 48 = 3*m + 5, 0 = 2*m + s*l - 20. Is m a multiple of 3? True Let h = 16479 + -8939. Does 14 divide h? False Suppose 29*k - 30*k = -105. Suppose -612 = -k*y + 99*y. Is y a multiple of 17? True Let k(x) be the first derivative of x**4/2 + 14*x**3/3 - x**2 + x - 7. Let y be k(-7). Is 12 a factor of 900/y*(-8)/(-10)? True Let x(h) = -90*h - 18. Is 18 a factor of x(-28)? True Let k be 6/8 + (10610/40 - -4). Let w = k + -54. Does 18 divide w? True Let b(d) = -5*d - 6. Let f be b(-4). Let q be (f/2)/(3/18 - 0). Suppose 0 = -10*l + q + 48. Is l a multiple of 3? True Suppose -3*q + 4*u + 2019 = 0, -q = -6*u + u - 684. Suppose 0 = 5*f - 536 - q. Does 6 divide f? False Let k = 154 - 148. Is k/30 + 798/10 a multiple of 17? False Suppose -12*f - 9*f - 2526 = -22*f. Does 21 divide f? False Suppose 169 = -3*z - 155. Let l = -54 - z. Suppose -4*h - 2*q + 94 = 0, -l = -3*h + q + 3*q. Does 11 divide h? True Let o(c) = c**3 - 12*c**2 - 13*c + 23. Suppose 98 = 10*d - 42. Does 6 divide o(d)? False Let s(t) = 3*t**3 + 10 - 14*t**2 + 2*t**3 - 33*t + 4*t**3 - 10*t**3. Is 2 a factor of s(-11)? True Suppose 5*b - 18*b = 3*b - 14976. Is 24 a factor of b? True Suppose -3*z + 446 = 2*v, -3 - 3 = 3*v. Suppose -10*q + 15*q - z = 0. Is q a multiple of 3? True Is 14494/3 + 28/(-84) a multiple of 32? False Let b(p) = 593*p - 15. Let u(d) = -148*d + 3. Let n(a) = -4*b(a) - 18*u(a). Does 20 divide n(1)? False Suppose 5*c + 4*q - 532 = 0, 3*c - 50*q + 51*q = 322. Is 6 a factor of c? True Suppose 4*c - 12 = -2*y, 4*c - 33 = -c + 2*y. Suppose 7*g + 2 = c*g. Let d(l) = -8*l + 1. Does 2 divide d(g)? False Suppose 116*d = 114*d + 1452. Suppose 22*w = -0*w + d. Is 11 a factor of w? True Suppose -y - 4*d + 5529 + 3452 = 0, 2*y = d + 17935. Is 21 a factor of y? False Let d be ((-3)/6*0)/(-1). Suppose -r - p + 3 = d, -2*r - 1 + 3 = -2*p. Suppose -3*s + 49 = r*w, -3*s = -w + 4*w - 72. Is 19 a factor of w? False Let w(o) = o**3 - 19*o**2 - 25*o - 33. Let h be w(21). Let q = h + -216. Does 12 divide q? True Suppose 19*v - 4 = 20*v. Let g be 1/(-1) - v - 1. Suppose -2*t = 3*a - 0*t - 126, -a + g*t = -34. Is a a multiple of 8? True Let q = 206 + -196. Let k(m) = m**3 - 7*m**2 - 25*m + 12. Is k(q) a multiple of 31? True Let v(z) = 5*z**2 + 4. Let y be v(6). Suppose q + 139 = 4*q + 5*j, -4*q = 2*j - 176. Suppose 7*x - 3*x - y = -5*l, x + 2*l - q = 0. Is 21 a factor of x? False Suppose 0 = 13*c - 10*c. Suppose -4*y - 3*m - 11 = 0, y + 0*m + 2*m + 9 = c. Is y + ((-4)/(-10) - (-836)/10) a multiple of 17? True Let l(p) = 4*p**2 - 4*p - 3. Let i(r) = -5*r**2 + 4*r + 2. Let b(x) = -3*i(x) - 4*l(x). Let q be b(5). Is 6/15 + (-192)/(-20) - q even? False Suppose 0*p = 10*p - 20. Let w = p + 3. Suppose -w*t + 156 = 4*k, 4*t - 3*k - 66 = 34. Does 15 divide t? False Suppose 2*m = -5*k + 3 - 14, -4*k = 5*m + 19. Let w(a) = -a + 5*a**2 + a**3 - 2*a + 0*a. Does 9 divide w(m)? True Suppose -18*p = 2729 + 439. Let o = -43 - p. Does 8 divide o? False Let m = 20 - 25. Let h be (-17)/m - (-5 + (-81)/(-15)). Is 24 a factor of h/(-4) - (-6)/48*318? False Suppose 5 = 11*f + 181. Is 22 a factor of (180/f)/(9/(-36))? False Let w(g) = -11*g**3 + 30*g**3 - 4*g**3 - 16*g**3 + 3*g + 4*g**2 + 2*g**2. Suppose 4*z = 2*z + 12. Is w(z) a multiple of 9? True Suppose -179 = 5*q - 199. Suppose 283 = q*u - 5*o, -u - 365 = -6*u - 5*o. Is 24 a factor of u? True Let g be (1 + 2/(-1))*-4. Suppose 3*l - 175 = -5*o + 2*l, g*o = -5*l + 161. Suppose o = 5*z - 206. Is z a multiple of 6? True Suppose 2*x + 6*g - g = -162, 0 = 3*x - 3*g + 285. Let q = x - -124. Is q a multiple of 9? False Suppose -1178*u + 1193*u - 146880 = 0. Is 18 a factor of u? True Let j = -222 + 224. Suppose j*l + 60 - 468 = 0. Is l a multiple of 12? True Suppose -5*f + 15750 = 5*o - 3*f, 76*f = 72*f. Does 9 divide o? True Let l = 3 - 3. Let k be 12/6 + 2 + l + -4. Is 17 a factor of 1/(-5) - k - 2130/(-25)? True Let i(n) = 9*n**2 + 37*n + 38. Is i(-15) a multiple of 26? True Let s be (-2390)/(-25) - 4/(-10). Suppose x = 7*x - s. Suppose 0*m = m - x. Is m a multiple of 8? True Let h(s) = s**3 + 17*s**2 + 10*s - 48. Let t be h(-16). Let m = 352 + t. Does 50 divide m? True Is 9 a factor of 6*((-2907)/(-18) + -1)? True Let c = -238 + 536. Let h = -134 + c. Is 16 a factor of h? False Is -8 + 33/3 + 3168 a multiple of 34? False Suppose -26*j + 20*j + 1525 = -1877. Is j a multiple of 21? True Suppose 133*w = 134*w - 1. Is 8 a factor of (-2)/((-10)/1315)*w - 1? False Suppose 5*y + 8*y - 3750 = 3*y. Is y even? False Let i(w) = -87*w + 1031. Is i(-79) a multiple of 13? True Suppose 59*x = 54*x + 1120. Does 12 divide (2 - 6)/(-2*4/x)? False Does 33 divide 21 - (-275)/(-11) - (-4377 - -1)? False Suppose -2 = -w + 3, f - 15 = -3*w. Suppose 4*j + 12 = f, -2*u - j + 20 + 75 = 0. Is 12 a factor of u? False Let j(x) = 65*x**2 - 72*x + 10. Let q be j(-8). Suppose 25*s - q = 2979. Does 11 divide s? False Suppose 0 = 12*q - 11*q + 3, 3*t - 11409 = 3*q. Does 100 divide t? True Suppose -r - 12*d + 5115 = -9*d, -2*d + 4 = 0. Does 13 divide r? True Let b(m) = m**2 - 2*m + 111. Let r be b(0). Let f = 181 - r. Let c = 99 - f. Is 3 a factor of c? False Suppose -104 = -s + f, 4*f + 520 = 2*s + 3*s. Suppose -3*c = s - 113. Does 3 divide c? True Let t = 40 - 40. Suppose t*b + 12 = 3*b. Suppose 7*w - b*w - 132 = 0. Is w a multiple of 31? False Is -12 + 936/((-90)/(-10)) a multiple of 2? True Suppose 3 = -3*v, 0 = -z + 4*v - v - 116. Does 11 divide -4 - (z + 4 + -6)? False Let d = 160 - 160. Is 9 a factor of 2 + (-363)/6*(-2 - d)? False Suppose 3*x + 4 = 16. Suppose x*q - 28 = 4*l + 24, 0 = 3*q - l - 45. Is q even? True Suppose j = -2, -4*o - 2*j + 6 = 2. Suppose -3*q + o*q - 4 = 0. Is (-30)/q*2*2/3 a multiple of 10? True Let u be ((-10)/25)/((-2)/10). Suppose -3*b - u*y + 136 = -24, -3*b + 5*y = -146. Let f = 38 + b. Does 45 divide f? True Let a = 157 - 107. Suppose 5*j + 3*w - a = 0, 2*w + 8 = -j + 5*w. Suppose 0 = -4*l - 5*i + 298, l - 75 + j = 2*i. Does 9 divide l? True Let k = 30 + -26. Suppose 3*g - 248 = -0*u - u, -k*g + u + 333 = 0. Suppose 2*r = 5*f - 2*r - 415, f = r + g. Is 18 a factor of f? False Let h(t) = 4*t**3 - 40*t**2 + 8*t - 124. Is h(16) a multiple of 212? True Let s be (0 + 2)/(52/(-16) + 3). Is 17 a factor of (s + 105/6)/((-2)/(-8))? False Suppose 5*w - w = -3*z + 454, 446 = 4*w - z. Does 68 divide w? False Let y be ((-9)/6 - -6)*(-2 - 0). Is 11 a factor of (4/5)/(y/(-495))? True Let y(t) = -17*t - 12. Let g be y(11). Let n = 70 - g. Is 19 a factor of n? False Suppose 5*p - 63 = 4497. Let r = p + -632. Does 40 divide r? True Let i(w) = 1057*w - 184. Is 15 a factor of i(7)? True Let n = 23 - 26. Let h = n + 44. Suppose b - 40 = -4*r, -b + h + 10 = 5*r. Does 5 divide r? False Suppose 4*r - 72 = -4*r. Does 25 divide (-2 + 0)/(12/r)*-114? False Let i(w) = 5*w + 73. Let g be i(-17). Let o = -6 + -18. Let x = g - o. Does 5 divide x? False Suppose 3*v = -0*v + 3*p + 324, -2*v = 3*p - 201. Suppose m - v = g, -m + g = 3*m - 405. Does 25 divide m? True Let n(t) = t**3 - 63*t**2 + 126*t + 38. Is n(61) a multiple of 5? False Let z = -9897 - -14266. Suppose -9*r + z = 1795. Does 26 divide r? True Let u = 1782 - 1116. Is u a multiple of 9? True Let l = -39 + 130. Suppose 2*n + l - 1 = 2*m, 2*m + 4*n - 78 = 0. Let p = -30 + m. Is p a multiple of 3? False Suppose 2*z - 644 = 179*t - 176*t, 4*t = -5*z + 1656. Is z a multiple of 8? True Let m be 80/25 - 2/10. Suppose 120 = s + m*s. Does 10 divide s/(-4)*(-9)/((-54)/(-56))? True Suppose -24 = -o + 4*g, -3*g - 6 = 3. Suppose -20*h + 264 = -o*h. Does 3 divide h? True Let d(r) = 65*r**2 - 4*r + 33. Is d(8) a multiple of 34? False Suppose 3 + 1 = -2*u, 4*q = -5*u - 2. Let n = -801 + 803. Suppose 0 = -s + 3*x + 3, 0*s - n*x - 10 = -q*s. Is 2 a factor of s? True Suppose -5*t + 2348 + 7467 = 0. Does 12 divide t? False Let d = 87 + -19. Let y = d - 146. Let i = -51 - y. Does 3 divide i? True Let x = 1710 - -2501. Is x a multiple of 52? False Let a(z) = 7*z**3 - 2*z**2 - 8*z + 9. Let h(c) = -13*c**3 + 3*c**2 + 15*c - 17. Let p(v) = -11*a(v) - 6*h(v). Is p(3) a multiple of 5? True Is (1 + (-3)/15)/((-198)/(-855855)) a multiple of 7? True Let w be ((-8)/10)/((-2)/(-35)). Let q = 648 - 618. Let u = q + w. Does 8 divide u? True Is 28 a factor of -1 + 153822/90 - 11/((-495)/(-6))? True Does 5 divide (-211)/((-4 - 564/(-144))*(-4)/(-5))? True Suppose 23*w + 66359 = -12*w + 232539. Is 149 a factor of w? False Suppose 3*a + 3375 = 3*y, 2*y - 3*a - 896 = 1359. Is 36 a factor of y? False Let m(f) = f**2 + 12*f. Let p be m(-20). Suppose 5*j - 685 + p = 0. Is j a multiple of 13? False Let t(n) = n**2 + 8*n - 62. Let v be t(-13). Suppose -3*b = -3, v*b = 6*q - 9*q + 186. Is 7 a factor of q? False Suppose 3*b + 3*j = 2 + 4, 0 = 3*j. Let x be 9*b/30*5. Suppose -x*a + 123 + 87 = 0. Does 14 divide a? True Let w(i) be the first derivative of -7*i**2/2 + 6*i + 2. Let m(t) = -6*t**3 - 19*t**2 + 2*t + 12. Let l be m(-3). Does 8 divide w(l)? False Let z = 2 + 13. Let k = z - 19. Let i(y) = 4*y**2 + 3*y + 13. Is 13 a factor of i(k)? True Let c(s) = -2*s - 32. Let b be c(-16). Suppose 6*m - 2*m - 2*h - 510 = 0, 5*m + 4*h - 618 = b. Is m a multiple of 7? True Suppose 3*x + 0*x = -3, 4*m - 36 = -4*x. Let r(l) = l**3 - 9*l**2 + 7*l - 10. Does 40 divide r(m)? True Suppose 37433 + 16383 = -0*j + 14*j. Is j a multiple of 5? False Let i = -4102 - -5688. Is i a multiple of 52? False Suppose 0 = -2*j - 2*w + 8, 2 + 12 = 3*j + 4*w. Let n be -3*(-2 + -3 + j). Let b(o) = o + 12. Is b(n) a multiple of 7? True Suppose -15*b = -10*b + 830. Suppose w - 536 = -4*a + 498, -2*a + 520 = 2*w. Let k = b + a. Does 18 divide k? False Let s = 531 - 284. Suppose 0 = -4*f + 2*h + 650, 0 = 3*f - h - s - 238. Does 32 divide f? True Let o = 1875 - -3518. Is 9 a factor of o? False Suppose -5*j + 27143 = 4*y, 4*j + 3*y - 31731 + 10017 = 0. Is j a multiple of 67? True Let g be 3 - (-3)/(-12)*4. Suppose -g*s = -192 - 416. Let i = -159 + s. Does 29 divide i? True Suppose 22*v - 326 = 20*v. Suppose 5*r + b - v = 0, -2*r - 4*b - 8 = -66. Is r a multiple of 5? False Let k = -3926 + 5832. Is 6 a factor of k? False Is (6/(-4))/((-66)/130504) a multiple of 27? False Suppose 4*a + 56 = -l + 5502, 2*l - 10848 = 3*a. Is l a multiple of 15? True Suppose 5*l = -205 - 40. Let j = l + 49. Suppose -3*g + 2*d + 51 = -j*g, 2*d = 5*g - 81. Does 3 divide g? True Let g = 3280 - 2506. Is 18 a factor of g? True Suppose 0 = u + 3*u - 28. Suppose -2*b + 2*d = -0*b - 8, b = 5*d + 12. Suppose g - u = p - 22, -4 = -b*g. Is p a multiple of 17? True Suppose -z = -5*b + 11367, -4*b - 5*z = -2890 - 6221. Is b a multiple of 14? False Let p(w) = -66*w + 1534. Does 46 divide p(-36)? True Let g(h) = 2*h**2 - 4*h - 46. Suppose -320*v + 28 = -324*v. Is 20 a factor of g(v)? True Let u(s) = 28*s**2 - 6*s + 9. Let y be u(-6). Is 15 a factor of 84/224 - y/(-8)? False Let r be 2*(1 + 20/(-2)). Suppose 5*d - 5*h = 355, -20 + 16 = -h. Let g = r + d. Does 13 divide g? False Let j = 4255 - 4105. Is j a multiple of 4? False Let r(x) = -10*x + 761. Is r(37) a multiple of 33? False Let v(r) = 52*r**2 - 230*r + 1827. Does 51 divide v(8)? True Let b(z) = -3*z**2 + 65*z - 4. Let n be b(22). Suppose 0 = -p + 3*p, 2*q - 94 = -p. Let f = n + q. Is 7 a factor of f? True Let s = 20 + 4. Let l = 4310 - 4323. Let g = s + l. Is g a multiple of 10? False Suppose 1050 = -0*u + 10*u. Let m = -3 + u. Is 3 a factor of m? True Let y = 33 - 29. Suppose y*n - 19 = 1. Suppose n*v - 108 = l + 246, -l = -v + 70. Is 12 a factor of v? False Let a be -8 + (-3)/((-9)/3 + 2). Let s(n) = 22*n. Let h be s(a). Is 3/(107/h + 1) a multiple of 10? True Let l(m) = -9*m - 6. Does 6 divide l(-52)? True Let m be (-2)/8 - 7/(-28). Suppose 6*x - 104 - 1300 = m. Is 13 a factor of x? True Let j(i) = 310*i + 150. Is j(0) a multiple of 15? True Suppose 0 = -3*h + 6, -2*j - h + 4162 + 6490 = 0. Does 7 divide j? False Suppose -5*h = 3 - 113. Let u = 204 + -98. Suppose -h = o - u. Is 18 a factor of o? False Let a = 786 + 24. Suppose 3*x = -6*x + a. Does 24 divide (-2 - -8)/2 + x? False Suppose 2*x = -0*k - 5*k - 16, 2*x - 2*k - 12 = 0. Suppose 6*l = 5*l. Suppose l = -x*y + 7 + 25. Is 3 a factor of y? False Suppose 11*x - 15*x = -32. Suppose 0 = -9*q + x*q + 5. Suppose g - 24 = -q*i, -100 = -8*g + 3*g - 5*i. Is g a multiple of 5? False Let a be (-3)/(-12) - (-14)/8. Let r(d) = d**2 + 9*d - 14. Let s be r(-10). Is s*1/a - (-33)/1 a multiple of 6? False Let n(p) = -26*p + 1586. Is 77 a factor of n(-21)? False Suppose -172*p = -174*p + 656. Suppose 2*g + n + 428 = 0, 4*n = -n - 10. Let r = g + p. Does 21 divide r? False Let x be -15*((-28)/(-20) - 2). Let i be (0 - 2/x) + (-1140)/(-270). Suppose k - 42 = -5*a, k = 5*a + 18 + i. Does 16 divide k? True Let t be 12/5 + (-4)/10. Let b(m) = -18*m**t + 13 + 37*m**2 - 20*m**2. Is b(3) a multiple of 3? False Let a(u) = 2*u**2 + 26*u + 7. Suppose 152 = -9*k - 55. Is a(k) a multiple of 41? False Suppose 0 = 5*f + 4*t + 16, -f = -2*f - 5*t - 20. Suppose f*b + 5*r + 343 = 3*b, -2*b + 229 = -3*r. Is 13 a factor of b? False Let g(d) = d**2 + 22*d + 24. Let x be g(-21). Is (x + -4 - -35) + 0 a multiple of 34? True Let x be (-11)/(-3) - (2 - 7/3). Suppose 3*y - x*z = 286, 0 = 3*z - 7 - 8. Is y a multiple of 33? False Let d(u) = 2*u**2 + 13*u - 101. Suppose 0 = 8*c - 63 + 7. Is d(c) a multiple of 4? True Let f(b) = 1043*b - 2131. Is f(7) a multiple of 110? True Let r = -90 - -83. Let y(z) = 2*z + 21. Is 3 a factor of y(r)? False Suppose 8*u - 189 = 579. Suppose -78*z = -70*z - u. Is z a multiple of 4? True Let x be 1/(-3) + 19/3. Is 1/3 + 2566/x a multiple of 71? False Let y be 306/(-10) - (-36)/60. Let i = 35 + y. Suppose 0 = -i*u + 20, -5*s - 2*u + 7*u = -385. Is s a multiple of 12? False Let y(f) = -f**3 - 3*f**2 + 4. Let v be y(2). Let h be (-272)/((v/(-6))/8). Does 9 divide h/(-20) + (-8)/10? False Let d be (5 - 52/12)/((-2)/(-3)). Is (-3)/(d + 1083/(-1056))*3 a multiple of 12? False Suppose 1 = -3*y + 157. Let m = y + -22. Is m a multiple of 6? True Suppose -119*p + 29777 + 9213 + 50022 = 0. Is 22 a factor of p? True Suppose -240 = 45*a - 1680. Is 16 a factor of a? True Suppose -20 = -3*h + 2*v + 5, -h - 2*v + 3 = 0. Suppose 8*p - h*p = 297. Is p a multiple of 32? False Let f = 178 - 35. Suppose 3*l + 116 = 4*t - 15, -f = -4*t - l. Is t a multiple of 3? False Suppose 14*k - 3866 = 5094. Suppose -w - 4*z + 243 = 0, -4*w + k = z - 287. Is w a multiple of 11? True Let q(g) be the second derivative of -g**5/40 - 3*g**3/2 + 6*g. Let l(r) be the second derivative of q(r). Does 2 divide l(-3)? False Let x = 89 - 45. Let i = -39 + x. Suppose 0*g = -5*w + i*g + 450, w - 93 = -2*g. Is w a multiple of 10? False Let s(d) = 13*d - 62. Let l be s(5). Suppose -l*o - 2*p + 245 = 0, 2*o - 3*p - 165 = -4*p. Does 6 divide o? False Suppose -33870 = -32*d + 106322. Is 17 a factor of d? False Let w(j) = j**3 - 5*j**2 - 4*j - 8. Suppose d = 5*l - 28, -l - 4*d = -18 + 4. Let r be w(l). Suppose 0 = -r*i + 115 - 7. Is 12 a factor of i? False Let u(m) = m**2 - 2*m - 6. Suppose w = 6*w - c + 1, -3*w + 3*c - 3 = 0. Let x be u(w). Is 12 a factor of x/21 - (-1 + 988/(-28))? True Let y(l) = 11*l**2 + 3*l - 7. Let f be (-15)/(-5) + -1 - 5. Is y(f) a multiple of 9? False Let o(c) = -20*c**2 + 39*c + 23. Let n(x) = 10*x**2 - 20*x - 11. Let m(q) = -7*n(q) - 4*o(q). Does 16 divide m(5)? False Let r(u) = u**2 - 14*u + 53. Is 48 a factor of r(-21)? False Suppose -4 + 4 = 2*d. Let z(n) = 5*n + d + 1 + 6*n**2 - 4*n**2. Does 13 divide z(-7)? False Let j(r) = -16*r**2 - 3*r. Let u be j(2). Let l = 127 + u. Is l a multiple of 19? True Suppose -3*v + 9 = 3*h, 17*h - 18*h - 5*v = 1. Suppose -l = 4, -3*r = -h*l + 89 - 510. Does 15 divide r? True Suppose -100*j + 103*j - 3 = 0. Is 2 a factor of 9/6 - (285/(-6) - j)? True Let k = -2308 - -6211. Does 90 divide k? False Let j(l) = 20*l**3 - 2*l**2 - 6*l + 76. Is 22 a factor of j(5)? False Let p = -155 - -141. Let y(w) = w**2 + 5*w + 9. Does 15 divide y(p)? True Let i(f) = -455*f - 880. Does 40 divide i(-8)? True Let b(u) = 4*u**3 + u - 1. Let o be b(1). Suppose 4*m + 5*w + 18 = 0, 4*m = -o*w - 5 - 11. Is 3 a factor of ((-12)/(-16)*m)/(2/(-36))? True Let g(c) = -c + 12. Let i be g(8). Let o(p) = 5*p**3 + p**2 - p + 8. Let a be o(i). Suppose -a = -6*w - 88. Does 21 divide w? True Does 87 divide (9 - (-5 + 16))/((-2)/1827)? True Is 17 a factor of 9 + 13 + -5 + 578? True Let y(m) = m**2 - 3*m + 88. Suppose -x - 4*d + 28 = x, -4*x + 11 = -d. Suppose x*p + 8*v = 3*v, -p + 2*v = 0. Is 11 a factor of y(p)? True Let r(t) = -181*t - 1010. Is 34 a factor of r(-13)? False Suppose -o = 5*n - 291, 78 = o + 2*n - 213. Is 2 a factor of o? False Let d(b) = 90*b - 26. Let w(j) = 18*j - 5. Let u(k) = k. Let a be u(-2). Let z(x) = a*d(x) + 11*w(x). Is z(1) a multiple of 5? True Let d(h) = -h**3 - h**2. Let u(n) = 2*n**3 - 3*n**2 + 9*n + 1. Let r(v) = 3*d(v) + u(v). Is r(-9) a multiple of 16? False Suppose 0 = -g - 1 + 6. Let c(q) = 3*q**2 - q + 10. Does 8 divide c(g)? True Let i(g) = -3*g - 23. Let r be i(-23). Is 11 a factor of (-2125)/250*(1 + r/(-2))? True Let i be (-30)/10 - (-397 + -2). Let o = i + 4. Does 16 divide o? True Let d(u) be the third derivative of -u**6/120 - u**5/30 - 3*u**3/2 - 2*u**2. Let y be d(0). Does 4 divide (-331)/y + (-30)/(-135)? False Suppose u - 2*h = -44, 5*u + 310 = 4*h + 78. Does 19 divide 456/u*(0 - 1 - 39)? True Let m(o) = o**3 + 4*o**2 - 44*o + 347. Is m(8) a multiple of 4? False Suppose 9*x = 26 + 37. Let c(d) = 32*d - 99. Is 25 a factor of c(x)? True Let a(y) = y**2 + 10*y - 7. Let u be a(-11). Suppose 5*s - 4*s = u. Suppose -7*v + s*v + 12 = 0. Is v a multiple of 4? True Let d(o) = o - 11. Let x be d(8). Let h be 22 + 1 + x + 3. Let p = -7 + h. Does 8 divide p? True Suppose -4*g + 223 - 3851 = -4*p, 4*p - 5*g = 3632. Suppose -h = -3, -5*s + 245 = -4*h - p. Does 29 divide s? True Suppose u - 9 = 8. Suppose 0 = u*r - 19*r + 6. Let a(h) = 3*h**3 + 3*h**2. Is 27 a factor of a(r)? True Let f be 202/1 - (36/(-3))/(-4). Let j = 223 - f. Is j a multiple of 12? True Let n(d) = -d**3 + 5*d**2 + 10*d + 30. Let s be n(10). Let w = 699 + s. Is 24 a factor of w? False Let f = 17 - 15. Suppose -i = 2*q - 225, -5*q - 306 - 126 = -f*i. Is 32 a factor of i? False Let i = 1092 - -2867. Does 52 divide i? False Suppose -3*a = -17*l + 22*l - 28403, -3*l - 4*a + 17044 = 0. Is l a multiple of 40? True Let t(x) = 19 + 15*x - 16*x + 2*x. Let j be t(-19). Suppose -2*s + 19 + 103 = j. Is 29 a factor of s? False Let o(i) = 51*i + 1275. Is 17 a factor of o(19)? True Let h be (-4)/10 - (3 + (-186)/15). Is 77 - (30/6 - h) a multiple of 9? True Let i = -1202 - -8380. Is 37 a factor of i? True Let h(m) = 4*m**2 - 24*m + 13. Let p(i) = -i**2 + i. Let a(j) = -h(j) - 3*p(j). Is 6 a factor of a(8)? False Suppose -n + 4 = -5*b - 0*n, -4*b + 4*n = 16. Suppose -3*i - 8 = 2*g, -5*i - 26 + 6 = b. Suppose -g*h = -6*h + 128. Does 4 divide h? True Let f(n) = 10*n + 1422. Does 14 divide f(6)? False Is 7 a factor of (2/(-3))/(-4 + -1 + 154169/30843)? False Suppose 7*n - 5804 = -1107. Does 11 divide n? True Let h = -5886 - -11281. Is 65 a factor of h? True Let x = 5 + -3. Let b(t) = -2 + 1 + 4*t - t**x + 12*t. Does 9 divide b(11)? True Let s(f) = -35*f + 1. Suppose 2 = -0*k - 2*k. Is s(k) a multiple of 4? True Let o be ((-80)/100)/(-2 - (-12)/5). Let v(f) = 64*f**2 + 4. Is v(o) a multiple of 12? False Suppose -2*w = i - 6*w + 3664, 4*w = -i - 3624. Is 10 a factor of i/(-14) - (28/(-49))/(-2)? True Let x(w) = -w**2 + 23*w - 3. Let u be x(19). Suppose -250 = -4*v + 2*o, -3*v + 3*o + 256 = u. Is v a multiple of 6? False Let n(u) = 26*u**3 - 2*u - 1. Let i be n(-2). Let v = i - -289. Does 4 divide v? True Let q = 2363 - 1160. Let n = q + -829. Does 34 divide n? True Let w = -27 - -28. Suppose 0 = -2*c + 177 - w. Does 23 divide c? False Let m be (-3)/((-36)/80) - 4/6. Suppose m = -4*y - 6. Is 17 a factor of (-3 - -5) + y + 93? False Suppose 3*p - 1004 = -d, 3*p + 2*d = 808 + 195. Suppose t + p = 5*y, -6*y = -8*y + t + 134. Is 13 a factor of y? False Suppose 50*y - 55*y + 2*g = -35846, -5*y = g - 35837. Is 56 a factor of y? True Let d(n) = -19*n**3 + 14*n**2 + 134*n + 20. Is d(-7) a multiple of 15? True Let k = -8066 + 12785. Does 33 divide k? True Let x(y) = -y**2 + y + 1. Let r(o) = -5*o**2 + 7*o + 2. Let s(v) = -r(v) + 4*x(v). Let u be 5/(-15) - (-11)/(-3). Does 7 divide s(u)? False Suppose 4*i = 1636 + 1009 + 295. Does 2 divide i? False Let v(f) = -f**3 - 11*f**2 + 26*f + 29. Let w be (-3 - 3 - 11) + 4. Does 27 divide v(w)? False Suppose -4*d = -16 + 76. Let g be ((-18)/d)/(2772/920 - 3). Suppose 4*y - 2*j = g, -5*y - j = 4*j - 100. Is 8 a factor of y? False Suppose -21*v - 15 = -24*v. Suppose -v*y + 145 = -1480. Suppose 3*s + 165 = 3*g, -y = -5*g - 2*s - 3*s. Is 13 a factor of g? False Suppose 367 = -48*y + 49*y. Suppose -6*m + 4*x + 156 = -4*m, 0 = -4*m - 3*x + y. Does 22 divide m? True Suppose 0 = 5*x + 20, -r = x + 293 - 1315. Does 57 divide r? True Suppose -7*x + 1871 - 681 = 0. Let p = x + 5. Is 11 a factor of p? False Let m(i) = -i**3 - 2*i**2 + 3*i - 1. Let c be m(-3). Let p be (12/(-54))/c + (-25)/(-9). Suppose f + 2*a = 3*f - 64, -p*a + 16 = f. Is 14 a factor of f? True Let d = 28 - -3. Suppose 17 = 8*t - d. Let n = 7 + t. Is 13 a factor of n? True Suppose -9*m = -5*s + 15547, -m + 11 = 14. Is s a multiple of 32? True Suppose -7*r + 12 + 163 = 0. Let f = 16 - 30. Let g = r - f. Does 7 divide g? False Suppose 0 = 3*s + 5*d - 4292, 4*s - 5738 = -16*d + 17*d. Is 3 a factor of s? True Suppose 0*x + 22 = 2*x. Suppose 12*m = -4*m + 64. Is 23 a factor of (x/m - 3) + 333/4? False Suppose -3*x - 14 = -4*x. Let n(d) = -d - 31 + x + 4*d - 17. Is 8 a factor of n(22)? True Let m(b) = 43*b**2 + 18*b. Does 7 divide m(10)? True Is (-47506)/(-6) + 2*(-16)/48 a multiple of 29? True Let l be (-15)/(-1)*-4*(-21)/(-28). Let f = l + 68. Is 11 a factor of f? False Let t be 0 + 4*15/20. Suppose 0 = -4*x + t*x - 2*b + 6, 0 = 4*x + 2*b - 54. Is x a multiple of 16? True Suppose -r + 0*r + 7 = 0. Let g(b) = b - 4. Let f be g(r). Suppose -3*n - 69 = -u, -1 + f = 2*n. Is 11 a factor of u? False Let y(z) = 13*z**2 + 85*z + 705. Is 8 a factor of y(-9)? False Suppose 3*l - 33687 = -4*i - 1203, 2*i - l - 16232 = 0. Does 81 divide i? False Let z(g) = -38*g + 144. Does 52 divide z(-14)? True Suppose -3*q - 196 = -61. Let x be (18/q - 54/(-10)) + -2. Suppose 2*i - i - 5*r - 43 = 0, 0 = -4*i + x*r + 189. Is i a multiple of 6? True Let l(d) = 3*d**2 - 6*d + 3. Let u(q) = 4*q**2 - 5*q + 3. Let p(s) = -6*l(s) + 7*u(s). Suppose -2*z - c = 2*c + 11, -13 = -4*z + c. Is p(z) a multiple of 9? True Is (-80588)/(-20) + ((-4)/((-60)/39) - 2) a multiple of 65? True Let w = 11617 + -6287. Is w a multiple of 41? True Let u(r) = -r**3 - 57*r**2 - 2*r + 228. Is u(-57) a multiple of 114? True Let g(d) = -545*d**3 + 33*d**2 + 62*d - 5. Does 21 divide g(-2)? False Suppose -d + 260 = 3*d. Suppose 67*k = d*k + 212. Is k a multiple of 9? False Let w(p) = p**3 + 34*p**2 - p + 423. Does 34 divide w(-31)? False Suppose -11299*s - 12672 = -11303*s. Is s a multiple of 55? False Suppose 40*z = 14*z + 107042. Is z a multiple of 43? False Suppose 4*b = -2*u + 102, 0 = -u + 5*b + 11 + 33. Suppose 248 = 2*t + 2*p, 7*t + 476 = 11*t - p. Suppose u*j - t = 44*j. Does 6 divide j? True Suppose -4*h = -5*a + 1228, -3*a + 902 - 149 = 3*h. Is a a multiple of 2? True Suppose 5*c - 1090 = 3*c. Suppose -c = 25*r - 30*r. Let p = r - 45. Is 16 a factor of p? True Let g(u) = 722*u + 684. Is g(3) a multiple of 5? True Let k = 788 + 173. Suppose -5*v + k - 75 = 4*n, -v = -n + 217. Is n a multiple of 7? False Let b(o) = o**3 - o + 29. Let u be b(0). Let j be (-54)/(-5) - ((-14)/10)/7. Let f = j + u. Is 5 a factor of f? True Let t be -5*(-84)/(-20)*2/3. Does 13 divide 13 + t + (118 - (-4)/(-2))? False Suppose -12 = -4*i + 4. Suppose -9*r + 910 = i*r. Does 33 divide r? False Let c = -144 + 154. Suppose c*a = 35*a - 700. Is a a multiple of 14? True Let v(j) = 8*j**2 - 16*j + 35. Is v(-14) a multiple of 23? False Let m = -192 + 194. Suppose 5*d + 140 = 2*p + 1290, -m*d + 4*p = -444. Does 29 divide d? True Let b = 1213 - 725. Is 21 a factor of b? False Suppose 2*t = 7*t - 40. Let z(n) be the second derivative of n**5/20 - 2*n**4/3 + 2*n**3/3 - 9*n**2 - 14*n. Is z(t) a multiple of 5? False Let g(d) = d**3 - 15*d**2 + 4*d - 6. Let u be g(15). Does 49 divide ((-588)/(-36))/(2/u)? True Let v(h) = -2*h + 4. Let i be v(-7). Suppose -i = -5*b + 7. Suppose -2*f + f + 273 = b*y, -150 = -3*y + 4*f. Is y a multiple of 5? False Suppose 2*v = 5*v + 60. Suppose 566*l - 563*l = 12. Is (v/(-8) + l)/((-1)/(-2)) a multiple of 6? False Let c(b) = -377*b - 1256. Is c(-12) a multiple of 38? True Suppose -q = -3*k + 786 + 758, 4*k + 4*q - 2048 = 0. Let x = k + -314. Is 50 a factor of x? True Let z = -190 + 2917. Does 9 divide z? True Let c(b) = -4*b**2 - 11*b. Let v(a) = -a**2. Let k(g) = -c(g) + v(g). Suppose -3*h = 3*y - 8 + 32, 4*y = 4*h + 8. Is 5 a factor of k(h)? True Suppose -o - 315 = -c, o - 106 = 5*c - 1677. Suppose -439 = -3*y + c. Let t = y + -132. Is 29 a factor of t? False Suppose 87 = p - 2*t, 147 = 2*p - t + 6*t. Let r = p - 3. Is r a multiple of 5? False Is (2164/16)/((-5)/(-280)) a multiple of 90? False Let i(t) = -26*t - 1. Let p(a) = 15*a - 3. Let v be p(0). Is 4 a factor of i(v)? False Let d(s) = -s**3 - 5*s**2 - 18*s + 4. Let q be -12 + -9*(-4)/6. Is d(q) a multiple of 26? False Suppose 10*k = 8*k + 8. Suppose k*h - 4*c - 64 = 0, c = 2*h + 5*c - 44. Is 9 a factor of h? True Suppose 3*x = -x + 28. Suppose n + 5 = x. Suppose n*q + 5*w - 161 = 203, 0 = 3*q - 3*w - 504. Does 36 divide q? False Let n be (2/2)/(18/3006). Let a = -134 + n. Is 11 a factor of a? True Let v(o) = 75*o + 1742. Does 17 divide v(-9)? False Let n(r) = -r**3 - 3*r**2 + 3*r + 5. Let h be n(-5). Let s = -43 + h. Let m(b) = -3*b**3 - b**2 - 2*b - 4. Is m(s) a multiple of 11? False Let u(w) = 212*w - 1211. Is u(25) a multiple of 29? True Let p(s) = -s**2 + 28*s - 70. Let w be p(25). Suppose j = -w*j + 216. Is 6 a factor of j? True Let y be -41 + 447 - 6/2. Suppose 0 = 3*q - 542 - y. Does 37 divide q? False Let y(i) be the third derivative of -47*i**4/24 - i**3/3 - i**2 - 4*i. Is 25 a factor of y(-7)? False Is 13 a factor of (3 + 1 - 7)*-114*(-74)/(-4)? False Suppose 7734 = 5*s + 4*h, -11*s + 13*s - 3096 = -h. Is 6 a factor of s? False Suppose 0 = -v - 5*y + 8*y + 983, 4*v + 4*y - 3980 = 0. Does 8 divide v? True Let s(k) = 4*k**2 - 35*k + 1943. Is s(0) a multiple of 10? False Let a = -31 + 33. Suppose 0*d - 4*s + 17 = -5*d, 0 = 2*d - a*s + 6. Is 28 a factor of (-1)/d - 278/(-10)? True Suppose i - 4*t - 4410 = -6*t, 0 = -3*i - 4*t + 13236. Is i a multiple of 32? True Suppose -11 = -4*k + 4*r + 17, -3*k - 2*r + 1 = 0. Suppose -3*y = 2*j - 218, 6*j - 220 = -k*y + 5*j. Is y a multiple of 12? False Let d(s) = 5*s**2 + 27*s - 638. Is d(22) a multiple of 12? True Let l = 1196 + -303. Suppose 2*y = -3*o + l, -4*y + 2026 - 241 = 5*o. Does 65 divide y? False Is 6 a factor of -9 + (-28)/(-7) + 344? False Suppose 3*t + 546 = 3*i, 2*i + 44 = 3*t + 408. Let x = i - 56. Is 9 a factor of x? True Suppose 3*q - 12355 = -2*n - 4677, 0 = 4*q - 5*n - 10268. Is 6 a factor of q? True Let o = -36 + 34. Let h(v) = -14*v**3 + 4*v**2 + 3*v + 1. Does 6 divide h(o)? False Let r(t) = 99*t**2 - 55*t - 53. Does 8 divide r(-7)? False Suppose -4*b = -99 - 77. Suppose 0 = -2*x + 4 + b. Does 8 divide x? True Let b be ((-50)/(-75))/((-4)/90*3). Let o(u) = 18*u**2 - 9*u - 42. Is 40 a factor of o(b)? False Let x = -5 - 0. Let s = -3 + x. Does 8 divide (s/(-5))/(2/85)? False Let z(l) = 48*l**3 - 6*l**2 + 40*l - 148. Is 76 a factor of z(4)? False Suppose h - 3*h - w + 6 = 0, -4*h + 6 = -w. Let l be 4 + (2 - 3)*(2 - h). Let r(u) = 15*u - 10. Is 10 a factor of r(l)? True Suppose 0 = -4*q + 758 + 178. Suppose -h + 11 = -2*z - 5, h - 3*z = 19. Suppose h*f + q - 1184 = 0. Does 19 divide f? True Let h = -5596 - -10720. Is 14 a factor of h? True Suppose -4*g - 5*y = -7*y + 2, -4 = 4*y. Let p(m) = -m**3 - 6*m**2 + 7*m - 4. Let v be p(-7). Is (0 - 54/v)/(g/(-2)) a multiple of 27? True Is 54 a factor of 2096/20*(14 - -76)? False Let w(c) = 4*c - c + 0*c - 2*c - 16. Let p be w(12). Let n = p + 11. Does 5 divide n? False Suppose -2*s + 5791 = -3*k - 11653, 5*k = -3*s + 26185. Does 52 divide s? False Let a(v) = -45*v + 16. Suppose 3*s = -3*i - 30, 6*s - 2*s - 4*i = -16. Does 46 divide a(s)? False Let t(h) = -409*h. Let o be t(2). Does 39 divide (1 + -4)/(-21) - o/7? True Let s(i) = -11*i - 18. Let m(f) = -175*f - 287. Let n(x) = -6*m(x) + 98*s(x). Does 23 divide n(-5)? False Suppose 6*n = 2*x + 11*n + 13, -4*x + n = 15. Is -10*(96/(-20) - x) a multiple of 3? False Let z = 31 - 27. Suppose -z + 2 = 2*q. Is 6 a factor of (3 + q + 2)*21/12? False Suppose 0 = -9*k + 2166 + 1443. Is k a multiple of 73? False Let b(v) = 70*v**3 + 7*v**2 - 33*v + 160. Is b(5) a multiple of 20? True Let n be (-812)/6 + (-38)/57. Let s = -99 - n. Is 13 a factor of s? False Let p(g) = 7*g**2 - 2*g - 9. Let w be p(5). Suppose 0 = n - 4*a - w, -4*n + 340 = -a - 359. Is n a multiple of 22? True Suppose -5*f - 2*w = -0*f, 0 = 5*w. Let p(t) = 124 + 78*t**3 - 107 - 79*t**3. Does 3 divide p(f)? False Does 20 divide (-28)/(-4)*24/(-28)*-30? True Suppose 7*k - 5*q - 4635 = 2*k, -2*k - 2*q + 1870 = 0. Suppose -21*f - k = -28*f. Is f a multiple of 19? True Suppose -6*m = -18 - 90. Let u = m - 0. Let k = 42 - u. Is 24 a factor of k? True Let l(m) = -2*m**3 - 7*m**2 + 3*m + 3. Is 94 a factor of l(-8)? False Let f(l) = -182*l - 80. Is f(-28) a multiple of 19? True Suppose -q + r = -0*r + 2, -4*q + 3*r = 8. Let n(t) = 58*t**2 - 5. Does 20 divide n(q)? False Is (2 - (-6)/(-4)) + ((-112374)/12)/(-3) a multiple of 38? False Suppose -40 = 2*s + 2*i, -3*s - 56 = i + 3*i. Suppose 30 + 66 = 3*l. Let f = l - s. Is f a multiple of 6? False Suppose 3*b + 983 = 5*v + 334, -3*b = 2*v - 247. Let u = v + -34. Is 8 a factor of u? False Suppose -2*d - 2*r + 6 = 0, -12 = -3*d + 3*r + 3. Suppose 0 = 5*s - 3*x - 183, d*x - 2*x = 4*s - 146. Is 6 a factor of s? True Let p = -11922 + 18031. Does 41 divide p? True Let k(l) = -l**3 + 17*l**2 - 10*l + 24. Suppose -65 = -5*w - 3*y, 100 = 5*w - 9*y + 5*y. Does 10 divide k(w)? True Let z(q) = -77*q - 28 + 7*q + 21 + 510*q. Is z(1) a multiple of 14? False Suppose 17*w + 365 = 12*w. Let p = 110 + w. Let c = -23 + p. Does 3 divide c? False Suppose 101966 + 12667 = 47*u. Does 27 divide u? False Suppose 2*v - 7 = 5*i, -8*v + 7 = -i - 9*v. Is i - 6408/(-28) - 7/(-49) a multiple of 34? False Suppose -j + 278 = 3*j + 5*r, 4*j = 4*r + 260. Let g = 65 + j. Suppose 0 = -6*k + 4*k + g. Is k a multiple of 11? True Suppose -557 = -p + 4*u, 1695 = 5*p - 2*p - 4*u. Is 14 a factor of p? False Let v = -126 + 207. Does 35 divide v/6*(-110)/(-15)? False Suppose 288 = -2*n + 1584. Suppose -5*i + n + 712 = -u, -u = 5. Does 16 divide i? False Is ((-9)/18)/((-25)/15450) a multiple of 3? True Let u = 6 - -19. Suppose 7*q = 2*q - u, -5*k = -5*q - 300. Is 18 a factor of k? False Suppose 5*z - 3*o = -1478 + 7066, -2*o - 4472 = -4*z. Does 28 divide z? True Let q(v) = 17*v**2 + 4*v - 10. Let n be q(-5). Let d = n + -272. Is 9 a factor of d? False Suppose -m + 3 = q, -2*m + 4 = 2*m. Let t be (81/q)/(-9)*(-18 - 0). Let b = -57 + t. Is b a multiple of 12? True Let d(z) = -z**2 - 2*z - 1. Let v be d(-2). Let m(n) = 2*n**2 + 3*n + 1. Let u be m(v). Suppose 3*x = -u*l - 5*l + 505, 0 = 2*l - 4. Is 39 a factor of x? False Does 19 divide 42/((18/6)/366)? False Suppose 1860 = 5*y - 2*y. Suppose -3*u = -8*u + y. Suppose -3*j = -2*t + 46, 5*t = -3*j + 6*j + u. Does 13 divide t? True Suppose 0 = -5*x - 5*o + 3130, 3*o = -2*x + 1129 + 119. Does 18 divide x? True Is (-5)/((-20)/20568) - (-12 + 18) a multiple of 47? False Suppose -4*r = -4*z + 24, -z + 4*r + 15 - 6 = 0. Let b(i) = 65*i - 17. Is b(z) a multiple of 44? True Let y be (-6)/(-12) + 1/2. Let r(v) = 58*v**2 - 5*v - 1. Let w(d) = -d. Let s(c) = y*r(c) - 4*w(c). Does 29 divide s(-1)? True Suppose -4*z = s + 319, -4*z - 2*s - 316 = 2*s. Let y = z - -94. Is y even? True Let m(n) = -7*n + 30. Let u be m(4). Suppose -2*z + 6*z = q - 377, -2*q = -u*z - 724. Is q a multiple of 27? False Let z be (-8)/3*(-585)/12. Suppose z = 6*h - 770. Is 12 a factor of h? False Suppose 22*v - 20*v + p = 16766, -4*v + 33548 = -2*p. Is 195 a factor of v? True Let u(k) = -2*k**3 - 8*k - 1 + 3*k**3 - 5 - 4*k**2. Let f be -31 + 42 + (1 - 5). Is u(f) a multiple of 17? True Does 21 divide ((-24)/(-144)*358)/((-1)/(-126))? True Let v(j) = j**3 - 24*j**2 - 2*j + 44. Let s be v(24). Is 115 - ((-3)/3 + s) a multiple of 30? True Let h = 81 + -28. Suppose h*q = 58*q + 75. Let c = 33 + q. Is 6 a factor of c? True Let q(z) = z**2 + 15*z + 19. Let c(w) = -w**3 + 14*w**2 - 14*w + 3. Let v be c(13). Let d be q(v). Let h = d - -48. Does 12 divide h? False Let a(i) = 13*i**3 - i. Let c = -7 + 8. Let d be a(c). Is d*10 - (0/1 - -3) a multiple of 25? False Let o be ((-3)/6)/(5/110). Let z = -10 - o. Is 18 a factor of (9/(-4))/(z/(-36))? False Let w(p) = p**3 + 12*p**2 - 3*p + 22. Let o(h) = h**2 - 18*h + 54. Let y be o(13). Does 22 divide w(y)? True Let s be 3/12*4/(-8)*0. Let k = -22 - -21. Is (s + k)*5/10*-166 a multiple of 14? False Let c(g) = 71*g + 24 + 32*g + 25*g. Is 38 a factor of c(3)? False Let a(w) = -73*w - 23. Let s be a(-3). Suppose 5*d = -h + 15, 0 = -h - 0*h + 2*d - 6. Suppose o = -4*f + 68, h*o - 3*o - 4*f = -s. Is 18 a factor of o? False Let v(r) = 5*r**3 + 22*r - 37 - 24*r + 15*r. Let m(z) = -z**3 - 3*z + 9. Let f(w) = 9*m(w) + 2*v(w). Is f(0) even? False Is 242 - (7 - (5 - -2)) a multiple of 22? True Let w(c) = -19*c - 27. Let f(y) = -y**2 - 14*y - 19. Let p be f(-13). Is 17 a factor of w(p)? False Is ((-24)/(-16) + -4)*(-4102)/7 a multiple of 8? False Is 126/(-1197) - (-57249)/19 a multiple of 23? True Suppose 5*b - 2722 = -437. Is b a multiple of 12? False Let t(z) = -z**3 + 9*z**2 - z - 22. Let o be t(9). Let s = o - -31. Suppose s = -4*g + 30 + 14. Is 6 a factor of g? False Let x = -33 + 2. Suppose -41 = -i - 12. Let a = i - x. Is 15 a factor of a? True Let d(c) = 278*c**2 + 11*c + 6. Is d(-3) a multiple of 11? True Let l be (-6)/((-90)/485)*-27. Let r = l + 1539. Suppose -13*z + 7*z = -r. Is 37 a factor of z? True Let z be (-630)/(-49)*(0 - 5)*-14. Suppose t - z = -5*p, 0 = -3*p - 4*t + 467 + 73. Is 18 a factor of p? True Let g = 4 - 8. Suppose 0 = 10*o - 7*o + 24. Is 12/o + (50/g)/(-1) a multiple of 11? True Let f be (18/(-8))/((75/(-40))/(-5)). Let g(v) = -v**3 - 5*v**2 + 2*v + 3. Let y be g(f). Let k = 13 + y. Does 30 divide k? False Let a be (-4606)/105 - (-2)/(-15). Let f = a - -49. Suppose 0 = f*j - 4*j - 5. Is j a multiple of 5? True Suppose 3*v - 2*z = -3*z + 3691, v - 1213 = 4*z. Is 7 a factor of v? False Let p(x) = x + 1. Let u be p(1). Let g = 1262 + -1261. Does 10 divide (u - g) + 287/7? False Let k(j) = 2*j**2 - 33*j - 18. Let x be k(15). Is 10 a factor of (-7)/x - (-2876)/36? True Let l = -3383 - -3398. Is l even? False Suppose -6*i - 27 = 15. Let v be ((-2)/(2/(-3)))/(i/7). Is 30 a factor of -6*(v + 124/(-6))? False Suppose 16002 + 35461 + 74761 = 161*p. Does 13 divide p? False Suppose -5*n + 32 = -n. Does 4 divide 137 - (2/n)/((-1)/(-4))? True Suppose 0*y = -4*a + 3*y + 9, 0 = -4*a - 2*y - 6. Let c(x) = x**3 + x**2 - x + 401. Is 14 a factor of c(a)? False Let i(f) = 440*f + 1845. Is i(9) a multiple of 40? False Let a be ((-7)/(42/(-180)))/(1/39). Suppose -9*l - 9 = -a. Does 31 divide l? False Suppose -4*x = 5*x - 27. Is 37 a factor of 856/x + ((-31)/3 - -9)? False Suppose n + 3*n - 2*n = 0. Suppose -u + 2*x - 2 = n, -5*x + 0 + 9 = -2*u. Let s(a) = -a**3 + 9*a**2 + 2*a - 6. Is 37 a factor of s(u)? True Let t(h) = -2*h**3 + 31*h**2 - 17*h + 33. Let o be t(15). Suppose -732 = -o*s + 132. Is 12 a factor of s? True Let p = -3 + 5. Let s be p - -134*(-1 - 0). Let q = 223 + s. Does 22 divide q? False Let o(v) be the first derivative of -8*v**2 - 35*v - 13. Is 11 a factor of o(-7)? True Let t be (-52)/(-39)*(-6)/4. Is (-4)/8 + 19/(-4)*t even? False Let c be 5/(15/3)*5. Suppose 3*m - 132 = c*r - 0*r, -m = 3*r - 44. Suppose 22*v - m = 20*v. Is v a multiple of 12? False Suppose 7*p - 2425 - 3187 - 1577 = 0. Is p a multiple of 79? True Suppose -7*o + 26605 = 6781 - 11788. Is 10 a factor of o? False Let s(f) = -f**3 - 9*f**2 - 13*f + 9. Let t be s(-7). Suppose -t*n + 667 + 59 = 0. Is n/3 + (2 - 2) a multiple of 39? False Suppose -18*c = 127 + 71. Does 22 divide -3*c/(-1)*(-40)/15? True Let d = 64 - 18. Suppose 4*c = d + 34. Let a = 78 + c. Is 30 a factor of a? False Suppose -3*c = -5*c. Let g be -3 - -7 - (5 + -4). Suppose -4*b + 2*s + 526 = 0, b + c*b = -g*s + 128. Is b a multiple of 14? False Let v(s) = -s**3 - 5*s**2 + 4*s. Let a = -3 - -4. Suppose 5*n + 36 = a. Is 14 a factor of v(n)? True Let b(g) = g**2 - 13. Let u be b(4). Suppose 3*w + 7 = -4*v, -5*v + 35 - 10 = -u*w. Suppose -3*h + 14 = -5*r, -16 = h - v*h - 4*r. Is 8 a factor of h? True Suppose 338 = 7*h + 93. Let r(l) = -l**2 + 34*l + 55. Is 20 a factor of r(h)? True Let d = 2 - -8. Let q = d - 16. Is 3/(-6) + (-3)/q - -15 a multiple of 5? True Suppose 2*m = -0 + 10. Suppose -2*g - 10 = 0, 0*g = m*s + 5*g. Suppose -4*n - 4*x + 624 = 0, -s*x = 5*n - 2*n - 476. Is n a multiple of 38? True Suppose -21*w = 1741 + 212. Let z = w + 240. Is 28 a factor of z? False Let i = -3 + -222. Let y = 419 + i. Does 13 divide y? False Let h(r) be the second derivative of -r**4/6 - r**3/3 + 31*r**2 + r. Let p be h(0). Suppose -5*w + 2*l + 74 = 6*l, 0 = -3*w + 2*l + p. Is w a multiple of 9? True Let o = 205 + -188. Suppose -9*c - 320 = -o*c. Is 20 a factor of c? True Let i(o) = o**3 - 5*o. Let p be i(2). Let x be (-3)/p - (-55)/2. Suppose -20 = -5*c, 4*f - 3*c = x + 119. Does 5 divide f? True Suppose 119*h + 102695 - 326574 - 382307 = 0. Is h a multiple of 95? False Let b(o) = -214*o + 34. Let v be b(-3). Suppose -3*y - f = -0*y - 505, -4*f + v = 4*y. Is 14 a factor of y? True Let y(o) = 6*o + 38. Let h be y(-6). Suppose 4*j + 27 = b + 356, 163 = h*j - b. Is j a multiple of 5? False Let j(m) = 6*m**2. Suppose 3*q + 2 = -2*t - 2, 10 = -5*q. Let h be j(t). Suppose u + 480 = h*u. Is u a multiple of 12? True Let s(l) = -4*l - 59. Let b be s(-16). Suppose 3*c - 210 = -3*u, b*u = 2*c + 3*c - 330. Is c a multiple of 49? False Let s(o) = 25*o**2 - 2*o - 12 + 4 + 5. Let j be s(3). Suppose -j = -2*l + 2*u, 131 + 198 = 3*l - 4*u. Is l a multiple of 15? False Let r(d) = -d**2 - 48. Let l be r(0). Let x = 444 + l. Is 12 a factor of x? True Let o be (-149)/2 + (-2)/(-4). Let n = o + 197. Suppose a - n = -53. Does 35 divide a? True Let n be (-20)/2 + 24 + -23. Is 21 a factor of n/(-6)*2*(1 + 6)? True Let t be (-3216)/14 - (4 - 26/7). Let i = -135 - t. Is i a multiple of 28? False Let a(s) be the second derivative of -7*s**3/6 + 27*s**2 - 25*s. Does 36 divide a(-11)? False Let i be (-1)/1 - (3 - 2). Let b be (0 - (-7 - -6)) + -3 + 26. Let s = b + i. Is 9 a factor of s? False Let b(h) = 2*h**2 + 64*h - 75. Is 135 a factor of b(-35)? True Suppose -9883 = -8*c + 19607 + 4990. Is c a multiple of 93? False Let q = 41 + -67. Let j be (-169)/q + (-1)/2. Suppose -67 - 167 = -j*b. Does 7 divide b? False Suppose -5964 = -0*o + 4*o. Let v be (-4)/(7*1 + (-1518)/207). Is 1/(-4) - o/v a multiple of 31? True Does 47 divide 224/((-110)/(-376) - (-3)/(-120)*10)? True Let m(a) be the second derivative of -47*a**3/2 - 13*a**2/2 - 2*a + 4. Is 19 a factor of m(-4)? True Let c = 203 + -197. Is c/(-33) + 3285/99 a multiple of 4? False Suppose -10*z + 4*z - 90 = 0. Let t = z - 26. Let f = -11 - t. Is f a multiple of 10? True Let b be (-466 + -8)*5/10. Suppose 285 = -3*p + 2*o - 185, 0 = 3*o + 15. Let f = p - b. Is f a multiple of 19? False Let w = 82 - 117. Let a = 41 + w. Suppose 2*d = -0*d - a, 0 = m + 5*d + 4. Is 5 a factor of m? False Let g = -66 + 98. Let x = g + -31. Is -1 + ((-154)/(-2) - x) a multiple of 15? True Suppose 2*b - 1726 = -4*j, -5*b + 32 = j - 4247. Is 19 a factor of b? True Let w be 1/2 - (-361)/2. Suppose 274 - 2 = 3*j - 2*z, 3*z = 4*j - 361. Let b = w - j. Is b a multiple of 29? True Is 59 a factor of (-2 - 61105/(-20))/(18/48)? True Let r(q) = -14*q - 83. Let u be 3/(3/4)*(2 + -4). Is 2 a factor of r(u)? False Let y(l) = 2*l**2 + 12*l - 5. Suppose -58 = -5*p - 5*b + 207, 4*b = 3*p - 166. Suppose p*t = 57*t + 27. Is y(t) a multiple of 24? False Let z(y) = -y**3 + 4*y**2 + 7*y + 8. Let l = 42 + -39. Suppose -22 = -l*b - 10. Is z(b) a multiple of 5? False Let a = -4597 - -5102. Is 9 a factor of a? False Suppose -5*p = -5*a + 45, 0*a - 3*p - 31 = -4*a. Is 5 a factor of ((-18)/a)/(23/(-322))? False Let i(b) be the first derivative of 41*b**2 + 8*b - 20. Is i(4) a multiple of 16? True Let z = 605 - -1830. Suppose 0 = -9*a + 976 + z. Is 30 a factor of a? False Let b = -407 - -275. Let g = 143 + b. Does 2 divide g? False Let s(i) = i - 13. Let y be s(14). Let u be 71/y + 3 - (-1 - 1). Let m = 36 + u. Is m a multiple of 19? False Let j = 3302 - 2674. Does 81 divide j? False Suppose 20*i - 186946 + 55266 = 0. Is 84 a factor of i? False Suppose 4*v - v - 3*i = 18525, -i + 30905 = 5*v. Is 25 a factor of v? False Suppose 21410 = 11*m - 34129. Does 27 divide m? True Let l(h) = -3*h + 24. Let f be (14/4)/((-6)/(-48)). Suppose -2*w = 4*b - f, 7 = b + 3*w - 2*w. Is 2 a factor of l(b)? False Suppose 4*z - 5*l + 12612 = -9392, -4*l = -3*z - 16504. Does 24 divide (-22)/(-77) + z/(-21) + 2? True Let a be 0 + 4 + 73*(-1 + -6). Let d = a - -762. Does 51 divide d? True Let n(s) = 12*s**2 + 64*s + 502. Is 185 a factor of n(-11)? False Let v(w) = -89*w - 1. Let q be v(9). Let z = q + 1138. Does 19 divide z? False Let w = 105 + -67. Let o = w - 35. Suppose -o*g = -0*g - 279. Does 21 divide g? False Suppose -2*w = 5*h - 294 - 571, w = -3*h + 433. Does 3 divide w? False Let s(u) = -u**2 + 5*u + 35. Let f be s(-11). Let m = f - -204. Is m a multiple of 10? False Let o(a) = 3*a**2 - 6*a + 5. Let k(d) = -4*d**2 + 6*d - 4. Let s(h) = -2*k(h) - 3*o(h). Let c be s(4). Let r(z) = 2*z + 2. Is 2 a factor of r(c)? True Suppose 3*p + 12 = n + 40, -5*p = -3*n - 44. Suppose 5*f = p*f - 10, 704 = 4*b + 4*f. Does 32 divide b? False Let a = -91 - -190. Let m = a - 41. Is m a multiple of 15? False Let g(n) = -n**3 + 8*n**2 - n + 8. Let o be g(8). Suppose o = 3*t + 260 - 875. Is t a multiple of 21? False Let d(f) = -f**3 + 20*f**2 - 28*f + 12. Let x be d(12). Let g = x - 525. Does 36 divide g? False Suppose 0 = -98*x + 13*x + 421260. Does 59 divide x? True Suppose 2*u - 1238 = -2*r + 5*r, 0 = -5*r - 4*u - 2078. Let v = 783 + r. Let m = 533 - v. Is 15 a factor of m? False Suppose 17*a - 13*a = 12. Suppose 5*r = -r + 264. Suppose -4*t = 5*p - r, 3*p - 7*p - a*t = -36. Does 2 divide p? True Suppose 64 = 3*n - 35. Let p = -28 + n. Suppose 30 + 30 = p*o. Is 10 a factor of o? False Let z(u) = 341*u + 156. Is 64 a factor of z(9)? False Let s(k) = -k**2 + 9*k - 5. Let z be s(8). Let q(h) = h**2 - 2*h - 8. Let x be q(4). Suppose 0 = 5*j + 3*p - 78, -z*j - 3*p = -x - 42. Does 6 divide j? True Is 63028/378*6 + 8/(-18) a multiple of 100? True Is (-20)/(-35) + 30648/21 a multiple of 9? False Suppose -2*f - 3*g + 522 = -5*g, 0 = -3*f - 4*g + 776. Suppose -6*w = -w - f. Suppose -5*i + 623 = -w. Is 22 a factor of i? False Is 5 a factor of (1 - (-9726)/24)*4? True Suppose -3*k = -3*o - 29 - 4, 3*o = k - 13. Suppose k*j = 17*j - 714. Is j a multiple of 34? True Suppose 8*v - 7 = 9. Suppose v*i + 96 - 624 = -3*h, i = -h + 176. Is h a multiple of 10? False Does 14 divide (-151 - -116)/(1/(-57))? False Let f = 14 + -16. Let n be f*6/((-12)/5). Is 13 a factor of 145*(12/n + -2)? False Let i(f) = f**3 - 14*f**2 + 4*f - 35. Let g(s) = -10*s - 6. Let a be g(-2). Let w be i(a). Suppose -5*d + 6*d = w. Is 6 a factor of d? False Suppose 23*h - 28*h = -1460. Suppose h = 2*p + 2*j, -4*p + 6*j = 3*j - 612. Is 65 a factor of p? False Let x = 3927 + -2628. Does 15 divide x? False Suppose 16*p + 73*p - 171236 = 0. Is 52 a factor of p? True Suppose -136*h + 233*h - 22310 = 0. Is 5 a factor of h? True Let z(f) = 485*f + 346. Is z(2) a multiple of 14? True Let a(o) = -o**2 - 7*o - 8. Suppose -2*n - 1 - 7 = 0, b - 15 = 5*n. Let u be a(b). Suppose -4*r + u*x - 9 + 73 = 0, 4*x = 0. Is 16 a factor of r? True Is (-10362)/(-99)*114/4 a multiple of 123? False Let f = 38 - 32. Suppose 6*q - 420 = -f*q. Is 5 a factor of q? True Let a(o) = 304*o + 118. Does 22 divide a(2)? True Let l(x) = -11*x + 112. Let i be l(10). Suppose 0 = i*z + 278 - 326. Is 8 a factor of z? True Let v = 102 + -174. Let r be 370/(-14) - v/(-126). Does 12 divide (-24)/9*r/6? True Let q = -42 + 59. Suppose -t - q*t = -324. Is 6 a factor of t? True Suppose -26 = 5*a - 4*a. Let z be ((-12)/(-16))/1 - a/8. Is 0 + ((-4)/z - -5) a multiple of 4? True Let i = 111 + -108. Suppose 6*d = -3*c + 4*d + 613, 3*d = -i*c + 612. Is 41 a factor of c? True Let y = -4111 + 9355. Does 69 divide y? True Let p(w) = 7*w**2 - 10*w - 12. Let l(u) = 6*u**2 - 9*u - 11. Let j(q) = 4*l(q) - 3*p(q). Let n be j(6). Suppose 20*v = 22*v - n. Is v a multiple of 16? True Suppose 7*d = 8*d - 3*w - 1091, 0 = -5*d + 4*w + 5499. Is d a multiple of 26? False Does 12 divide 74990/(-300)*-5 - ((-14)/12 + 1)? False Let d = 29 - 26. Suppose 2 = s - d. Is 25 a factor of ((-9)/36 + s/4)*75? True Is 35/((-2835)/36) - ((-77444)/18 - 1) a multiple of 17? False Let g(m) = -m**3 + 14*m**2 - 11*m - 22. Let t be g(13). Suppose 4*x + 8 = r, 0*r = r + t*x. Is 3 a factor of (r/(-4) - (-5)/2)*2? True Suppose -15 = 3*c + 2*c, -4*d - 4*c = 84. Let y = d + 70. Suppose -3*s - 2*w = -3*w - y, w - 33 = -2*s. Does 8 divide s? False Let y(z) = -10*z**2 - 11*z - 19. Let i be y(-9). Is 23 a factor of i*(-8)/(-12)*(-9)/12? False Let o(h) = h**3 + h**2 - h + 31. Suppose 7*r = -3*r. Let i be o(r). Suppose -2*n - n + i = 2*f, -f = -n - 23. Is f a multiple of 3? False Let y(g) = g**3 - 13*g**2 + 2*g + 7. Let j be y(13). Let d be 32/12*j/4. Suppose 17*u = d*u - 455. Is 13 a factor of u? True Let l = 6024 - 4856. Is l a multiple of 16? True Suppose 29 = -4*x + 269. Let b = -30 + x. Suppose 32*s - 44 = b*s. Is 20 a factor of s? False Suppose 0 = b + 5, -5*x - 3*b = b - 425. Let d = 3 + x. Does 12 divide d? False Suppose -13*i - 27 = -22*i. Is 24*i - ((3 - 3) + 0) a multiple of 8? True Let d = -4206 + 7978. Does 82 divide d? True Suppose 4*t = 0, 5*p + 72 = p - 5*t. Let k be p/(-3) - 3 - 297/3. Let l = -61 - k. Is 35 a factor of l? True Let f = -29 + 38. Let p be 3/f*-3 - 4. Does 10 divide (p*2 + 2)*(-1 + -1)? False Let n(c) = 6*c**2 + 8*c + 12. Let b(m) = -2*m**2 + m + 1. Let a(y) = -5*b(y) - n(y). Is a(-9) a multiple of 21? False Suppose 2*t = 4*c + 1548, -32*t - 3*c = -36*t + 3081. Does 55 divide t? False Suppose f + 231773 = 42*f. Is 14 a factor of f? False Let k(m) = -9 - 10 - 2*m - m. Let d(l) = -3*l**3 + 20*l**2 - 2*l + 54. Let f be d(7). Does 8 divide k(f)? True Let d(p) = -6*p + 20. Let f be d(11). Does 7 divide 1 - (4 + -1) - f? False Let q = -1441 - -5921. Is q a multiple of 70? True Let r be (-10)/(-15) - (-2)/6 - -48. Suppose -s + 123 = -r. Is s a multiple of 13? False Is (4172/6 + -1)/((-141)/(-1269)) a multiple of 22? False Suppose 0 = -4*g + 6*g - 16. Suppose d = -8 - g. Let s = 0 - d. Does 13 divide s? False Suppose 2*z = -3*r + 11105, -44*r - 7414 = -46*r - 4*z. Is r a multiple of 23? False Let b = 47 + 19. Does 5 divide (3 + -1)*b/12? False Suppose -10*k = -15*k + 20, -156 = w - 3*k. Is 31 a factor of 2/(-4)*(w - 2)? False Let f = 3093 + -2622. Does 131 divide f? False Suppose 3*c - n = 44, -3*c - 13 = -4*c + 2*n. Suppose 2*t = -4*s + 1930, 4*t + c = -t. Does 22 divide s? True Let y(r) be the first derivative of r**4/4 + 5*r**3/3 + r**2/2 + 7*r + 9. Let u be y(-5). Suppose u*x + x - 48 = 0. Is 6 a factor of x? False Let d(i) = i**2 - 10*i - 8. Let n(b) = b - 1. Let x(u) = u**2 - 8*u - 11. Let r(a) = 2*n(a) - x(a). Let p(v) = 6*d(v) + 5*r(v). Is 6 a factor of p(13)? True Suppose -135 = -b + 4*w, -w = 2*b - 134 - 100. Let l = b - 103. Is 3 a factor of l? False Suppose y + 6*y = y + 54948. Is y a multiple of 14? False Let r be (-67731)/1605 + 8/(-10) + 1. Let m = 146 - 70. Let q = m + r. Does 13 divide q? False Let z(i) = -i**3 + 8*i**2 - 4*i - 14. Suppose 0*w + 4*l + 87 = 5*w, 5*w = 3*l + 89. Suppose -k + w = 12. Is 2 a factor of z(k)? False Suppose 14*r + 0*r - 46368 = 0. Is r a multiple of 69? True Let d be (5 + 3)/(4*(-5)/(-30)). Suppose -d*u + 4*u + 544 = 0. Is u a multiple of 15? False Suppose 50*f + 27*f - 301824 = -19*f. Does 5 divide f? False Let i be (17 + -1)/(-8 - -10). Suppose -i - 7 = -5*p. Suppose 5*z + 0*k + k - 433 = 0, 265 = p*z - 2*k. Is 20 a factor of z? False Suppose 4*y + 5*r = 5*y + 18, -r = -3*y + 2. Suppose t - 179 = -4*z, 2*t - 35 = y*z + 283. Does 11 divide t? False Suppose 16 = -4*h - 28. Let n(m) = -m - 16. Let x be n(h). Is (-20)/x + (3 - -20) a multiple of 7? False Let f be (84/18)/((-2)/15). Let a = f - -31. Let x(v) = -v**3 + v**2 + 12*v + 3. Is x(a) a multiple of 11? False Let o be -3 + (6 - (2 - -1)). Suppose 3*c - 4*c + 1416 = o. Is (c/(-20))/(-6) - 2/(-10) a multiple of 3? True Let b(l) = -l**3 + 4*l**2 - 2. Let p(y) = -y**2 - 9*y - 5. Let j be p(-6). Suppose 3*d - 1 = -j. Does 21 divide b(d)? True Suppose -5*h + 866 = -4*g - 8*h, 2*g = h - 438. Let c(a) = 39*a - 2. Let n be c(-3). Let m = n - g. Is m a multiple of 11? True Suppose 0*u + 185575 = 39*u - 27833. Does 48 divide u? True Let l be -38 + 41 + (441 + -1 - -1). Let b = -284 + l. Is b a multiple of 16? True Let x be (84/(-9))/(22/(-759)). Suppose 5*l - 3*l = 5*d - 407, -4*d + x = 2*l. Does 16 divide d? False Let f = -17 + -50. Let p = f + 80. Does 7 divide p? False Let t(k) = 12*k**2 - k + 47. Let z(a) = 23*a**2 - 3*a + 96. Let i(v) = 13*t(v) - 6*z(v). Is i(-5) a multiple of 41? False Suppose -f = -4*f + 12. Suppose f*p = -p + 2265. Suppose 3*w - p = -57. Does 17 divide w? False Suppose 0 = -5*f + 3*n + 2, 3*n + 3 = 2*f + 4*n. Let d be (5/(-15))/((-3)/(-18)). Does 30 divide (-90)/(d + -1)*f? True Let p be (-27)/81 + (-385)/(-3). Suppose 3*t - p = 7. Is 11 a factor of t? False Let q = 14 - -5. Let r = q + 61. Does 20 divide r? True Suppose -883*k + 1340 = -892*k + 18638. Is 62 a factor of k? True Let k(q) = 7 - 7 - 5*q + 4*q. Let b be (-18)/6*(-30)/(-9). Does 10 divide k(b)? True Suppose -r - 2 = -3*n, 0*n + 2 = -r - 5*n. Let i be 0/((-2)/(r + 1)). Suppose 0 = c - 4*k - 11, i = -3*c + k + 50 - 6. Is c a multiple of 8? False Let r be ((-10)/4)/(5 + 22/(-4)). Suppose -270 = -r*h + 5*z, 0 = -4*h + h - 5*z + 162. Suppose -v - 10 = -h. Is 11 a factor of v? True Let d(n) = -n**3 - 10*n**2 - 7*n + 30. Let i = 199 + -210. Is d(i) a multiple of 12? True Let m(a) = a**3 - 8*a**2 - 32*a + 7. Let i be m(11). Suppose -i*c = -948 - 1032. Is c a multiple of 10? True Let a(p) = -p**2 - 8*p - 6. Let n be a(-6). Suppose -16*h + n*h = -2250. Is h a multiple of 15? True Suppose -508 = 6*b - 3100. Is 11 a factor of (b/(-135))/(2/(-55))? True Let d(n) = 2*n**3 + 13*n**2 - 13*n - 4. Is 37 a factor of d(-7)? False Let f(l) be the third derivative of l**6/90 + l**5/30 - 17*l**4/24 + 8*l**2. Let q(z) be the second derivative of f(z). Is q(11) a multiple of 23? True Suppose 0 = -3*n + 585 - 153. Let r = 280 - n. Suppose 0 = 2*l + 4*o - r, 0 = 5*l + 2*o - 0*o - 380. Is l a multiple of 32? False Suppose -13*j - j = -2*j - 2244. Is 3 a factor of j? False Suppose -2*a = 4*b - 2972, 5*a - 3*b - 7301 = 181. Is 25 a factor of a? False Let r(c) be the second derivative of c**7/1260 + c**6/144 - c**5/24 - 7*c**4/6 - 4*c. Let j(z) be the third derivative of r(z). Is 12 a factor of j(4)? False Let r(t) = -t**3 - 7*t**2 - 6*t - 6. Let b be r(-6). Let x(l) = 6*l + 6 - 15*l**2 + l**2 + 15*l**2. Is x(b) a multiple of 5? False Suppose 0 = -3*x + r + 60, -3*x + 12 = -4*r - 57. Let z = x - 14. Suppose 5*l - 130 = z. Does 11 divide l? False Let z be 36/12 + (2 - (1 + 0)). Suppose z*i = -4*i + 2760. Suppose -5*m = -4*f - 445, 0 = -4*m + f - 0*f + i. Is 17 a factor of m? True Let b(w) = 445*w**2 - 4*w + 16. Does 36 divide b(2)? False Let s be 2*(1 - (3 + -254)). Suppose -3*q - 2*d = -s - 976, 0 = 4*q + 4*d - 1976. Is 41 a factor of q? True Suppose -159*c = -158*c - 7800. Does 30 divide c? True Let y(i) = -2*i**3 - 53*i**2 - 40*i + 54. Is y(-26) a multiple of 3? False Let z(k) = -16*k + 1. Let t be z(-1). Let s(a) be the first derivative of a**2/2 + 8*a - 8. Is 5 a factor of s(t)? True Is (-6)/10 - ((-3)/30)/(2/49012) a multiple of 70? True Suppose 2354 = y - 2*p, 0*y = 4*y + 2*p - 9446. Does 69 divide y? False Let p be (-10 + 10)/(2/2). Suppose 3*g + x + 0*x + 126 = 0, p = 3*x. Let z = g - -114. Is z a multiple of 12? True Is 6 a factor of (3248 + -1)/((-21)/(-525)*25)? False Let j = -3465 - -4431. Is j a multiple of 7? True Let k(d) = -78*d - 719. Is k(-46) a multiple of 37? False Let s(t) = 185*t**3 + t**2 - 2*t + 1. Let c be s(2). Suppose 5157 = 3*g - 3*f, -g - 3*f + 226 = -c. Is (-8)/(-14) + g/182 a multiple of 7? False Let s(h) = 20*h**3 - 9*h**2 - 20*h + 70. Is s(5) a multiple of 122? False Suppose 3*v - 3300 = -7*u + 642, 0 = 3*u - 2*v - 1696. Does 14 divide u? False Let k(l) = 35 + 7 + 59 + 3*l + 10. Is k(16) a multiple of 48? False Let i(c) = -24*c**3 + c**2 + 22*c - 8. Does 56 divide i(-4)? True Suppose -2*k + 2734 = c, 5*c - 2708 = -4*k + 10950. Is c a multiple of 13? True Let f be 3/(1*-3)*(0 + -1203). Let d = f - 780. Suppose 0 = -3*k - 2*u + 281, d = 3*k - 4*u + 112. Is k a multiple of 14? False Let v be (6 + 1000 - -4) + 3. Suppose -4041 = -14*c + v. Is 13 a factor of c? False Let u(a) = -33*a - 58. Let c(v) = 22*v + 39. Let x(i) = -7*c(i) - 5*u(i). Let d be x(9). Suppose d = 4*f + 4*g, -3*f + 2*g = -g - 93. Does 9 divide f? False Let n(z) = 29*z - 158. Let v(q) = 15*q - 80. Let x(w) = 2*n(w) - 5*v(w). Is x(-5) a multiple of 13? True Suppose 0 = 5*p + 15, 6 = -4*z - 4*p + 50. Does 17 divide 10/(-14) - -1 - (-724)/z? False Let n(q) = 5*q**3 + 13*q**2 + 16*q + 28. Let d(c) = -12*c**2 - 29 - c**2 - 11*c - 5*c + 4*c**3 - 10*c**3. Let k(v) = 4*d(v) + 5*n(v). Is 27 a factor of k(-11)? False Let b be 9/(-12) + (-46)/(-8). Suppose b*h - 82 = 2*v, 2*h = 3*v + 19 + 5. Is h a multiple of 2? True Let m = -817 - -2897. Is 23 a factor of m? False Suppose 2*l - 2469 = -5*k + 4248, -l = 5*k - 6721. Suppose -v + 0*h = h - 263, -h = -5*v + k. Suppose 5*b - 137 = v. Is 27 a factor of b? True Suppose 4*x - r - 27 = -192, 0 = 4*x - 5*r + 169. Let c(l) = 15*l**2 - l + 9. Let k be c(3). Let b = k + x. Is b a multiple of 29? False Let r(y) = 3*y - 25. Let b be r(10). Let k = 39 - b. Suppose k*d - 460 = 29*d. Is d a multiple of 23? True Let t = 6 + -5. Let y be 6/(-8) - (-4220)/80 - 2. Does 4 divide ((-20)/y)/(t - 81/80)? True Suppose 36725 + 27066 = 17*i - 29471. Does 26 divide i? True Suppose -17 + 77 = -4*w. Let m = -12 - w. Is m/(-18) - 433*(-1)/6 a multiple of 14? False Let i(f) = -10*f**2 + 13*f - 1. Let c(u) = 9*u**2 - 12*u + 2. Let r(j) = 3*c(j) + 2*i(j). Is r(8) a multiple of 24? False Is 24 a factor of 468/(-858) - (-49551)/33? False Let o = 6 - -7. Suppose -2*s - 3*h = -o, h - 3*h = -6. Suppose -4*g = 3*y - 179, s*y = g - 3*y - 62. Is 8 a factor of g? False Is 79 a factor of 247/19 + (-3937)/(-1)? True Let t(h) = -183*h**3 - 4*h**2 - 5*h + 12. Is 7 a factor of t(-2)? True Let f be 1/2*(-8 - -1)*-2. Suppose f*y + 4*y - 5643 = 0. Is y a multiple of 57? True Let s be (3 - 0) + (-3 - (0 + -2)). Let m(v) = 4*v**s - 10*v + 13 + 3*v - 3*v**2. Is m(11) a multiple of 16? False Suppose 3*x = 5*q - 0*q + 290, -304 = -3*x - 2*q. Let b(d) = d**3 + 3. Let z be b(0). Suppose z*h + x = 5*h. Does 25 divide h? True Let m be ((-24)/40)/(0 + 1/(-25)). Suppose m*d - 13440 = -15*d. Is 35 a factor of d? False Let d(z) = -z**3 - 13*z**2 + 15*z + 29. Let p be d(-14). Is (p/12)/(7/168) a multiple of 5? True Let l be 2/7 - 99/(-21). Suppose 105 = 2*d + l*r, 4*r = 5*d - 81 - 132. Is d a multiple of 3? True Suppose 12*h - 14*h + r = -9045, -5*h + 2*r + 22612 = 0. Does 7 divide h? True Let i(z) = 2*z**2 - 29*z - 451. Does 3 divide i(-10)? True Suppose 8*w = 54686 - 9134. Is w a multiple of 29? False Suppose -q = -5*n - 28, 4*q + 2*n = 3*n + 36. Let m(b) = 61*b**2 - q - 2 + 4 - 8*b - 60*b**2. Is 9 a factor of m(11)? True Let d(j) = 0*j + 9*j - 2*j + 0 + 3. Let u be d(-4). Let h = u - -30. Does 5 divide h? True Let k = -374 - -779. Suppose 3*n = -366 - k. Let i = n + 382. Does 12 divide i? False Let c(g) = 7*g**3 + 7*g**2 + g - 5. Let b(q) = -q**3 - q**2 - q + 1. Let v(u) = -5*b(u) - c(u). Let m be -7 + 1 - (-12)/4. Is 24 a factor of v(m)? True Let i(f) = 103*f - 27. Let v(z) = 1235*z - 325. Let a(n) = -25*i(n) + 2*v(n). Let m(p) = 8*p - 2. Let d(u) = 3*a(u) + 40*m(u). Does 4 divide d(5)? True Let o = -607 + 387. Is (-4)/(-12) - o/15 a multiple of 2? False Suppose -u + 1275 = 5*g, 5*g = -26*u + 24*u + 1280. Is 96 a factor of g? False Let b = -28 + 35. Suppose 0 = b*o + o + 128. Is (-104)/o*(23 + 1) a multiple of 15? False Let o be ((-4)/(-10))/((-6)/(-15)). Suppose u = 2*c + o, -4 = -3*c - 4*u - 0. Suppose -7*r + 3*r + 5*g + 235 = c, 0 = 5*r - 2*g - 298. Is r a multiple of 30? True Let v(f) be the third derivative of 0 - f**2 + 0*f + 1/24*f**4 + 3/2*f**3. Does 15 divide v(6)? True Suppose -2*c = a + 342, c = 9*a - 4*a - 171. Does 37 divide (4/(-18) - 56981/c) + 0? True Let g(s) = s + 4. Let f be g(0). Suppose 4*a = -k + 8, a = 3*k - f + 6. Suppose -4*m + 31 = -3*v, 4*v = 2*m - k*m - 28. Does 4 divide m? True Let w be (8/12)/(4 - (-56)/(-12)). Is 91*(0/(-5) + -1)/w a multiple of 13? True Suppose 173584 = 74*q - 166150. Is 145 a factor of q? False Let j(i) = 4*i - 7*i**3 + 17*i**2 + 6*i**3 - 21*i + 19. Is j(7) a multiple of 39? True Let y(c) be the first derivative of -c**3/3 + c**2 + 22*c - 2. Let x be -4 - 3/2*(-48)/18. Is 22 a factor of y(x)? True Let c = 22 + -18. Suppose i + i = -2*d - 374, 2*d + c*i + 370 = 0. Let g = d + 273. Is g a multiple of 21? True Suppose -b + 7 = -6. Let c(a) = -a**3 + 12*a**2 + 2*a + 17. Let o be c(b). Let w = o + 198. Does 24 divide w? True Suppose -4*p + 4*n + 35056 = 0, 34*n - 31*n = -5*p + 43820. Does 140 divide p? False Let w(h) = h**3 - 27*h**2 + 34*h - 47. Is 15 a factor of w(26)? False Let q(w) = -w**2 + 51*w + 22. Let d be q(37). Suppose -d = l - 7*l. Does 5 divide l? True Suppose 2*p - 1190 = -h, -449 = -p - h + 144. Does 61 divide p? False Let u = -3467 + 6517. Does 39 divide u? False Let r be 2361 + (-9 - (-24)/4). Does 13 divide r/12 + (1 - 5/2)? True Let i = -213 - -177. Is 12 a factor of (i/10)/(12/(-1080))? True Suppose -4*v - 4 = 0, v + 2846 = 4*d - 3583. Does 10 divide d? False Let s(k) = -k**3 + 86*k**2 + 297*k - 220. Is s(89) a multiple of 35? True Let y(k) = 14*k**2 - 8*k - 6. Let j = -111 - -108. Is 18 a factor of y(j)? True Let w = -48 - -32. Let h be 476/w + (-1)/4. Let z = 46 + h. Does 8 divide z? True Let q(n) = -2*n**3 + 11*n**2 + 7*n + 3. Let y be q(6). Let l(h) = 20*h + 1. Let d(v) = -v - 1. Let o(g) = 6*d(g) + l(g). Is 11 a factor of o(y)? True Suppose -4*p + 0*p - 2*t = -3178, -4*t = 12. Suppose -9*v = -356 - p. Is 8 a factor of v? True Let u(f) = -2*f**2 + 41*f + 67. Does 41 divide u(20)? False Let h(n) be the first derivative of 27*n**2 + n + 1. Let x be ((-3)/(-2))/(5/(-20)*-6). Is 18 a factor of h(x)? False Let o(d) = -111*d - 42. Suppose 4*m + 4 = 0, 3*t + 2*m = -0*m - 14. Is 12 a factor of o(t)? False Let s(l) be the second derivative of -1/2*l**2 + 0 - 20/3*l**3 - 4*l. Is 39 a factor of s(-1)? True Let m(h) = 10*h + 6. Let v(o) = -11*o - 6. Let x(u) = -3*m(u) - 2*v(u). Does 2 divide x(-5)? True Let r be (0 + 5)/(-5) - -5. Suppose 0 = -5*d + r*h + 436, -5*d + 3*h = -409 - 23. Is d a multiple of 8? False Let m be (78/(-15))/((-295)/(-50) + -6). Let a = 84 + m. Is a a multiple of 8? True Suppose -2*u - 11*d + 10*d = -644, -969 = -3*u - 3*d. Suppose 13*i = 1283 - u. Does 11 divide i? False Suppose 0 = k - 4 + 2. Suppose 0 = -4*p - a - a - 8, p = -5*a - k. Does 8 divide 43 + 9/(p - 1)? True Let g = -175 + 500. Let z = -65 + g. Is 10 a factor of z? True Let l(k) = -k**3 + 21*k**2 + 236*k - 12. Is l(29) a multiple of 49? False Suppose 3*c = 2*p - 4601, -325 - 4274 = -2*p + 5*c. Is p a multiple of 124? False Let k(c) = 15*c**3 + 10*c**2 - 86*c + 339. Does 11 divide k(4)? False Suppose -14*s - 440 = -9*s. Is 4 a factor of 2 + s/(-12) - (-2)/(-6)? False Suppose 0*v - 3*v + 415 = 5*c, v - 81 = -c. Let w(u) = u**2 + 32*u - 31. Let o be w(-33). Suppose o*i + 5*f - 18 - 5 = 0, 3*f - c = -5*i. Does 4 divide i? False Let w(t) = -45*t + 172 - 191 - 47*t. Does 13 divide w(-6)? True Let g = 224 - 204. Is 33 a factor of 8/g - 1312/(-20)? True Let a = -750 + 1233. Let y be a*(16/3)/8. Suppose 0*l - 5*l - 2*i = -829, -2*l = -4*i - y. Is 24 a factor of l? False Let z be ((-196)/(-12))/((-3)/54). Let c = z + 425. Is c a multiple of 11? False Suppose -5*x + 20 = -5*h, 3*h + x - 2*x = -4. Suppose 3*n + 620 = 2*c, 3*n + h = 6. Suppose 0 = 4*t - c + 113. Does 10 divide t? True Suppose u = 9*u + 3*u - 73216. Does 52 divide u? True Let x = 16788 + -9680. Is x a multiple of 39? False Suppose 2*s = -7*s + 4176. Let w = s + -262. Is w a multiple of 51? False Suppose 5*p - 2*t - 670 = 0, -157 = -p + 4*t + t. Let c = 3 + 1. Suppose 2*h = -c*r + 3*h + p, 5*r = -2*h + 152. Is 32 a factor of r? True Suppose -2*j - 72*j - 27*j + 67367 = 0. Does 29 divide j? True Let z be (-1 - 4/(-1)) + 1041. Suppose 0 = -5*p + 2*p + z. Is 58 a factor of p? True Let q be 2/((-18)/(-915)) + 4/(-6). Suppose q = 5*f - 779. Is 22 a factor of f? True Suppose 2*q - 190 = 4*c, -5*c - 2*q - 104 = -3*c. Let f = c - -58. Suppose 4*a - 369 = -n, 79 + f = a - 4*n. Is 21 a factor of a? False Let z = -75 - -128. Let t = z + 85. Is 10 a factor of t? False Let s(p) = -p**2 + 9*p - 2. Let u(z) be the first derivative of -z**3/3 + 4*z**2 - z + 16. Let y(f) = -4*s(f) + 3*u(f). Does 10 divide y(14)? False Let n(v) = 4*v + 66. Let i be n(-16). Suppose -a = i*a - 12. Is 2 a factor of a? True Suppose -3*s = -2*s - 2, 2*s = 5*l - 1146. Let t(m) = -m**2 + 49*m - 95. Let r be t(0). Let o = l + r. Is o a multiple of 27? True Suppose -d + 1691 = 3*z, -16*d + 17*d - 2255 = -4*z. Is z a multiple of 23? False Suppose -28*a + 30*a - 710 = -2*u, -10 = 2*a. Is 6 a factor of u? True Let b be (1/(-1) - -6)*(-2 + -3). Does 23 divide 3/(-5) - 3440/b? False Suppose 145636 = 35*d + 38*d - 69349. Is d a multiple of 72? False Suppose -12*w + 1908 = -6*w. Let j = w - 43. Is 58 a factor of j? False Suppose -u - 107 = -2*v - 39, 2*v - 68 = -3*u. Let h = v + -28. Suppose 3*b - h*t = -t + 258, 4*b + t - 321 = 0. Does 27 divide b? True Suppose 0 = -62*a + 61*a + 231. Let u = 331 - a. Does 10 divide u? True Suppose -5*b + 460 + 3210 = -1580. Does 10 divide b? True Suppose 0 = 163*i - 173*i + 33810. Does 24 divide i? False Suppose 86*z - 79*z = 21. Suppose -4*l + 3*f + 238 = -3*l, z*l - f - 738 = 0. Is 17 a factor of l? False Suppose 9*n - 7 = 2. Is 7 a factor of (0 + -3)*(-7 + n + -1)? True Let b be (2 - (2 + 0))*-1. Suppose 5*l + 4*r - 1196 - 145 = b, -1040 = -4*l + 5*r. Suppose 5*f = -0*n + 2*n + l, 0 = 3*f - n - 159. Is f a multiple of 28? False Suppose 0 = 5*i + 3*k + 279 - 879, -4*k - 360 = -3*i. Is 8 a factor of i? True Suppose 4*a - 19 = -3*p - 0, -5*a + 5 = 0. Suppose -3 = 4*v - p*v. Suppose -3*q + 84 = 3*r - 12, v*r + 5*q = 86. Is r a multiple of 8? False Suppose -2*h + 0 = -8, 5*c - 84 = -h. Suppose 0 = 4*f + 4*i - c, 2*f + i = 11 - 0. Suppose f*p - 153 = 337. Does 20 divide p? False Suppose 95*v - 5005 = 60*v. Is v a multiple of 13? True Suppose q - 3*g - 714 = 0, -113*q + 111*q + 1428 = 3*g. Is q a multiple of 6? True Let t(n) = 2*n + 14. Let r be t(-6). Suppose r*f = 8, -3*f + 0*f = -3*v + 231. Is 15 a factor of v? False Let h = -153 - -145. Let k(r) = r**2 + 6*r + 10. Is 26 a factor of k(h)? True Let l = 544 + 121. Let w = l + -376. Is 11 a factor of w? False Suppose m - 26 = -10. Suppose 0 = m*c - 14*c - 1194. Is c a multiple of 68? False Suppose -2*j + 0*j + j = 0. Let c(v) = -13*v + 140. Does 14 divide c(j)? True Let c = 28 + -23. Suppose 5*a - 392 = -3*j - 99, -4*j = -c*a + 286. Is 7 a factor of a? False Let a be (-760)/(-133) + (-2)/(-7). Let n = a + 75. Is 7 a factor of n? False Let h be (-124)/31 + 1*-2 + 1. Is 6 a factor of 5 + (2 - (-79 - h))? False Let i(h) be the first derivative of 8/3*h**3 - 3*h + 1/4*h**4 - 14 + 9/2*h**2. Does 7 divide i(-5)? False Suppose 0 = l - 2*d - 208, -1374 = -5*l - 5*d - 274. Let t = 18 + l. Is 14 a factor of t? False Let t(q) = 2*q - 34. Let i be t(18). Let j(p) = 8*p**2 + 8*p**i + 0*p**3 - p**3 - 2*p - 15 - 9*p. Does 7 divide j(15)? False Let c = 67 + -64. Suppose -c*v + 305 = -880. Is 30 a factor of v? False Let u = 6039 + -3822. Does 63 divide u? False Suppose 0 = 2*c + 4*q - 28, q - 3*q - 26 = -4*c. Let m be (2 + 8/(-6))*12/c. Does 18 divide m*142 - (3 - 2)*-2? True Suppose -8 = -74*s + 70*s. Suppose -3*u - 2*w + 23 = -s*u, -4*u + 142 = -2*w. Is 3 a factor of u? True Suppose -4 = -r - 5, 840 = g - 3*r. Suppose 5*z + 631 = 5*l - 734, 3*l + 3*z - g = 0. Suppose 0 = -3*a + l - 66. Is 14 a factor of a? True Suppose 6*y - 7 - 5 = 0. Let z be y/8 + (-1143)/(-36). Suppose z - 60 = -2*m. Is 14 a factor of m? True Let p = 1030 - 400. Is p a multiple of 10? True Suppose 2*f - 485 = -5*a, 2*f + 14 - 4 = 0. Let k = 135 - a. Is 12 a factor of k? True Let n(h) = -50*h + 29. Let k(t) = -151*t + 86. Let y(c) = 4*k(c) - 11*n(c). Is y(-7) a multiple of 61? False Let r be 303*4/(-24)*(-6)/(-3). Let l = r + 325. Is l a multiple of 28? True Suppose -1075*z + 1060*z = -49125. Is z a multiple of 25? True Let o = -45 - -33. Is o/42 - 2676/(-7) - 1 a multiple of 15? False Let p = 32 + -26. Suppose c + 43 = p. Let g = c - -49. Is g a multiple of 6? True Let b(a) = 2*a + 28. Let h be b(0). Let m be (-16)/(-28) - 44/h. Let y(l) = 3*l**2 - 1. Is y(m) even? True Let f be ((-2)/4)/(70/12 + -6). Suppose 0*m = 4*m - 5*u - 1243, 0 = f*m + 2*u - 938. Is m a multiple of 39? True Let c = 3188 + 1299. Is c a multiple of 70? False Let q(i) be the third derivative of i**4/24 - i**3/6 - 17*i**2. Let n be q(5). Suppose n*t - 5*t = 5, 0 = 3*s - 4*t - 185. Does 11 divide s? True Suppose -213 = 317*s - 246*s. Let a(r) be the first derivative of r**3 - 2*r**2 - 5*r - 1. Does 8 divide a(s)? False Let t be (-40)/60*(-51)/(-2). Is (141 + 4)/(-5)*t a multiple of 36? False Let p(b) = 3*b**2 + 2*b - 15. Let m be p(6). Suppose 9*y + 15 - m = 0. Is y a multiple of 7? False Suppose 10 = 5*i - 3*i - u, 0 = 4*i + 5*u + 8. Suppose y - k + 136 = i*y, -59 = -y + 4*k. Let q = y + 23. Is q a multiple of 15? True Suppose 9 + 3 = 6*w. Suppose 2*m - 3*x + 4*x = 91, 0 = m + w*x - 47. Is 9 a factor of m? True Suppose -11*j - 1088 = -3*j. Does 17 divide j*5/(-20)*7? True Suppose -18 = -3*n + 6*n. Is 57 a factor of 33/n*33*(-8)/12? False Let i = 2503 - 617. Is 23 a factor of i? True Suppose -4*w = -25*k + 27*k - 9438, 0 = -5*k - 5. Is w a multiple of 59? True Let d = -589 + 897. Suppose 3 = -q + 9. Suppose -5*x - 3*g + q*g = -d, -16 = -4*g. Is 8 a factor of x? True Suppose 106*g = 36*g - 63*g + 617120. Is 30 a factor of g? False Let q(p) = p**3 - 82*p**2 + 240*p + 498. Is q(79) a multiple of 8? False Is (15 + -9)*15468/72 a multiple of 35? False Let x be 1/(-1 - (-352)/354). Let l = 69 - x. Is l a multiple of 6? True Does 14 divide (76193/(-26) + -20)*(-16)/6? True Is 34 a factor of (14 - (14 + -4))/((-1)/(-193))? False Is 69 a factor of (30 + 0)*2/10*(-3904)/(-8)? False Does 13 divide (-3 - (-21)/6)*(261 + -1 + -2)? False Let y = 1992 + -129. Is y a multiple of 69? True Does 7 divide 2757/3*((-2 - 3) + 6) - 5? False Suppose 4*o = -5*p + 17, 3*o + 14 = 4*p - 12. Suppose -b - 5*r = -0*b - 60, 0 = -p*b - 2*r + 300. Is b a multiple of 12? True Let p(m) = -110*m - 368. Is p(-8) a multiple of 81? False Suppose -167 - 25 = 8*u. Let c(t) = -2*t**2 - 54*t - 44. Is 20 a factor of c(u)? True Let b(n) = -n**3 + 21*n**2 - 11*n - 20. Let s be b(20). Suppose -h = h - s. Is h a multiple of 16? True Let z(x) = x**3 + 12*x**2 - 2*x - 19. Let v be z(-13). Let k = v + 207. Is k a multiple of 2? False Let w(j) be the third derivative of j**5/30 + 5*j**4/6 + 4*j**3/3 + 3*j**2. Let b be w(-13). Let g = -46 + b. Is g a multiple of 20? True Let a = 20 - 18. Let r be 0 + -1 + (3 - -10). Suppose a*l - 5*u = 119, -5*u + r = -u. Does 9 divide l? False Let p(l) = 6*l**2 + 12*l + 9. Let c be p(6). Let k = -85 + c. Is 10 a factor of k? False Suppose -2*s + a + 2154 = 0, 4*s - 11*a = -8*a + 4306. Suppose -2 = 2*y, -2*y = 4*g - 0*g - s. Does 10 divide g? True Suppose -9*s + 25055 + 22659 = 8834. Is s a multiple of 32? True Let b(u) = -2 + 44*u + 40*u - 33*u + 24*u. Is b(1) a multiple of 26? False Suppose 4*c + 10 = -14. Is ((-30)/c)/((4 - 3)/3) a multiple of 3? True Suppose 11*q = 6*q - 3*w + 2156, -2*q - 4*w = -854. Let f = q - 240. Is 35 a factor of f? False Let o = 6827 - 4352. Does 25 divide o? True Suppose 5*w + 2*i = 25551, 3*i + 23728 + 1808 = 5*w. Is w a multiple of 13? True Let n(z) = 3*z**2 - 19*z - 6. Let j be n(8). Let b = 36 - j. Suppose 39 + 129 = b*x. Does 28 divide x? True Let b(r) = 167*r**2 - 600*r + 7. Does 166 divide b(9)? True Let u(c) = 165*c**2 + 17*c - 34. Does 84 divide u(2)? False Let r(x) = 36*x**2 + 27*x + 3. Is 32 a factor of r(-10)? False Let i be (6/4)/(3/(-92)). Let q = -239 + 233. Let v = q - i. Does 10 divide v? True Suppose -w = -2*n + 2, -2*n - 2*n + 4*w = 0. Suppose -5*a + n*k = 7*k - 205, 0 = 3*k - 3. Is 5 a factor of a? True Suppose 26*m - 5359 = 5093. Is m a multiple of 67? True Does 5 divide (11/3 - 3/(-9))*265? True Let p(s) = 6*s**3 - s**2 + 4*s + 2. Suppose 0 = 7*r + 34 - 62. Does 29 divide p(r)? False Let b(h) = 56*h**2 + 7*h - 28. Let c be b(4). Let v = c - 604. Is 70 a factor of v? False Is 9*-10*(-774)/30 a multiple of 18? True Let q(r) = 3*r - 20. Let t be q(8). Suppose -2*y = t*p - 4, -4*p - p + 10 = 5*y. Is 2 a factor of y? True Let i be (1/(-3))/((-2)/12). Suppose 10*t = -18 + 48. Suppose -i*y + 102 = 2*q, -t*q = -4*q + 2. Is y a multiple of 8? False Let p(r) = -2256*r - 11. Is p(-4) a multiple of 23? False Let d be (12/5)/(5/(900/8)). Suppose -d = 4*m + 58. Is m/(-3) - (1 + 6/(-9)) a multiple of 5? False Let u(a) = -62*a + 4. Let h be u(-10). Let n = h - 352. Suppose o = 2*k + 136, -o - o - 5*k + n = 0. Does 34 divide o? True Let v = 7180 + -844. Is v a multiple of 37? False Let h(l) be the second derivative of 13*l**5/15 - l**4/24 + l**3/6 - l**2/2 - 15*l. Let u(r) be the first derivative of h(r). Is u(-1) a multiple of 27? True Let g be ((-28)/(-6))/(((-20)/12)/5). Is 45 a factor of (13242/(-7))/(-6) + 4/g? True Suppose 2*y + 11*y = -3861. Let o = y - -658. Does 41 divide o? False Suppose -2 = -2*v - 0*v. Let z = v + 5. Suppose 2*n + z*n = 464. Does 20 divide n? False Suppose a - 4*z - 116 = 644, 5*a + 3*z - 3731 = 0. Is 17 a factor of a? True Let q = 159 + -24. Is 60 a factor of 15/(q/9756)*(-1)/(-4)? False Let r(j) be the first derivative of -j**4/4 - 2*j**3 + 7*j**2/2 + 5*j - 8. Let y be r(-7). Suppose 3*l - 11 = -2*o, y*l - 10 = -0*l - 5*o. Is l a multiple of 4? False Let x = 66 + -42. Let i be x/108 - (-2)/(-9). Suppose -v + 97 - 25 = i. Is v a multiple of 18? True Let h be (-28)/(-6) + (-14)/21. Suppose -g = c - 6*g - 34, h*c = 4*g + 120. Suppose c*q - 26*q = 153. Does 11 divide q? False Suppose -16*v + 827 + 2341 - 608 = 0. Is v even? True Let y(n) = -n**3 - 9*n**2 - n + 5. Let t be y(-9). Suppose 294 = -11*x + t*x. Is x a multiple of 19? False Let c(j) = 483*j + 822. Does 150 divide c(16)? True Let a(f) = 2*f**3 + 3*f**2 + 3*f - 5. Let u be a(1). Suppose u*r - 82 = 5*g, r - 5*g + 156 = 5*r. Is r a multiple of 3? False Let g = 5249 + -4063. Does 12 divide g? False Suppose 4*f - 56 = -z + 2*z, 4*z = -4*f + 36. Let d(o) = 2*o + 18. Let a be d(-8). Let j = f + a. Is j a multiple of 7? False Suppose 0 = 5*q + 9 - 19. Suppose m = -2*t + 3, 3*m + q*t = -8 + 1. Let l(v) = -v**3 - 5*v**2 - 7*v + 1. Does 12 divide l(m)? True Let q = 94 + -89. Is 11 a factor of (90/(-3))/q + 380? True Suppose -m = 5*w - 4*m + 8, 4*m = -3*w + 1. Let z be (1*(2 + 10))/(-1). Is 744/z*(0 + 1*w) a multiple of 18? False Suppose 2*k - 4*s - 80 = 0, 23 = -k - 5*s + 77. Let t = 502 - 536. Let l = k + t. Is l a multiple of 6? False Suppose 13*l + 7*l + 23606 = 31*l. Is l a multiple of 39? False Let p(c) = 4*c**2 - 2*c + 32. Let o be p(-6). Let m = 270 - o. Does 3 divide m? False Is 29 a factor of (1/(18/174))/(15/5670)? True Is 3 a factor of 0 - (120/100 + (-4656)/5)? True Suppose 2*i = -1089*s + 1085*s + 3796, -3*i + 5704 = -4*s. Is i a multiple of 19? True Let b = -4428 - -5368. Is 2 a factor of b? True Let y = -28 + 32. Let s(r) = 7*r**3 + 2*r**2 - 2*r + 2. Let w(t) = -t**3 - t**2 + t + 1. Let f(j) = y*w(j) + s(j). Does 35 divide f(4)? False Let r(o) = o**3 - 18*o**2 + 19*o + 22. Does 28 divide r(17)? True Let n = -121 - -126. Is (n - 2 - 105/(-1)) + 0 a multiple of 7? False Suppose -l - 4*q - 10 = 0, -5*l + 3*q + 2*q - 25 = 0. Let s be 0*(2 - (-10)/l). Suppose 0 = -s*u - 2*u + 120. Does 15 divide u? True Let t(b) be the first derivative of -13*b**2/2 + 42*b + 3. Is t(-7) a multiple of 9? False Let z(j) = -5*j**2 + 3*j - 3. Let w be z(1). Let i be (1 + w/5)/3. Suppose 4*c - 4*r - 124 = i, -4*r - 11 = -3. Is c a multiple of 4? False Let j(s) = -45*s + 240. Is 6 a factor of j(0)? True Let t(w) = 1611*w**2 + 28*w - 71. Is t(2) a multiple of 11? False Suppose -188 + 8 = 3*k. Is 9 a factor of (7/21)/((-2)/k)? False Suppose 4*s + x + 73 = 309, -3*x + 12 = 0. Let o be (-3)/(-9) + 47/3. Suppose o - s = -2*i. Does 6 divide i? False Let c = -865 - -1355. Suppose 2*t - x + 802 = 7*t, -c = -3*t - 5*x. Does 6 divide t? False Let g = -1160 - -5619. Is g a multiple of 48? False Suppose k + 5*p + 18 = p, 5*k + 5*p = -15. Suppose 2*t + l + 1 = 2*l, -k*l = 5*t - 11. Is 16 a factor of 5*(t - 4 - -17)? False Let g be -5 + 11 + 15/(-5). Suppose 2*t = -5*q + 343, 121 + 85 = g*q + t. Is q a multiple of 10? False Let g = 29 - 28. Let q be -4 - (g + (14 - 2)). Let z = 34 + q. Does 9 divide z? False Suppose 360 = -61*g + 65*g - 2*b, 90 = g - 3*b. Is 90 a factor of g? True Let b be (3/9)/((-6)/(-90)). Suppose b*j - 4*j = 2*k - 9, k - 4 = j. Let t = j + 24. Is 10 a factor of t? False Let q(c) = 2*c**2 + 22*c + 15. Let f be q(-11). Does 21 divide -18*(f/(-6) + -1)? True Let w be (0 + 0)/(3 + -2). Let i be -10 + w + -1 + 1. Is 24/i*(-30)/9 a multiple of 2? True Let k be -4 - 4*(3 + -34). Suppose -t + 66 + k = 0. Does 31 divide t? True Let j = -96 - -159. Is 14/j - 5486/(-18) a multiple of 27? False Let t(k) = -4*k - 47. Let v be t(-12). Suppose 6*m = -v + 97. Is 4 a factor of m? True Suppose -17 = -5*x - 3*r, -2*r + 5 - 19 = -3*x. Suppose 3*n - 2*u - 31 = -2*n, 5*n = 5*u + 40. Is 2 a factor of (n/(-15))/(x/(-84))? False Let b = -163 + 169. Suppose -2*u - g = -801, -u + g + 414 = b*g. Is 19 a factor of u? True Let m = 20 - 22. Let w be -8*(-3)/(-6) - m. Is 7 a factor of (-738)/(-15) - w/(-10)? True Let i(r) = 11*r**2 + 36*r + 6. Let q be i(-6). Let j = 200 - q. Is 14 a factor of j? True Let m(g) = g**2 + 2*g - 8. Let t be m(-4). Suppose t = 5*x - 8*x. Suppose 0 = -f - 4*w + 19, 28 = -x*f + f + w. Is f a multiple of 8? False Let n(g) = -2*g**2 - 17*g - 2. Let p be n(7). Does 5 divide p/(-3) - (7 - 3)? False Suppose 0 = -2*g - 0*g + 2*d - 8, 0 = 4*d. Does 5 divide (g/30)/1 + 754/30? True Let n = 1194 + -1194. Suppose 8*y - 5*y - 9 = 0. Suppose y*c + c - 88 = n. Is c a multiple of 11? True Let x be (-5)/3*3 - -4. Let h(s) = 0 + 7*s**2 + s + 2 - 3 + s**2. Is h(x) even? True Let u = -38 - -35. Let p = 5 + u. Suppose f - p*f + 70 = 0. Does 14 divide f? True Let m(a) = -56*a - 1215. Does 9 divide m(-62)? False Suppose 3*n + 2*m - 2081 = 0, -4*n - 2*m + 2092 = -684. Let u = -317 + n. Suppose 4*y - 11*y + u = 0. Does 13 divide y? False Let r(s) = 2*s**3 - 2*s**2 + 11*s + 40. Let b be r(7). Suppose -3*c + 0*w + 1089 = -3*w, -2*c + b = 5*w. Is 13 a factor of c? False Let x(i) = -i**2 + 10*i - 22. Let s be x(6). Suppose g - 10 = -2*l, -l - 2*g + 17 = s*l. Does 3 divide l? True Let t = -43 + 69. Let b = t - 43. Let y = b - -39. Is 11 a factor of y? True Is (-4420)/((-24)/6) - (9 - (-3 + 7)) a multiple of 22? True Let o(v) = v**3 + v**2. Let t be o(-1). Suppose j - 10 = -t*j + d, -4*d = 16. Suppose 3*m + 78 = -z + j*z, 8 = 2*m. Does 9 divide z? True Let g = 2146 + -1717. Is g a multiple of 13? True Suppose -8*l - 14 + 38 = 0. Suppose -r + l*u - 97 = -6*r, -r + 16 = 4*u. Suppose -z = -108 + r. Is 22 a factor of z? True Suppose 3*x - 120 = -3*v, 3*v - 2*x = -91 + 221. Let n = v + 21. Is 25 a factor of n? False Suppose 873*d + 3580 = 877*d. Is 2 a factor of d? False Let y(h) = h**3 - 22*h**2 + 31*h + 37. Let n be y(21). Let x = -71 + n. Is 11 a factor of x? True Suppose h - 6363 = -981. Does 6 divide h? True Let m(b) be the second derivative of 7*b**3/6 - 23*b**2 - 9*b - 2. Is m(16) a multiple of 11? True Let x = 170 - 165. Suppose 5*v = x, 2*v - v = -z + 85. Is 52 a factor of z? False Let v = 49 - 47. Suppose -12 = -4*k - 0. Suppose -3*g = v*g + 20, -2*a + 212 = k*g. Does 16 divide a? True Let l = 212 + -209. Does 9 divide (0 + 1)*(258 + l/(-3))? False Let p be (-1 - (1 - 4)) + -4. Let h be ((-4)/p - 4)*3/(-6). Is 38 a factor of 4/10 - (383/(-5) + h)? True Let c(f) be the second derivative of f**4/12 + f**3/2 - 25*f**2 + 9*f - 3. Does 16 divide c(-13)? True Suppose -u + 39 = -3*a, -184 = -5*u + 8*a - 4*a. Let s = u - 31. Suppose -s*z - 21 = -b, -5*z = -3*b + 31 + 22. Is b a multiple of 7? False Suppose -6*g - 60 = -g. Let s be ((-1)/4*2)/(2/g). Suppose -666 = -9*q + s*q. Is 27 a factor of q? False Suppose -61*z - 4 = -59*z. Let f be z/(-2*1/61). Suppose d = b + f + 55, 3*b - 471 = -4*d. Does 13 divide d? True Let a be ((-4)/6)/(1/(-2598)*-4). Let w be (3 - (-4 + 8))*(a + 1). Suppose 5*l + 4*z - 539 = 0, 4*l + 6*z - w = 2*z. Is 21 a factor of l? False Suppose -c - 24 = -3*s + 2*c, -4*c - 16 = 0. Let n(m) = 4*m - s + 12 + 3. Does 14 divide n(7)? False Let r = -36 + 41. Suppose 10 = -y - 4*y - r*w, 5*y = -3*w - 2. Suppose 26 = 5*t + 3*o - 26, -2*o = -y*t + 24. Does 7 divide t? False Let c(s) = 54*s - 34. Let f be c(3). Suppose -11*u = -3*u - f. Is u a multiple of 10? False Let q = 114 - 111. Suppose 0 = q*w - 2*d - 188, -4*w = -9*w + 3*d + 315. Is w a multiple of 22? True Let b(h) be the second derivative of -3*h**5/40 - 3*h**4/8 - h**3/2 - 4*h. Let s(a) be the second derivative of b(a). Is 18 a factor of s(-5)? True Let g be 6/10 - (-18)/(-5). Let j = g + 3. Let h(x) = -x**3 + 2*x**2 + x + 28. Is 14 a factor of h(j)? True Let o(l) = -29*l + 27. Suppose 7*c - 10*c = 27. Is 24 a factor of o(c)? True Let f(d) = 2*d**3 - 2*d**2 - 6*d + 13. Let n be f(5). Let l = n - -27. Is l a multiple of 42? True Let l be (6/(-8))/((-2)/352). Let v(r) = -r**3 - 36*r**2 + 78*r + 76. Let p be v(-38). Suppose -4*z + l + 240 = p. Is 27 a factor of z? False Let m = 138 + 219. Suppose 219 = 2*v - m. Does 8 divide v? True Let y(o) = -3*o - 49. Let u be y(-21). Let n be (-9)/21 + (-442)/u. Let g = n - -94. Does 13 divide g? False Let t = -90 - -93. Suppose t*d = -9, 13*m - 16*m + 1110 = 2*d. Does 19 divide m? False Suppose 24 = 2*o - 0. Suppose 3*p + o = -2*s, -8 = -4*s - 4*p - 32. Does 18 divide (-320)/(-6) + (-4)/s? True Suppose -q - 4*x + 146 = 0, -2*q + 5*x + 294 = -24. Suppose 680 = 3*a - 5*k, 5*a - 2*k - 1011 = q. Does 47 divide a? True Let r be 3/(-8) - (-7692)/32. Is 45 a factor of 4 + r/2*(-276)/(-115)? False Is 196 a factor of (32/(-20)*1)/((-13)/((-1560650)/(-20)))? True Let q = 9834 - 1752. Does 28 divide q? False Suppose i - 2589 = -4*h, -12996 = -5*i + 9*h - 12*h. Is 17 a factor of i? True Is 76 a factor of 26370/40 + 10 + (-21)/(-12)? False Let z(r) = r**2 - 5*r - 17. Let k be z(-4). Suppose 27*d = k*d + 1296. Is 9 a factor of d? True Suppose -5*m = 5*k - 35, -4*m - 3*k = -33 + 8. Let h be (-1*1)/((-1379)/343 + m). Let q = -11 + h. Is q a multiple of 9? False Let i(r) = -r**3 + r**2 + 2*r + 178. Let j(o) = -o**2 + 32*o - 31. Let s be j(31). Does 18 divide i(s)? False Let w(m) = -3*m**3 + 6*m + 6. Let z be w(-1). Suppose 248 + 322 = z*b. Is b a multiple of 38? True Let p(a) = 269*a**2 + 10*a + 13. Is p(3) a multiple of 8? True Suppose -8*z = -14*z - 198. Let j = z + 29. Is 5 a factor of 20/5*(-50)/j? True Let t be 14/49 + (-35020)/(-28). Suppose -24*m + t = -15*m. Is 17 a factor of m? False Suppose -1890*w + 1900*w - 33480 = 0. Does 124 divide w? True Let n(o) = 72*o - 80. Let f be n(5). Suppose -4*s = -k + 253, 2*k - f = -3*s + 248. Is k a multiple of 42? False Let l = 142 - 126. Suppose -4*h - 4*i = -12 - l, 3*h - i = 1. Does 2 divide h? True Suppose -3*w - 2*a = -38, -2*w - 5*a + 18 = -0*a. Suppose 0 = -w*s + 186 + 374. Is s a multiple of 17? False Let v(o) = -o + 1. Let u(k) = 45*k - 4. Let s(i) = u(i) + v(i). Let g be s(1). Suppose 116 = f - 3*b + g, 0 = 5*f + 3*b - 285. Is f a multiple of 15? True Let n(q) = 23*q**2 - 4*q - 1. Let b be n(3). Suppose -4*l = -3*g + b, -60 = 5*g - 6*g - l. Does 8 divide g? False Let g = 23 - 20. Let i(d) = 9*d**2 - 3. Let j be i(g). Suppose -15 = -5*k, 39 + j = 4*v - k. Does 5 divide v? True Suppose -4*f - 4*q - 12 = -2*f, 5*f + q = 15. Suppose 1150 = f*a + 7*j - 5*j, -6 = -2*j. Does 11 divide a? True Suppose 30*h - 4101 = 2739. Is 16 a factor of h? False Let n = 2836 + -208. Is 36 a factor of n? True Let b(q) = -q + 18. Let t = 51 - 43. Let g be b(t). Suppose 5*k - g*k = -110. Is k a multiple of 11? True Let c(r) = -9*r + 1. Let n be c(-1). Suppose 1 = k + n. Let m = k - -19. Does 2 divide m? True Suppose -27058 = -5*w + 4*c, -5*w + 60*c - 57*c = -27056. Does 10 divide w? True Suppose 0*h = 2*h, -t - 4*h = -9*h - 1402. Is t a multiple of 2? True Let i = 2536 - 2428. Does 3 divide i? True Let w = 128 - -182. Let u be w/(-8) - 4/16. Let y = u + 51. Does 4 divide y? True Let s(b) = 10*b + 53. Let g be s(-5). Suppose 4*m = -g*n + 586, -5*m = 3*n + n - 780. Is 38 a factor of n? True Suppose 116 = 5*v - 2*q, 2*v = -5*q - 572 + 601. Is 7 a factor of v? False Suppose -5*j + 20 = -5. Suppose -j*c - 2*r - 532 = 0, -3*c - 202 = -5*r + 111. Let f = c - -152. Does 23 divide f? True Suppose 0 = -19*j + 21*j - 4. Suppose j*y = 4*y - 6, 5*q + 3*y - 229 = 0. Is 4 a factor of q? True Let l(q) = q + 1. Let i be l(5). Suppose -14 = 4*o - i, 0 = -2*w + o + 10. Suppose w*j + 68 = 292. Is 11 a factor of j? False Let h(v) = 8*v**2 + 39*v - 34. Let g be h(-14). Is g/16 + 4/16 a multiple of 14? False Is 24 a factor of (-25 + 15 + 8/(-4))*-564? True Suppose 0 = -79*p + 45*p + 48690 + 139908. Is 16 a factor of p? False Let g(a) = 2*a**2 + 9*a - 5. Let o be g(-5). Suppose 2*z - 5*t - 33 = o, 4*t = -2*z + t + 25. Is z even? True Let r(u) = u**2 - 22*u + 12. Let v be r(21). Let z = v - -15. Suppose -3*o + 2*n = -13, -5*o - n = -z - 33. Is o a multiple of 2? False Let t(f) = -5*f**2. Let l be t(2). Let w(q) = -22*q - 41. Does 19 divide w(l)? True Let r(t) = t**3 + 21*t**2 - 26*t - 69. Let f be r(-22). Suppose 17*n = f*n - 20. Is n a multiple of 5? True Let b(k) = -9*k + 17. Let n be b(14). Let m = n - 56. Let y = m - -294. Is 32 a factor of y? False Suppose -3*w = -0*j - 2*j + 283, -3*w = -j + 146. Let t be 2/(-12) - 524/24 - -3. Let r = j + t. Is r a multiple of 19? False Suppose -3*y - 4*x + 620 = 0, -6*x + x = 3*y - 625. Is y a multiple of 10? True Suppose -4*z = -5*f + 2396, -1922 = -4*f - 5*z + 3*z. Is f a multiple of 120? True Let j = 31 + -31. Let o = 2 - j. Does 22 divide (32/(-6))/(o*3/(-99))? True Suppose t = 2*t - 21. Suppose t = -3*c + 5*c + b, 0 = -b - 5. Suppose 5 + c = j. Is 9 a factor of j? True Let d = -3417 + 6432. Does 7 divide d? False Let r = -229 - -244. Suppose -r*c + 1562 - 362 = 0. Is c a multiple of 8? True Suppose -5*x + 2*y = -34, 7 = -x - 2*y + 7*y. Is 8 a factor of x*(7/4 + 6)? False Suppose -15 = 128*j - 133*j. Suppose 4*h - 165 = -3*l, 2*h - 145 = -j*l + 14. Is 17 a factor of l? True Let s = 12793 + -5783. Is s a multiple of 145? False Let c(t) = 620*t**2 + 11*t + 11. Let d be c(-1). Suppose 0 = -5*s, -3*s = -2*p + 7*p - d. Is 12 a factor of p? False Let p(i) = -11*i**3 + 6*i**2 - 27*i - 178. Is p(-5) a multiple of 26? True Let i = -720 + 1764. Is 87 a factor of i? True Let m(c) = 41*c**3 - 11*c**2 + 31*c - 7. Is m(4) a multiple of 27? True Let n(g) = -g**2 - 10*g + 5. Let j be ((-36)/(-45))/((-54)/50 + 1). Let c be n(j). Suppose 4*k = 3*k - c, 2*k + 50 = h. Does 10 divide h? True Let a be -62 + -5*(4 + -3). Let b = a - -472. Is 15 a factor of b? True Let k(h) = -h**3 + 2*h**2 - 10*h. Let y be k(-10). Let p = y + -868. Is 26 a factor of p? False Let t(n) = -12*n - 3. Let a(x) = -8*x - 2. Let j(b) = 7*a(b) - 5*t(b). Suppose -5*l = 2*i - 19, 0*l + 1 = l. Does 29 divide j(i)? True Let q = -359 - -387. Suppose t = 6*t - 115. Let p = q - t. Is 2 a factor of p? False Suppose -4*q + 15 = q. Suppose q*w - 2862 = -3*w. Does 16 divide w? False Let s(i) = 882*i + 903. Does 23 divide s(5)? True Suppose 5*x + 4*t + 13 = 291, 0 = -2*x - 3*t + 107. Suppose 0 = -5*i - 157 - x. Let r = i - -50. Is r a multiple of 2? False Let q(d) = -7*d**3 + 12*d**2 - 11*d + 5. Let y(m) = 15*m**3 - 24*m**2 + 22*m - 9. Let t(z) = 13*q(z) + 6*y(z). Let p = -49 - -60. Does 4 divide t(p)? False Let p(f) = f**3 + 17*f**2 + 23*f - 7. Let w be p(-16). Let u = -40 + -20. Let o = u - w. Is o a multiple of 9? False Let r = 35 + -33. Suppose -r*y - j = -0*y - 10, -4*y - 5*j = -20. Suppose -2*z - h = -y*z + 49, z + 2*h = 14. Does 16 divide z? True Suppose -4*n - n = -2015. Let a = n - 263. Let m = -53 + a. Is m a multiple of 29? True Let q be 105754/10 - 6/15. Let g be (-1)/(-2) + q/30. Suppose -6 = -2*o, -g = -5*t + o + 64. Is 21 a factor of t? True Let k be (0 - (1 + -5)) + 11/1. Is 16 a factor of (265/k)/(3/18*2)? False Let u(w) = 799*w**2 + 2*w - 13. Let l be u(2). Suppose -21*j + 887 = -l. Is 15 a factor of j? False Let p = -8 + 11. Let d(r) = r**2 + 4*r. Let v be d(-5). Suppose v*w = -k + w + 22, -21 = -k - p*w. Is k even? True Let y(f) = -2. Let t(x) = 27*x + 99. Let q(u) = -t(u) - 6*y(u). Does 15 divide q(-6)? True Is 142 a factor of (-3 - 15924/(-24))/((-2)/(-20))? False Suppose 15*t = -5*t + 10620. Suppose -17*p + 693 = -t. Is p a multiple of 36? True Let z = 197 - 215. Is 4 a factor of (-2)/18 - 1766/z? False Let w(u) = 75*u**2 + 14*u - 9. Is 12 a factor of w(-3)? True Suppose 2*h - 8*f + 2 = -3*f, -5*h + 14 = -3*f. Suppose h*z + 12 = z, y - 2*z - 40 = 0. Is 12 a factor of y? False Let m(g) = 4*g**2 - 19*g - 12. Let h(p) = 7*p**2 - 37*p - 24. Let a(r) = -3*h(r) + 5*m(r). Does 10 divide a(14)? True Let a = -907 - -1860. Is 10 a factor of a? False Let r = -140 - -75. Let a = 10 + r. Is 32 a factor of (-2930)/(-22) + 10/a? False Suppose 4*v - v - 21 = 0. Let b(h) = -5*h - h + v*h + 0 + 19. Does 35 divide b(16)? True Let s = -39 - -17. Let m be (4/s - 4/(-22)) + 4. Does 28 divide ((168/15)/m)/(3/30)? True Suppose -49 = 3*o + 4*w, -51 - 46 = 4*o - w. Let m = o + 28. Suppose 3*b + m*z = 454, 4*b + 3*z - 2*z = 628. Is b a multiple of 40? False Let p = -45 + 48. Let x be ((-1)/p)/((-3)/891). Suppose -3*n = 3, 0*r + 5*n - x = -r. Is 18 a factor of r? False Let v = 279 - -5561. Is 7 a factor of v? False Suppose -10*s = -6*s - 80. Suppose -16*u + s*u - 492 = 0. Does 8 divide u? False Let k(r) = -r**3 + 10*r**2 + 3*r - 57. Is k(-15) a multiple of 21? True Let g(h) be the third derivative of h**8/4032 + h**7/1260 - h**6/360 - h**5/60 + 10*h**2. Let s(o) be the third derivative of g(o). Is 11 a factor of s(3)? True Suppose -92 = -8*u - 68. Does 43 divide u/12 + (-7821)/(-44)? False Is (6/5)/1*(-19 - -2 - -5997) a multiple of 138? True Let u be (-18)/(-8) - (-5 + 21/4). Is ((-2)/(-7)*-9)/(u/(-28)) a multiple of 18? True Suppose k = -2*m + 1158, 2*m = -4*k + 6*k - 2334. Suppose -4*q - k = -8*q + 4*n, 4*q - 1170 = 2*n. Is q a multiple of 42? True Let h(z) = z**2 - 32*z - 3. Is h(-34) a multiple of 27? True Suppose -21*l = -20*l - 44. Let n = -43 + l. Does 18 divide n/(-2) + 2197/26? False Let v = 81 + -79. Is 1*(v/16 + 17149/88) a multiple of 13? True Let x(a) = -a**2 - 13*a + 18. Let h be x(-13). Suppose -5*r = 3*k - 38, -k - 2*k + h = 3*r. Suppose -l + r = 3*q - 1, 0 = -l - 4*q + 13. Is l a multiple of 4? False Let p(g) = -81*g - 1899. Is p(-67) a multiple of 12? True Let w(j) = -2 - 9 - 4*j - 7 + j**2. Let h(v) = -v**3 + 14*v**2 - 41*v - 26. Let c be h(9). Is 7 a factor of w(c)? True Let t be -11 - 7 - (2 - -4). Let y(x) = -6*x + 10. Is 11 a factor of y(t)? True Suppose -3*d - 2*d + 15 = 0, -5*o - d + 8 = 0. Let t be -6 + 138 - (o + -4). Suppose -17*y = -18*y + t. Is 15 a factor of y? True Suppose 18*y = 22*y - 16. Let d(f) = 3*f**3 + 4*f**2 - 8*f - 9. Is d(y) a multiple of 56? False Let x(y) = 339*y**2 + 4*y - 21. Is 18 a factor of x(2)? False Let q(f) = -f**2 + 4*f + 16. Let i be q(6). Suppose -y + m + 7 = 0, y - 4*m - i = 3*y. Suppose -y*v + 244 = -0*v. Is 12 a factor of v? False Let x(c) = c**2 + 11*c + 24. Let s be x(-10). Suppose -108 = -s*h + 10*h. Is h a multiple of 9? True Let l(g) be the second derivative of g**4/12 + g**3/3 - 11*g**2/2 + 17*g. Let f be l(-7). Let p = 39 - f. Is 15 a factor of p? True Let i(v) = 81*v + 8. Let z(h) = 161*h + 16. Let q(g) = -11*i(g) + 6*z(g). Is 14 a factor of q(1)? False Let o(d) = d**2 - d. Let f be o(3). Suppose f = 3*m - 3. Suppose 5*l - 190 = -5*y, 0*y = y - m*l - 18. Does 10 divide y? False Let q(t) = 2*t**2 - 21*t + 33. Let u be q(9). Suppose 119 = -3*y + v + 728, -2*v + u = 0. Is y a multiple of 34? True Let m(h) = 3*h**2 + 1 + 3*h + h - 11*h. Let p be m(2). Is 2 a factor of ((-3 - p)*2)/((-38)/171)? True Suppose 157*z - 90093 = 9*z + 89875. Is z a multiple of 64? True Suppose -4*s - 1064 = -4*d, -3*d - s = -2*s - 788. Suppose 5*z + 2*o + d - 1405 = 0, 0 = 3*o + 9. Is z a multiple of 23? True Let l(p) = p**3 - 1. Let h(y) = y**3 + 20*y**2 - 23*y - 24. Let t(c) = h(c) - 2*l(c). Does 29 divide t(18)? False Let o = 4740 - 3465. Is 25 a factor of o? True Let h be (1 + -8)*(34 - 35). Is 14 a factor of (-233)/(-7) - (h + (-188)/28)? False Is 3/(-18) + 26962/24 - 15/(-20) a multiple of 16? False Suppose 40*p - 126157 - 123791 = -13*p. Is p a multiple of 65? False Let p be ((-4)/(-16) + 1)*4. Suppose -94 = p*a + 2*z, 7*z + 82 = -4*a + 2*z. Is ((-120)/a)/((-4)/(-42)) a multiple of 16? False Let h(x) = 18*x**2 + 6. Let r be h(-3). Suppose -r = -b + 124. Is 37 a factor of b? False Let g(i) = 2*i**2 + 33*i + 45. Suppose -3*t = z + 72, 4*z - 72 = 3*t + 9*z. Is 70 a factor of g(t)? False Let a = -1092 + 1077. Suppose 1 + 7 = -4*h. Is (h - a/12)/(4/(-624)) a multiple of 13? True Let r(l) = -l**3 - 5*l**2 + 4. Let y be 5*(-4)/8*2. Let i be r(y). Suppose i*q = 67 + 93. Is q a multiple of 5? True Let n(b) = 15*b**2 - b + 3. Let o be n(3). Suppose 67*a = 72*a - o. Is a even? False Let p(u) be the third derivative of u**5/60 + 5*u**4/12 + 2*u**3 - u**2 + 2*u. Is 13 a factor of p(-12)? False Suppose 0 = 3*k + 2*a - 7*a - 7966, 0 = 5*k - 3*a - 13250. Is 8 a factor of k? False Suppose -58679 = -66*p - 6077. Does 15 divide p? False Let k = 43 - -225. Suppose 3*c + c = -3*a + 258, 4*c = 2*a + k. Is c a multiple of 20? False Let p(v) = -v**3 + 20*v**2 + 22*v + 37. Let j be 44/2 - (42/7 + -5). Is p(j) a multiple of 17? False Let z(i) = 20*i**2 - 12 + 18*i + i**3 + 24 + 11 + 10*i. Is z(-18) a multiple of 20? False Suppose -12*h = -10*h. Let n(m) = m**3 + 2*m**2 + 3*m + 77. Is n(h) even? False Let o(a) = a + 32. Let z be o(-6). Let s be (42/5)/(3/45). Let b = s - z. Does 25 divide b? True Does 17 divide (561/44)/(652/160 - 4)? True Let b(u) = u**3 + 7*u**2 - 2*u + 4. Let o be b(-7). Let t(s) = s - 43. Let g be t(o). Let w = g + 34. Is 3 a factor of w? True Is 15 a factor of 5/(-1)*6/((-120)/17156) + 1? True Suppose 3*z = -6729 + 26370. Is z a multiple of 16? False Suppose 3396 = 4*w - 4*r, 41*r - 5 = 36*r. Is 4 a factor of w? False Suppose -4*i + 332 = 2*h, -3*h = -h + 2*i - 328. Suppose 3*a - 1251 + h = 0. Suppose 0 = 5*n + a - 948. Is n a multiple of 28? False Suppose 0 = -0*a - 5*a + 3645. Suppose -a = 29*d - 32*d. Does 11 divide d? False Suppose -4*g - l + 18 = 0, 24 = g + 4*g + 2*l. Let i(p) = -490*p**2 - 3 + 5 + 2*p**3 + 490*p**2 + 5*p + 1. Is 30 a factor of i(g)? False Suppose 5*l + 4*q = 4173, -20*l - 3*q = -22*l + 1683. Is 31 a factor of l? True Suppose -5632 = 18*t - 34*t + 17360. Does 24 divide t? False Let n(a) = -17*a**3 + 15*a**2 + 32*a + 5. Is 93 a factor of n(-5)? False Let m be (402/335)/(-1 + (-37)/(-40)). Does 11 divide (-1*m/20)/(12/2310)? True Suppose -3*c + 837 = v, -3*c + 277 = -2*c + v. Let p = c + -160. Is 15 a factor of p? True Suppose 44*d = 94169 - 2825. Is 177 a factor of d? False Let r(l) = l**3 - 12*l**2 + l - 7. Let s be r(12). Suppose -a + s*a + 614 = 2*k, 2*k - 641 = -5*a. Suppose 0 = -4*g + k + 87. Does 25 divide g? True Suppose 0*k + 4*k = 172. Suppose k + 2 = -3*f. Let o(a) = -4*a + 34. Is 13 a factor of o(f)? False Let h = 0 - 7. Let c be (-828)/h + (-28)/98. Let f = -13 + c. Is f a multiple of 15? True Let o be -7*10/(-385) + 86/11. Suppose -21*u = -o*u - 741. Is 2 a factor of u? False Let c = -86 + 88. Suppose -c*t + 3*k - 5*k + 262 = 0, 2*k = -5*t + 658. Is 4 a factor of t? True Suppose -2*u - 4904 = -7*u - k, 4888 = 5*u - 3*k. Suppose 0 = -90*a + 86*a + u. Is 11 a factor of a? False Let d(f) = 20*f**2 - 14*f + 69. Does 70 divide d(-11)? False Let x be 2/(-9) - (-362)/9. Suppose -7*o + 6*o = -5. Suppose -2*y + l = -y - x, 0 = -o*l. Is y a multiple of 10? True Let s be (2 + -2 - 1)*233. Let y = -109 - s. Is y a multiple of 15? False Let u be 92/23 - 2*1. Suppose u*q - 269 = 411. Does 51 divide q? False Suppose f - 4*k = -17, -4*f - 3*k = -2*k - 17. Does 16 divide -11 + 105 - (-1 - f)? False Suppose 14*r + 216 - 24198 = 980. Does 36 divide r? False Let l(b) be the second derivative of 11*b**3/6 + 8*b**2 + 19*b + 3. Suppose 4*s = -0*s - 5*y + 17, -2*s + 2 = -4*y. Does 16 divide l(s)? False Let g(u) = 3*u**2 + 4*u + 28. Suppose 2*a - 45 = 6*o - o, -3*o - 55 = -4*a. Is g(a) a multiple of 68? False Suppose 2*p - 5*t = -10*t + 11804, 5*p - 4*t - 29543 = 0. Does 179 divide p? True Let t be 4/6*12/8. Let k be -2 + -1 + t + 7. Suppose -d + 45 = -k. Does 23 divide d? False Suppose -2*b + 744 = 2*b. Let z be (-4112)/(-32) + 3/6. Let h = b - z. Is 8 a factor of h? False Suppose -11*p - 18 = -8*p. Let h be (2 + 1)*(-8)/p. Does 8 divide 32/(-10)*(-10)/h? True Suppose -2*q + 5*q = 5*x - 14, -2*x + 4*q = -14. Let f(m) = 3*m + 1. Let r be f(-1). Is (r + x)*(0 - (-1 + 39)) a multiple of 9? False Let w(f) = f**3 - 12*f**2 - 3*f + 40. Let h be w(12). Let u(m) = 51*m - 19. Does 5 divide u(h)? True Let q be 4*(2 - 34/(-8)). Let p = q - 25. Suppose p = u + 5, -5*o + 3*u + 180 = 2*u. Does 7 divide o? True Suppose -4*h = 5*v - 8, -3*v = 2*v - 4*h + 8. Suppose 0 = -v*x + 5*x - 225. Does 9 divide x? True Suppose c + q + 4 - 5 = 0, -5*q + 35 = -5*c. Let b = 17 - 35. Does 3 divide (-58)/(-6) - (-2)/b*c? False Let l = 3832 - 2996. Is 21 a factor of l? False Let g be (-22)/(-55) - (-18)/5. Suppose 516 = -g*q + n, 5*n - 850 = 4*q - 350. Does 8 divide (-4180)/q - 2/13? True Let a(d) = -d + 263. Let i be (0 - (0 + 0))*1/(-2). Is 11 a factor of a(i)? False Let b(r) = r**3 - r**2 + 13*r + 24. Let m be b(-7). Let t = m - -695. Is 30 a factor of t? False Suppose 0 = 2*s + 10, 2 = -4*l + s - 17. Is 39 a factor of l/9*-9 - -163? False Suppose 3368 = 5*c + 1808. Is 18 a factor of c? False Let u be 17/(-7) - 6/(-14). Let v be (-1)/((-36)/(-7280)) - u/9. Let c = -111 - v. Does 13 divide c? True Suppose 4*d + 24 = 4*x, -5*x + 2*x + 2*d + 20 = 0. Is (-564)/x*10/(-3) a multiple of 52? False Let b(h) = -h**2 + 10*h + 21. Let c be b(11). Does 36 divide (17/c + -2)*64*-15? True Suppose 0 = 16*m - 12*m + 2*s - 4892, 3*m = -5*s + 3662. Is m a multiple of 50? False Suppose -317504 = -22*d - 30*d + 11*d. Is 88 a factor of d? True Let t = 235 - 112. Let x = -95 + t. Is 4 a factor of x? True Suppose -2*p + z = -3609, 9015 = 5*p + 101*z - 105*z. Does 20 divide p? False Let d(p) = -p**2 - 13*p + 1. Let b be d(-13). Does 15 divide (-4)/2 + (92/b - 5)? False Is 6 a factor of (206 + -19)*(-42)/(-3)? False Let c(h) = 5*h**3 + 0*h**3 - h**3 - 3*h**3 - 3 + h + h**2. Let b be c(3). Suppose 2*k + 0*k = 3*w - b, -60 = -5*w - 5*k. Does 12 divide w? True Is 36 a factor of (-57058)/(-36) - (-1)/(-2) - 840/1890? True Let y = 2833 + 1305. Is y a multiple of 15? False Let k = 1 - -4. Let y be (-6 - 0 - 3)*1/(-3). Suppose 2*p - k = -3*h, y*p = h - 0*h + 35. Is 9 a factor of p? False Suppose 0 = -11*r + 3*r - 264. Let i = r - -213. Is i a multiple of 10? True Let v(d) be the third derivative of 73*d**4/24 + 3*d**3/2 - 53*d**2. Does 22 divide v(5)? True Let f = -16294 + 23366. Is f a multiple of 32? True Let u(z) = -z**3 - 84*z**2 - 119*z + 484. Is u(-83) a multiple of 54? False Let z = 0 + 8249. Does 38 divide z? False Suppose 15 = 5*i + 5*r, 0 = r - 3*r + 6. Let q(a) = 3*a - 116. Let s(n) = 6*n - 232. Let d(h) = 7*q(h) - 4*s(h). Does 39 divide d(i)? False Let n(p) = 365*p - 116. Is 24 a factor of n(4)? True Suppose -2*o - 63*o - 42*o + 83460 = 0. Is 156 a factor of o? True Let c(r) = 73*r - 32. Let y = -212 + 214. Does 17 divide c(y)? False Let z be (4/(-3))/(5/(-1155)). Let l = z - 202. Is 59 a factor of l? False Let a = 3129 - 2194. Does 11 divide a? True Let l(k) = 5*k**3 + k**2 - 4*k + 3. Let z be l(1). Suppose 4*j = -4*a + 2*a + 74, -z*j - 4*a = -88. Is j a multiple of 3? False Let s be 4 + 1 + (-2)/2. Let a = s + 0. Suppose -a*g = g - 340. Is 19 a factor of g? False Let f = -22 - -105. Suppose 4*p = 20 - 12. Suppose 2*m - 3*r = 48 + 41, -p*m + r = -f. Does 9 divide m? False Let j(n) = -n + 5. Let u be j(5). Suppose 4*h = 5*a - 1383, u = -0*a + a - 4*h - 283. Is 55 a factor of a? True Let s = 35 + -24. Let d = s + -4. Suppose -d*w = -8*w + 51. Does 25 divide w? False Let d = -3657 - -3854. Is d a multiple of 6? False Let l be 301/105 + (-4)/(-30). Suppose 2663 = 5*i - 2*y, -l*i + 1595 = -y - 3*y. Is 13 a factor of i? True Suppose -5*c + 140 = 5*t, 0*c + 140 = 5*c - 3*t. Is (c + -172)/((-1)/(-3) - 1) a multiple of 21? False Let f be 5/(15/(-9)) - (-20 + 5). Let i be (-1 - -7)/(f/8). Suppose -d + 5*a - 36 = -4*d, -23 = -5*d + i*a. Is 5 a factor of d? False Let t(z) = 18*z - 22 - 24*z - 26*z + 7. Is t(-8) a multiple of 15? False Let w(b) = 8*b - 98. Let r be w(13). Let c = r - -6. Is 6 a factor of c? True Suppose 123740 - 148061 = -41*j + 168953. Does 90 divide j? False Suppose -2*k + 3*k = -4*o + 25, -2*k - 13 = -o. Is 5 a factor of (-1 - -2)/((56/1192)/o)? False Let q(y) = 233*y - 1827. Does 6 divide q(9)? True Let t = -70 - -72. Suppose -2*x - 4*o + 5 + 123 = 0, 4*x - t*o - 286 = 0. Is 7 a factor of x? True Let p(z) = 95*z**2 - 13*z + 3. Let l be p(5). Suppose 16*s + l = 5769. Is 8 a factor of s? True Let x = 9 + -7. Let v(l) = -8*l**x + 8*l + 5 - 13*l - 2*l**3 + l**3. Is 8 a factor of v(-8)? False Suppose a + 5*t = -16, 0 = 3*t - 2*t + 2. Let v be (-154)/4 + a/4. Is 19 a factor of (v/6)/(2/(-12))? False Is 155 a factor of (-8)/(-6)*(37755/18 + -5)? True Suppose -4*g = 16 - 12. Let f(x) = -13*x**2 + 2*x. Let b be f(g). Does 15 divide (4/b*-12)/((-4)/(-150))? True Let f = 4902 - 4066. Is 44 a factor of f? True Let l be 150/18 + 3/(-9). Let o(i) = -i**3 + 9*i**2 - 6*i + 2. Let w be o(l). Suppose -6*y + 7*y = w. Is 9 a factor of y? True Suppose 0 + 4 = 5*a - 3*m, 7 = 2*a - 3*m. Let y be a/(-3)*(2 + -2). Suppose y*p = -2*p + 64. Is p a multiple of 8? True Is 22 a factor of 3/((-24)/10) - 4586/(-8)? True Let w(p) = 4*p + 16. Let x(u) = 2*u - 2. Let h(z) = -w(z) - 2*x(z). Let k = 0 - 5. Is 14 a factor of h(k)? True Does 37 divide 22 + 980/(-45) + (-12652)/(-9)? True Does 52 divide (35 - 3)*29 + 10 + -2? True Suppose -u - 5*t - 161 = -3476, t = 5. Is u a multiple of 94? True Suppose -5 = 5*v + 7*u - 4*u, 0 = -5*v + 2*u - 5. Is 41 a factor of (v - (-225)/20)/(2/56)? True Let d = 21 - 15. Suppose b - 268 = -f + d*b, 10 = -5*b. Is 43 a factor of f? True Let o(f) = f**3 + f - 3. Let c(s) = -s**3 - s**2 - s + 2. Let j(i) = -5*c(i) - 6*o(i). Let t be j(5). Suppose -v = -t*v + 188. Is v a multiple of 12? False Let u be 70 - -3*(-5)/(-15). Let s = u + -23. Does 16 divide s? True Suppose 0 = -6*j + 7*j - 5. Suppose -2*s = 5*r + 12, -j*r + 4*s = -2*r + 2. Is 37 a factor of (-1 + 109/(-2))*(r - 0)? True Suppose -1682 = -3*y - i, 3*y = y - 4*i + 1128. Let k = -299 + y. Is k a multiple of 15? False Suppose 2*k = -4*c + 882, -3*c + 4*k - 1541 = -10*c. Does 3 divide c? False Let i(g) = -20*g - 28. Let s = 226 + -235. Is i(s) a multiple of 38? True Is 93 a factor of -7 - (-8193 - 4 - -13)? False Suppose 4*s = s + 144. Let x = -46 + s. Suppose g = -4*n + 25, 103 = -x*g + 5*g + 5*n. Is g a multiple of 5? False Suppose 39835 = 5*v - p, 36*v + p = 31*v + 39845. Is v a multiple of 12? True Let d = -130 + 142. Is 8 a factor of (d/(-4) + 4)*35? False Suppose -6*x = 89 + 559. Let o = 308 + x. Does 20 divide o? True Does 75 divide -3150*((-155)/110 - 5/55)? True Let n = 1461 + -933. Does 3 divide n? True Let w be 5/(360/16) + 346/(-18). Let f(u) = -u**3 - 19*u**2 - 7*u - 22. Is 13 a factor of f(w)? False Let v = 2838 - -2754. Is v a multiple of 24? True Suppose -v + 119 = -15*z + 18*z, 2*v - 239 = -5*z. Suppose 0 = -24*p + 22*p + 3*d + 81, -3*p + v = -5*d. Is p a multiple of 13? True Let o be 13 + -11 - (-12 - -1). Suppose 3*u = 4*t - 18, -3*t - u + o = -3*u. Is 101/t + (-2)/3 a multiple of 5? False Suppose -9*f + 276 = -5*f - 4*u, -4*f = -u - 267. Is 6 a factor of f? True Let w = -34 - -47. Suppose 14*o - w*o - 80 = 0. Suppose -2*r = -n + 19, 5*r = 4*n + r - o. Is 7 a factor of n? True Suppose 4*x + 27357 + 24618 = 25*x. Does 25 divide x? True Let u = -11 + 75. Is 21 a factor of (u + -1)/((-11)/(-33))? True Is (-4494)/24*(-12)/(-42)*-8 even? True Let h(i) = -i - 35*i**3 - i + 34*i**3 - 4*i - 3*i**2. Is 20 a factor of h(-4)? True Let o = 15969 - 9193. Is o a multiple of 22? True Let q(x) = -2*x**2 - 57*x - 76. Let m be q(-27). Let y(n) = n**2 - 3*n + 1. Let a be y(5). Let g = a - m. Is g a multiple of 3? True Let l(t) = t**2 - 19*t + 40. Let f be l(15). Let j = 56 + f. Is 6 a factor of j? True Let f(y) be the first derivative of y**4/4 + 17*y**3/3 - 6*y**2 + 52*y + 33. Does 27 divide f(-17)? False Suppose 806 = -4*w + 6206. Suppose 0 = -17*i + 12*i + w. Does 27 divide i? True Suppose 225*p = 242*p - 23239. Does 5 divide p? False Let m(a) = -a**2 - 10*a + 24. Let j be m(-11). Let b = j - 11. Suppose l = -5*s + b*l + 23, 4*l = -3*s. Is 3 a factor of s? False Let h be (-14)/(-4)*252/147. Suppose 0 = -h*b + 456 + 132. Does 27 divide b? False Suppose 36*l - 12432 = -l. Is l a multiple of 6? True Let y(p) = -95*p - 46. Let x be y(-6). Suppose 8*b = x + 588. Does 11 divide b? False Suppose 7*y - y = -3*o + 9561, 0 = -2*o - 3*y + 6372. Is o a multiple of 14? False Suppose 5*z = -3*n - 45, 0*n + 4*n = 2*z + 44. Let v(i) = -i**2 - 31*i - 7. Is v(z) a multiple of 13? True Is 2/17 + (-32364)/(-1479) a multiple of 4? False Let w be (-1)/((4/94)/2). Let s(l) = -2*l + 184. Let n be s(62). Let r = n + w. Does 3 divide r? False Let n = -31 - -74. Let i = -13 + n. Let t = 53 - i. Is 21 a factor of t? False Let j = 386 - 190. Let v = -168 + j. Is v a multiple of 4? True Let q be -3 - ((-16)/(-72) - (-14)/18). Is 25 a factor of (25/(-3))/(q/108)? True Let w = -1449 - -2253. Does 49 divide w? False Suppose 2*m - m = 0. Let d be -1 + (13 - 4/(4 + m)). Let i(s) = s + 4. Is 3 a factor of i(d)? True Suppose -5*d + 2*h = -11876, 242*h - 244*h = 3*d - 7116. Is 51 a factor of d? False Suppose 2*j = -4*o + 46, -9*o + 11*o - 3 = 3*j. Is 1*-6*(0/o - 55) a multiple of 11? True Suppose -2712 = -3*g - 5*g. Let b = 584 - g. Is b a multiple of 35? True Let q = 5 - 2. Suppose 2*j - 10 = 2*a, q*j + 4*a - 4 = j. Suppose 0 = -2*g + j*g - 222. Is 23 a factor of g? False Suppose -q + 5582 = -5*t, 36*q - 37*q + 3*t + 5584 = 0. Does 37 divide q? True Let z(w) be the first derivative of 9/2*w**2 + 9*w + 1/3*w**3 + 11. Is 2 a factor of z(-9)? False Let x(y) = 25*y - 20. Suppose 20*m - 85 = 15. Is 15 a factor of x(m)? True Let o = 3128 + -2208. Suppose -2*q + 296 = 4*g, -5*q + o = -5*g + 180. Suppose 0 = 6*l - 8*l + q. Is 9 a factor of l? False Let o = 2082 - -98. Is 20 a factor of o? True Let f(b) = 104*b**2 + 47*b + 228. Is 24 a factor of f(-4)? True Let n(i) = i - 1. Let o be (-6 - -3)*1*2/(-6). Let z be n(o). Suppose z = b + 5*b - 600. Is b a multiple of 20? True Let f be (18/10)/(3/30). Suppose 0 = -f*t + 22*t - 12. Let q(r) = r**3 + 2*r**2 + 2*r - 6. Is 9 a factor of q(t)? True Let y(f) = -f**3 - 10*f**2 - 34*f + 22. Is y(-20) a multiple of 95? False Let i = -6 + 3. Let a = 231 + -222. Is 12 a factor of -3 + 132*(a/(-4))/i? True Is 10 a factor of (-5222)/(-14) + (12 - 5)? True Suppose 2*p + 75 = -5*g, -3*p - 8 = -5*g + 42. Does 12 divide (-2782)/(-12) + p/30? False Is 5615 + 18*(120/18 + -7) a multiple of 81? False Let d(c) = -c**2 + 15*c + 10. Let f be d(13). Does 7 divide 121 + (2/(-3))/(12/f)? True Suppose 7*d - 12552 = 10422. Does 27 divide d? False Is 43 a factor of (-3)/(12/(-2)) + 184527/58? True Let r(p) = -p**2 + 3*p - 5. Let x(n) = n - 3. Let u(l) = 2*r(l) - 5*x(l). Let y be u(0). Suppose 2*j + y*v = -3*j + 220, 3*j = 3*v + 120. Does 10 divide j? False Suppose 18*k - 15*k - 9 = 0. Let u(h) = -6 - 19*h**2 - 3 + 11 + h**k - 27 - 18*h. Is 5 a factor of u(20)? True Let x = 76 - 64. Suppose -x*d = -11*d - 189. Does 63 divide d? True Let t(q) = 49*q**3 + q**2 - q - 1. Let w(o) = -o**2 + 10*o - 9. Let l be w(7). Suppose -3*h + 15 = l. Is 10 a factor of t(h)? False Let i(j) = 4*j - 22. Let z(c) = -c. Let s(y) = -i(y) - 6*z(y). Let q be s(-9). Suppose -h = 1 - 6, 3*t - 26 = -q*h. Is t a multiple of 2? True Suppose 29*k + 51725 - 111085 - 122934 = 0. Is k a multiple of 28? False Suppose -36217 = -4*n + l, -4*n = -0*n + l - 36223. Is n a multiple of 77? False Suppose 18*h - 8*h = -4400. Does 10 divide ((-20)/(-3))/(2 - h/(-222))? True Suppose 10*l - 4*l - 126 = 0. Is (-6)/l - 5610/(-35) a multiple of 8? True Let k(z) be the first derivative of 9*z**2/2 - 8*z + 1. Let x = -525 - -530. Is k(x) a multiple of 4? False Let u be 1 - 28/20 - 2004/(-10). Let m be u*(2 - (-10)/(-4)). Let o = m - -154. Is o a multiple of 27? True Suppose -11*m + 8515 = -7*m + 3*k, -4*m - 5*k + 8517 = 0. Is 16 a factor of m? True Let w = 324 - 168. Suppose -j - 2 = -5*z, -j = -101*z + 97*z + 1. Suppose -2*h = -0*h, -h = j*t - w. Is 26 a factor of t? True Let y(q) = 7*q**3 + q**2 - q - 3. Let h be y(-1). Does 13 divide -1*1 - 46*(h + 6)? True Let z(y) = -6*y - 30. Let d be z(-6). Suppose 0 = -4*i + 6 + d. Suppose 248 = 5*r - 4*q, -4*q = i*r - 2*q - 140. Does 16 divide r? True Let f = 1909 - 1261. Suppose -f = -5*r + 872. Does 8 divide r? True Let m(j) = -15*j**3 - j**2 + 2*j - 1. Let p be m(1). Let h = p + 309. Does 42 divide h? True Suppose -p - 5*k + 10 + 9 = 0, 4*k = -4*p + 44. Suppose 2*x - w - 2*w + p = 0, 2*x = -3*w - 27. Is 4 a factor of x/(-12)*((1 - -8) + -1)? False Suppose -5*v - 5 + 20 = 0. Is (1 - 2)/((-480)/159 + v) a multiple of 6? False Let d(j) = j + 31. Let y be d(-27). Suppose 963 = 4*l + 3*w, 0*l - 2*l + 476 = -y*w. Does 8 divide l? True Let f(t) = t**2 + 229 - 1 - 71*t + 144*t - 75*t. Is f(0) a multiple of 9? False Let v(k) = k**2 - 31*k + 644. Does 27 divide v(48)? False Suppose -4*u + 19 = -0*u - 201. Is u a multiple of 8? False Suppose 5*z + 4*c - 2930 = 0, 409 = 4*z + c - 1946. Suppose -2*r = -3*u - 2*u - 606, 3*u = -2*r + z. Is r a multiple of 40? False Let c(m) = 4*m**3 - 2*m**2 - 8*m. Let v be c(-2). Let b(r) = 78*r - 4. Let g be b(-3). Does 17 divide g/4*(2 - v/(-6))? True Let o(m) = m - 1. Let x be o(3). Let s = 168 - 165. Suppose s*c - 14 = x*c. Is 5 a factor of c? False Let x(p) = -p**3 - 8*p**2 - 3*p + 5. Let c be x(-11). Suppose 10 - c = -d. Suppose 2*k = d - 151. Is k a multiple of 40? True Does 87 divide 6 + -6 + 4356 + -1 + -5? True Let b be -1*5*30/75. Is 1*(390 - -1) + 0/b a multiple of 12? False Let n(y) = -y**3 + 19*y**2 - 10*y - 28. Let g = -127 + 145. Is n(g) a multiple of 58? True Let m be 633 + (4 - (5 + 1/(-1))). Suppose 12*i = 2421 - m. Does 45 divide i? False Let k(f) = 12*f**2 - 30*f**2 + 1 + 17*f**2 + 3*f. Let n be k(2). Suppose 6*v = n*v + 330. Does 22 divide v? True Let f be 1/(-3*5/(-45)). Suppose 355 - 25 = f*u. Is 22 a factor of u? True Suppose -4*k = 5*g - 2, 3*g - 5*g = -k - 6. Suppose -2*q + 41 = g*t - 9, -5*t + 2*q + 118 = 0. Is 14 a factor of t? False Let z = -2119 - -2351. Does 15 divide z? False Let g be -2 - (24/(-60))/((-1)/(-10)). Suppose 4*h + g*h = 1098. Is h a multiple of 8? False Suppose -42*g = -47*g + 360. Let h = g + 44. Does 3 divide h? False Let b(v) = 5*v**2 - 65*v + 589. Is 134 a factor of b(10)? False Let u(v) = -21*v + 842. Is 2 a factor of u(36)? True Let k = 6505 + -3425. Does 11 divide k? True Let i be 424/30 + (-2)/15. Does 16 divide -8 - (-108)/i - (-961)/7? False Suppose 487 = 3*n + 61. Let l = -27 + n. Is l a multiple of 3? False Does 21 divide 13/(650/(-19560))*-10? False Suppose 0 = 2*r - 14 - 314. Suppose 5*n - r = -o, -4*o + 172 = 4*n - 564. Is o a multiple of 27? True Let t = -75 - -21. Let v = t - -75. Does 9 divide v/6*(-2 - (-12)/1)? False Does 51 divide (-2 - 3) + 18 + 4067? True Suppose 7*b = 5*b + 8. Suppose v - 5*x - 30 = -11, 0 = -b*x - 12. Suppose u + 2*u + 2*w = 1, 2*u + v*w + 10 = 0. Does 2 divide u? False Suppose 0 = -3*g + 20012 - 14930. Does 22 divide g? True Suppose -5*b + a - 227 = 0, -3*b = -b + 5*a + 80. Let m = -43 - b. Suppose 0*w = -m*w + 104. Does 13 divide w? True Suppose -3*n + 6 = 0, -2*n + 442 = 2*v - 52. Let b = v + -193. Is 3 a factor of b? False Let r = 0 - -3. Suppose -6*f = -d - 2*f + 184, -d - r*f = -177. Let c = -106 + d. Is c a multiple of 12? False Let d(o) = 230*o - 98. Let k be d(7). Suppose -4*f - 44 + k = 0. Is f a multiple of 39? False Let p = 81 + 44. Suppose -14*q = -9*q - p. Suppose 0 = 5*j - q, 5*s - 148 - 37 = -3*j. Does 8 divide s? False Suppose 466532 + 239720 = 87*n + 112912. Is n a multiple of 20? True Let h(s) = 41*s**3 - 5*s**2 + 9*s + 19. Is h(6) a multiple of 19? False Let a be 515/(-35) - 4/14. Suppose -2 - 1 = -g, 1707 = -3*s + 5*g. Does 27 divide (s/(-10))/((-6)/a)? False Let m = 142 + -45. Let j = m - -27. Is j a multiple of 17? False Suppose k - 12416 = -3*k + 2*l, -4*k = 4*l - 12392. Does 11 divide k? True Suppose 14*y + 3*y = -4692. Let o = 18 - y. Is 21 a factor of o? True Let j(p) = -p**3 - 3*p**2 + 10*p + 24. Let z be j(-4). Suppose 4*t + d + z*d = 704, 4*t = 4*d + 704. Is t a multiple of 9? False Let m(o) = 2*o**3 - 34*o**2 - 12*o - 20. Let f(a) = -a**2 - a. Let n(q) = -5*f(q) + m(q). Is 8 a factor of n(15)? False Does 36 divide (2332 - (-3 + (11 - 4))) + -3? False Suppose 8*z = -17*z + 64400. Is 8 a factor of z? True Suppose 25 = 5*y - 2*p, 0 = -y - 0*p + 3*p + 18. Suppose 2*q + y*q - 25 = 0. Suppose 301 = 5*m - 2*g, q*m - 3*g = -26 + 325. Does 16 divide m? False Let g = 253 + 902. Suppose -8*b = -133 - g. Is b a multiple of 31? False Let a be 328/(-10) - 1 - (-1)/(-5). Let q = a + 36. Suppose -q = 2*l - 6, -2*k + 140 = -5*l. Is k a multiple of 25? True Suppose 0 = -3*f - 5*u + 302, 0*f + 310 = 3*f + u. Suppose 101*y - 1550 = 96*y. Suppose -2*c + y = f. Is 40 a factor of c? False Let t be 20/8*(-212)/(-5) + -1. Let b = -86 + t. Is b a multiple of 2? False Let z be (-6)/4*8/3. Let b be z + (19 - (2 + 1)). Suppose -3*h - b = 0, 0 = -n - 0*n + 2*h + 57. Is 7 a factor of n? True Let l = -2757 - -3213. Is l a multiple of 7? False Let g be (-4)/5*(-2 - (-7)/(-14)). Suppose -5*c + 467 + 700 = 4*r, g*r = 6. Is 48 a factor of c? False Let v(j) = -2*j**2 + 218*j - 936. Does 130 divide v(96)? True Let z(u) = 0 + 0 - 56*u. Suppose -5*v = 3*h + 6, -7*h + 4*h = 2*v - 3. Is z(v) a multiple of 42? True Suppose 5*o + 9*w - 6*w = 27, -2*w + 8 = 0. Suppose -o*y + 431 = 107. Does 6 divide y? True Let w be (-11)/(22/984) + -3. Let t = -179 - w. Does 37 divide t? False Suppose 5*p = -3*r + 734, r - 266 = -p - 18. Is 42 a factor of r? False Let i(v) = 5*v - 13. Let f be i(5). Let p(z) = -z + 24*z**2 - f*z - 3*z - 25*z**2. Is 8 a factor of p(-13)? False Suppose 0 = -3*j, -2*l - 3*j = -1117 + 285. Is l a multiple of 32? True Let t be (6/4)/((-1)/(-70)). Let g be (8/(-56))/(3/(-42)). Suppose a + t = g*i + 4*a, -3*i = a - 168. Does 19 divide i? True Let q = 5367 - 2123. Is 39 a factor of q? False Let v = -38 - -49. Let q = 23 - v. Suppose -q = -w + 6. Does 13 divide w? False Let c(t) be the first derivative of 50*t**3/3 - t**2 - 10*t + 17. Is 24 a factor of c(2)? False Let q be 0 + -1 + 3 + 0/(-3). Suppose u = q + 5. Does 33 divide 12/14*11*u? True Suppose 5*l - 5*j + 4*j - 25 = 0, l + 11 = -3*j. Let k = 8 + -6. Suppose -388 = -4*r + 4*s, 372 = l*r - k*s + 6*s. Is 19 a factor of r? True Let q(v) = -3*v**2 - 2 + 4*v**2 + 899*v - 901*v. Let l be q(5). Suppose 0 = 6*w - l*w + 343. Is 6 a factor of w? False Let a(c) = -c**3 - c + 5. Let d be a(0). Suppose -d*h + h = 772. Does 8 divide 1/((-6)/h) + (-5)/30? True Let q = 850 - -811. Does 45 divide q? False Let w be (2 - 9)/(-1 - 0)*3. Let f = w + -17. Suppose 59 = f*c + 7. Is c a multiple of 5? False Is ((-1191)/12)/(4/80*5/(-2)) a multiple of 4? False Suppose 0 = -4*q + 4*a + 27844, 7026 = 2*q + 5*a - 6910. Is 19 a factor of q? False Let p be 4 - ((-2)/4)/((-3)/(-12)). Let h be (-45)/p*840/(-18). Suppose 4*a - 50 = h. Is 25 a factor of a? True Let a = -2513 - -4222. Does 24 divide a? False Suppose v + 96*w - 95*w - 931 = 0, -3*v - w = -2787. Is v a multiple of 3? False Let r = 94 + -89. Suppose r*y - 240 = 415. Is y a multiple of 10? False Let s be (-4 + 3)*(-3 + 2)*11. Let b(a) = -17*a**2 + s*a**2 + 14*a**3 + 6*a**2 + a. Does 15 divide b(1)? True Suppose 2*y + 11 - 19 = 0. Suppose -42 = -4*z - 2*w, y*z + 4*w - 14 - 18 = 0. Suppose -8*l = -z*l + 160. Is 8 a factor of l? True Let h = 17 + -15. Suppose -u + 0*t = t - 10, -h*t = -u + 13. Does 15 divide 2/u - 1316/(-22)? True Let r be 42/9 - ((-33)/(-9) - 3). Suppose r*c - 349 = 547. Is c a multiple of 32? True Suppose -95*h - 41225 = -120*h. Is 8 a factor of h? False Is 104 a factor of (-1 - 7) + (-17048)/(8/(-2))? False Suppose 0 = -21*b + b + 5*b + 41310. Does 5 divide b? False Let d = -134 - -136. Is 22 a factor of (14/6 - d) + 5460/117? False Suppose 195*g = 191*g + 2688. Does 32 divide g? True Suppose -9*j + 40 = -5. Suppose d + d = -j*o + 807, -156 = -o + 5*d. Is o a multiple of 37? False Suppose -214378 - 154760 = -77*o. Is o a multiple of 141? True Let h(z) = -116*z + 4. Let i = 155 + -156. Does 5 divide h(i)? True Let a(c) = 13*c**3 - 4*c**2 + 24*c + 47. Does 20 divide a(8)? False Let p(u) = -2*u + 48. Let h be p(0). Is 7 a factor of (-20 + h)*(-2 - -6)? True Suppose -40*t + 7*t + 4197 + 18177 = 0. Is t a multiple of 113? True Suppose 5*x = -w + 2633, -9*w - 5*x = -10*w + 2673. Is 103 a factor of w? False Let k be 0/1 - (-2 - -3). Let l be k/2*-1*36. Suppose 65 = -13*v + l*v. Is 13 a factor of v? True Suppose -24*k = -20*k - 12. Let d(f) = 5*f**3 - 3*f**2 + 3*f - 1. Let s be d(k). Suppose -4*w + 8*w = s. Is w a multiple of 5? False Suppose -3737 = -25*f + 5738. Does 7 divide f? False Let h = 216 - 216. Suppose -4*o - 3*k + 468 = 0, -2*o + k + 224 = -h*k. Is o a multiple of 19? True Let i(z) = -4*z**3 - 16*z**2 - 7*z - 42. Let u(t) = 2*t**3 + 8*t**2 + 3*t + 21. Let s(m) = -2*i(m) - 5*u(m). Is 14 a factor of s(-7)? True Let c(o) be the third derivative of 5*o**4/24 - 3*o**3 - 60*o**2. Does 29 divide c(21)? True Suppose 0 = 11*f - 14*f + 42. Suppose -752 = -16*w + f*w. Does 16 divide w? False Is (-185175)/(-25) - -21*(-1)/3 a multiple of 200? True Suppose 2*f - 5*y - 6 = 0, -7 - 22 = -f - 4*y. Let g(a) = -a**2 + 15*a + 44. Is g(f) a multiple of 10? True Suppose 3*c = -33*p + 36*p - 9492, -3*p - 3*c + 9516 = 0. Does 33 divide p? True Suppose 25*z + 56 = -44. Let d = -8 - 18. Is 13 a factor of (0 - 2)*(d/z)/(-1)? True Let p(j) be the second derivative of j**4/12 - j**3/6 + 41*j**2/2 + 8*j - 3. Does 49 divide p(11)? False Suppose 20*o - 15*o = 3*x - 2535, o - 1690 = -2*x. Is 13 a factor of x? True Let o = 2251 - -1565. Is 9 a factor of o? True Let r(p) = 2*p**2 + 35*p + 93. Suppose -82 = 4*a + 2*z, 3*z = -a - 0*a - 18. Is 15 a factor of r(a)? True Let q = 259 + -120. Let x = 222 - q. Is x a multiple of 16? False Suppose -8*n - 15631 = -4783. Is (n/(-4) + -1)/1 - -4 a multiple of 31? False Let u = -3693 - -7346. Does 13 divide u? True Suppose -2*b - z + 8 = 0, 2*z - 3 + 35 = 4*b. Let y = -3 + b. Suppose -3*k + 273 = 5*p - y*p, -2*p = -5*k - 297. Is p a multiple of 34? False Let p = -33 + 30. Let x(f) = 38*f**2 - 4*f - 1. Is 39 a factor of x(p)? False Let h = 612 + 636. Is h a multiple of 78? True Is 17 a factor of (-3)/(-1) - (-6781 - (-4 - -1))? False Suppose 0 = 4*g + 20, 4*m = -5*g + 1793 + 7262. Does 10 divide m? True Is 82/(-3)*1161/(-6) a multiple of 13? False Suppose 3*c + 3*i = 1566, i - 3 = -0. Is c a multiple of 15? False Suppose 0 = -4*a + 75*s - 79*s + 3192, 2*a + 4*s - 1596 = 0. Does 14 divide a? True Suppose 2*t + 20 = -2*t, 3 = -m - t. Suppose y = 3*x + m*y - 15, -5*y = -x + 5. Suppose 0 = 5*r - x*k - 90, -4*r - 3*k + 2*k + 77 = 0. Is 6 a factor of r? False Let k = -6176 + 9503. Does 46 divide k? False Let f(u) = 441 + 50*u + 445 - 882. Is 13 a factor of f(2)? True Does 12 divide (-70)/(-20) + (-19923)/(-6)? True Let m(g) = 4*g - 4. Suppose 2*f - 12 = -4*v, -3*v + 3*f - 5*f = -10. Let r be -3 - (v/8 - 780/48). Does 24 divide m(r)? True Let h(x) = -3*x**3 - 14*x**2 - 9*x - 26. Does 5 divide h(-9)? False Let a(f) = -f**3 - 8*f**2 - 4*f - 28. Let p be a(-8). Is 7/((-154)/p) + 4100/44 a multiple of 16? False Let m = 8522 + -5876. Is 24 a factor of m? False Let u be 1206/10 + (-9)/15 + 2. Suppose u*g - 125*g = -1650. Is 68 a factor of g? False Let o = 1915 + -245. Is o a multiple of 11? False Let p(u) = -4 + 7 - 6 - 5 + u - 8*u. Suppose 2 = 2*a, 0 = -5*o + 3*a - 0*a - 38. Is p(o) a multiple of 32? False Let z(y) = -2*y**2 - 4*y - 10. Let a be z(-8). Let x = a + 222. Suppose -2*b = -2*c - x, -b + 37 = 3*c - 5. Does 9 divide b? True Let p(h) = -12*h - 4. Let g be p(-1). Let t = g - 10. Is 17 a factor of (t/4)/(8/(-272))? True Suppose -56*f + 73 = -57*f. Let k = -11 - f. Is k a multiple of 62? True Is 10 a factor of ((0 - 1)*613)/(29 - 30)? False Suppose 0*h - 4*h + 160 = 0. Suppose -3*z - h = -184. Suppose 15 = g + 3*k - z, 228 = 3*g - 4*k. Is g a multiple of 8? True Suppose 5*m = -c - c + 12, m = -2*c + 12. Suppose 4*n = 2*g - 46, -8*g - 3*n = -c*g - 53. Does 2 divide g? False Suppose 13*u = -3*u + 2432. Let p = u - 59. Is p a multiple of 6? False Is 2764 - (140/42)/1*6/(-5) a multiple of 8? True Suppose -d - 4*q + 47 = 449, d + 423 = 3*q. Is ((-15)/9)/(15/d) a multiple of 46? True Let n = 19 + -22. Let o(f) = -5*f + 8. Let r be o(n). Suppose 5*x = -5*i + 20, 4*x - i - 18 - r = 0. Is x a multiple of 9? True Let y be 36/((-4)/7 + (-66)/(-336)). Let k = y + 182. Does 17 divide k? False Let j = -4000 + 6630. Does 9 divide j? False Let y be -4 + (0 + 4)*(-2 + 1). Is 12 a factor of ((-126)/y)/(-3)*(-18 - -2)? True Suppose -5*c = 2*o + 10, -c = -o - 2*c - 2. Suppose 7*z + 299 - 908 = o. Is z a multiple of 12? False Let o(a) = 6*a**2 - 6*a. Let z = 46 - 51. Let h be 2/z*(-26 + 16). Is o(h) a multiple of 18? True Let j be ((-12)/(-7))/(4/28). Suppose 18*y = 19*y - j. Is 10 a factor of y? False Suppose -3*z = 5*c - 49, 0 = -5*z + 7*z + c - 42. Suppose -2*l - 3*d = -z, 3*l - 18 - 14 = -4*d. Is l a multiple of 2? True Suppose 0 = -20*z + 49532 - 4172. Is 126 a factor of z? True Let a = -2589 + 4957. Does 12 divide a? False Suppose 7577 = 17*s - 2436. Does 19 divide s? True Is ((0 - -17)*-569 + -3)/(-59 - -58) a multiple of 56? False Suppose 3*j + a = -685, -3*j + 3*a + 231 = -4*j. Let w = 278 + j. Is w a multiple of 11? False Let f = 335 + -173. Let j be (-3 - (-8)/4) + 14. Suppose -f = 10*k - j*k. Is 7 a factor of k? False Let q(r) = 43*r - 40. Let k be q(8). Suppose 312 + k = 11*o. Is 23 a factor of o? False Let k(m) = 53*m**2 - 67*m + 520. Does 76 divide k(7)? False Suppose -100716 = 3299*s - 3321*s. Is 6 a factor of s? True Suppose -3*i + 4*b = -115, -2*i = 5*b + 33 - 102. Suppose 1182 = -31*a + i*a. Is a a multiple of 38? False Suppose m + 5*t = 248, 4*m - t = -6*t + 1052. Suppose 4*p + 5*q - 66 = 157, -4*q = -4*p + m. Is p a multiple of 5? False Suppose 17*n - 18670 + 6967 = 13389. Does 103 divide n? False Suppose 5*m = 4*n - 34 - 27, -m = 4*n - 55. Suppose -9*b - 30 = -n*b. Suppose -3*d - 124 = -b*u + 2*u, -8 = -2*d. Does 12 divide u? False Let d(l) = -l**3 - 21*l**2 - l - 20. Let a be d(-21). Is -7 + a + (-1 - -14) even? False Let z(n) = -n**3 - 9*n**2 + 3*n + 1. Let u be z(-10). Let a = u - 37. Suppose -5*c = 2*o - 120, -5*c + 5*o + a + 86 = 0. Does 3 divide c? True Let q be (-2)/1*(-2483)/26. Let p = q - 31. Suppose -b = 3*b - p. Is 9 a factor of b? False Is 99 a factor of ((-2244)/28)/((-45)/945)? True Does 75 divide 105/(-50) + 2 - 236420/(-200)? False Let g be (1 - 25/10)/((-2)/12). Is 23 a factor of (-4095)/5*(-3)/g? False Suppose 0 = -115*f + 111*f - 3852. Let v = f - -1407. Does 37 divide v? True Is 59 a factor of (236/6)/(1 - 340/345)? True Suppose -36*p + 23*p + 20254 = 0. Is p a multiple of 46? False Suppose 2187 = x + 2*x. Suppose -6*q = 3*q - x. Let j = q - 32. Is j a multiple of 12? False Let c = -113 + 113. Is (135 - c)/(1 - 0) a multiple of 9? True Suppose 109*n = 419988 + 33016. Does 15 divide n? False Let f = 9016 - 50. Is 149 a factor of f? False Suppose -5*m - 310 + 2845 = 0. Suppose g = 4*u + m, 252 = -2*u - 2*g - 14. Let w = -72 - u. Is 14 a factor of w? True Let p(w) = w**3 - 4*w**2 + 2*w + 98. Let t = 26 - 26. Is 7 a factor of p(t)? True Suppose 0 = 19*t - 15*t + w - 16740, 0 = -5*w. Is 45 a factor of t? True Let t be (1 + (-1)/2)/(6/36). Suppose t*q + o = -7 + 227, -5*o = 5*q - 380. Suppose s - 4*n = q, 2*s - 4*n - 232 = -s. Is 16 a factor of s? True Let s(p) = -p**2 - 12*p + 3. Let q be s(-12). Suppose 225 = 5*c + 4*z, -98 = -q*c + z + 4*z. Does 3 divide c? False Suppose 8*d - 1 = -17. Is 4 a factor of ((-1)/d)/(5 + 895/(-180))? False Suppose -k = k - 10, 0 = -2*m + 4*k - 16. Suppose m*u = -u + 240. Does 11 divide (-20)/u - (-266)/8? True Let y(t) = 2*t + 14. Let v be 6/(-9) - 2/(12/(-286)). Let q = v - 40. Is 14 a factor of y(q)? True Let g(a) be the third derivative of 0 + 7*a**2 - 2/3*a**3 - 1/30*a**5 - 1/60*a**6 + 1/24*a**4 + 0*a. Is 7 a factor of g(-3)? False Let w(o) = -147*o - 7. Suppose 2*h - 4*h = 4. Let f be w(h). Suppose 3*g + 4*g - f = 0. Is 15 a factor of g? False Suppose -63*v + 61*v = 308. Let y = v + 175. Is 5 a factor of y? False Let h be (4 + -3 + -2)*(11 + 1). Let a be (-9)/h + (1 - (-381)/4). Is a + (5 - 1) - 2 a multiple of 16? False Let n(t) = -t**3 + 22*t**2 - 43*t. Let l be n(20). Suppose -43 = i - 8. Let x = i - l. Is x a multiple of 4? False Is (-13 + 12)*(-122 + -4) a multiple of 14? True Suppose 4746 = 4*s + 957*y - 962*y, -s + 3*y + 1190 = 0. Is s a multiple of 4? True Suppose 1762*g - 1759*g = r + 4871, -2*g - 5*r + 3253 = 0. Is 8 a factor of g? True Let v = 111 + -287. Let a = v + 372. Let d = -92 + a. Is d a multiple of 26? True Let i = -44 - 24. Let t = i + 106. Suppose -150 = t*y - 40*y. Does 19 divide y? False Let n(s) = -40*s - 39. Let y be n(-3). Suppose -3*l - o = -6*o - 203, -y = -l - 5*o. Is 11 a factor of l? False Let s = 3371 - 1620. Is 35 a factor of s? False Suppose -1001*p - 91169 = -1018*p - 25481. Is p a multiple of 138? True Is ((-8)/44 - (-34)/66)/(49/1161006) a multiple of 22? True Let u be 898/10 + 7/35. Is 19 a factor of 22*4*(u/(-24))/(-5)? False Let w be -4 + (-18)/(-3) + 1 + 3. Suppose -3*j = 0, 5*j + 0 - 10 = -5*n. Suppose n*d - 49 = -v, -5*v + 9 = -w. Is d a multiple of 6? False Let v be -99*(12/3 + -3). Let q = v + 234. Suppose -5*u + 5*h + 350 = 0, 4*u = 3*h + q + 148. Is u a multiple of 11? False Suppose -24 = 3*t - 9*t. Suppose t*m - 235 = q, m - 4*q - 100 = -m. Is m a multiple of 15? True Does 209 divide -8 + 2 - (3598717/(-412) + (-2)/8)? False Suppose -4*h = -2*k + 844, -213*k + 2*h = -211*k - 840. Is 5 a factor of k? False Let m(h) = 6 - 3*h**2 - 3*h**3 + 10*h + 2*h**2 + 5*h**2. Is 18 a factor of m(-4)? False Suppose 31087 = 21*h + 6950 - 15427. Does 12 divide h? True Let p = -18 + 20. Suppose -3*h + 435 = -p*h. Suppose 179 = 2*w - 3*g, 0 = -5*w - 0*g + 5*g + h. Is 20 a factor of w? False Does 7 divide (-4)/14 - 5136173/(-1519)? True Suppose 0 = -f - 6*f + 91. Suppose 3*c + f - 10 = 0. Is 2 a factor of 7*1 - (c + -6 - -4)? True Let o be 3*-6*(20/8)/1. Let m = 33 - o. Is m a multiple of 14? False Suppose 652 = g + 18. Is (-6)/(-10) + g/10 a multiple of 13? False Suppose -8*p + 2*p - 6540 = -9*p. Does 4 divide p? True Suppose 3*i - 23766 = 29*h - 34*h, -3*h - 3*i + 14262 = 0. Is h a multiple of 24? True Suppose -12*c + 324 = -18*c. Does 9 divide (22/12 - 9/c) + 106? True Let f = 15 - 11. Suppose 4*a = -8*b + 4*b + 272, b + 3*a - 66 = 0. Suppose f*x - 147 = b. Does 18 divide x? True Suppose 5*i + 2*p = 1076 - 255, 2*i + 2*p = 326. Is 11 a factor of i? True Suppose 3*f + 3*p = 69, -2*f + 2*p = -3*f + 19. Suppose -2*x = -3*x - 480. Is 18 a factor of 2/9 - x/f? True Let d(q) = -3*q + 42. Let x be d(17). Let w be 6/x - (-56)/21. Suppose -71 = -3*s + w*s. Is 7 a factor of s? False Let s be 15/10*(-1)/3*2. Let h(d) = 139*d + 2. Let v be h(s). Does 17 divide 4 - (v + -2)*1? False Let g be 112/(-32)*(-1 + -18 + 3). Suppose 2*n - 3*n = -4*b - 166, -b - 34 = -4*n. Let r = b + g. Is 5 a factor of r? False Let z = 11432 - 6242. Does 10 divide z? True Let z(n) = 96*n - 12. Let l be z(3). Let a = l - 176. Is 20 a factor of a? True Let h(r) be the second derivative of r**5/20 + r**4/2 + r**3/3 + 3*r. Let i be h(-7). Does 21 divide 14/i - 760/(-18)? True Let j(a) = 58*a**2 + 19*a + 28. Is j(-7) a multiple of 17? True Let d = -25 - -37. Is (3 + 2 + -409)*(-3)/d a multiple of 11? False Suppose 19*g - 13*g - 1890 = 0. Suppose b - 2*i = -4*b + 518, 3*i - g = -3*b. Does 52 divide b? True Let u = 858 - 678. Suppose -10 = -5*b + 70. Suppose -13*w - u = -b*w. Is 15 a factor of w? True Let o = -2557 + 2452. Suppose 2 = a - 3. Is (o/9)/a*-54 a multiple of 21? True Is 3 a factor of (1148/(-3))/(((-16)/(-12))/(-2))? False Is ((-160)/24)/((-8)/3372) a multiple of 29? False Let y = -3397 - -4200. Is y a multiple of 3? False Let g = 9231 - 5318. Does 13 divide g? True Is 46/161*7 - (-3)/((-3)/(-2000)) a multiple of 11? True Let x = -159 - -161. Suppose -782 = -x*k - 2*j - 0*j, k + 4*j = 388. Does 50 divide k? False Let b = -584 - -589. Suppose 85 = 3*z + 1. Suppose b*h - c = 112, h - 4*c + c = z. Is h a multiple of 5? False Let k be (48/20)/(12/20). Suppose k*y + 9160 = 24*y. Is 25 a factor of y? False Suppose 0 = 5*o - 60*o + 275. Let z be 9*-1*(2 + -3). Suppose 0 = z*m - o*m - 260. Is 13 a factor of m? True Suppose -2*r = -5*l - 16294, 279*r - 4*l - 40701 = 274*r. Is r a multiple of 80? False Let u(r) = -37*r - 45*r + 38*r - 35. Is 15 a factor of u(-10)? True Let p = 4205 + -2215. Is p a multiple of 44? False Suppose 0 = -10*m + 3 + 47. Suppose -9*r + 10*r = -3*h + 203, 4*r - 795 = m*h. Is r a multiple of 25? True Let i(q) = 3*q**3 + 51*q**2 - 11*q - 46. Does 8 divide i(-14)? True Suppose 0 = -2*w - 4*y + 470, 4*w - 1043 = -4*y - 123. Suppose 163 = 4*r - w. Let u = -69 + r. Is 18 a factor of u? False Suppose 15*a = 19*a - 12, -2*a + 13030 = 2*q. Is q a multiple of 22? True Suppose -248 + 56 = -3*x. Suppose 0 = -3*m + x + 164. Suppose 3*c = 8 + m. Is c a multiple of 8? False Let m = 41 + -35. Suppose -5*b + i + 11 = -m, 0 = -3*b + i + 9. Suppose -30 = b*h - 158. Does 12 divide h? False Suppose 3*z + 5080 = 2*i, -3*i - 5*z + 795 = -6806. Does 65 divide i? False Let l(x) be the second derivative of -13*x**4/6 - 5*x**3/6 - 2*x**2 + 17*x. Let h(c) = 53*c**2 + 11*c + 9. Let k(g) = -3*h(g) - 7*l(g). Does 22 divide k(-1)? True Let b be (-15)/(-4)*20/15. Suppose 3*f - 39 = -2*k + 15, b*k = -5*f + 140. Is k even? True Let t = 1409 + -359. Suppose 6*b = b - d + t, -840 = -4*b - 4*d. Let u = b - 144. Is u a multiple of 33? True Let q(m) = m**2 - 29*m - 965. Is 142 a factor of q(-27)? False Let u(n) = -n**2 + 9*n + 1. Suppose 0 = 6*z - z + 4*i - 27, -15 = -z - 4*i. Suppose -2 - 5 = -j + z*a, -2*j + 14 = 2*a. Is u(j) a multiple of 5? True Let f be (-644)/8 - ((-3)/(-2) - 1). Let m = 101 + f. Is m a multiple of 5? True Suppose 5*g - 134 = -124. Suppose 5*f = -4*v + 137 + 147, -g*v - 8 = 0. Does 8 divide f? False Suppose 5*o = 2*q + 2662, 2*q + 526 = -0*o + o. Suppose -4*z + o = -3*l, z + 5*l = -0*z + 145. Does 46 divide z? False Suppose 19*p = -2 + 2. Suppose p = 2*c - 1343 + 503. Is 51 a factor of c? False Let k = -11 + 15. Suppose 4*i - o = 56, k*o = 4*i - 10 - 58. Suppose -i - 113 = -7*t. Is 9 a factor of t? True Let u(x) = 10*x**2 - 3*x + 25. Let t be u(7). Suppose 0 = 7*s + t - 1544. Is 16 a factor of s? False Is (-498)/(-10) - 0 - (-4)/(-5) a multiple of 7? True Let o = 36 + -48. Let y be 132/18 - 8/o. Is 11 a factor of (-663)/(-9) + y/24? False Let n be (2/3)/(15/((-225)/(-2))). Suppose 40 = 6*y - n*y - 4*t, 2*t = -5*y + 200. Is y a multiple of 3? False Let w be (15/(-2))/(3/(-1224)). Suppose 8*s = -4*s + w. Does 17 divide s? True Let b = -269 + 217. Let h = 290 + b. Is h a multiple of 15? False Does 105 divide (-2)/(4/(-6)*-1) + 3153? True Let d(w) = 14*w - 71. Suppose 0 = 5*f - 3*v - 103, -2*f + 4*f = 2*v + 42. Does 13 divide d(f)? False Suppose 14*z + 87 = 529 + 146. Does 21 divide z? True Suppose -2*j + 2*n = -274, 4*j = 8*j - 2*n - 538. Is j a multiple of 6? True Suppose 0 = 17*c + 3971 - 26921. Does 15 divide c? True Let b(x) = 115*x + 805. Is b(50) a multiple of 15? True Does 9 divide 3146/7 + 126/(-294)? False Let n = 47 + -227. Is 16 a factor of (0 - 64/(-20))/((-2)/n)? True Let x = -1 - -6. Is 10 a factor of 4 + (x - 11) - -122? True Let b = -370 + 1534. Is 3 a factor of b? True Is 78496/66 - 5/15 a multiple of 7? False Suppose -4*o = -6*o + 352. Let v = -131 + o. Does 11 divide v? False Let u = 25 - 17. Suppose -4 = -2*x + u. Let z = x + 27. Does 18 divide z? False Suppose -5*m = 2*g + 26, 0*m - 5*m - g - 23 = 0. Let r = -14 + m. Let t(q) = q + 38. Is 6 a factor of t(r)? False Let i be (236/(-6))/(8/(-12)). Let j = -9 + i. Let z = j + 28. Is 11 a factor of z? False Let v(c) = 548*c**2 + 8*c - 32. Is 32 a factor of v(4)? True Suppose -15*f + 18*f = -3*p + 19116, -2*f + 12741 = 3*p. Does 48 divide f? False Let u = -1267 + 688. Is 10 a factor of -4*2/16 + u/(-2)? False Let t = -31 - -33. Suppose -19 = -t*p + 17. Suppose 0 = -22*j + p*j + 36. Does 9 divide j? True Let h = -5 + 10. Suppose 6 = 5*w - 3*i, -5*w + 4*i - h + 13 = 0. Suppose 0 = 2*s + x - 86, -2*s + 78 = -w*s + 5*x. Is 22 a factor of s? True Suppose -r = 17*r - 20106 - 16686. Is r a multiple of 38? False Let q(z) = -z**2 - 9*z - 14. Let b be q(-6). Suppose -h = k + b*h - 64, -4*k - 2*h = -166. Let n = 81 - k. Does 10 divide n? False Let s(w) = w**2 + 16*w - 50. Let t be s(-19). Let j(d) = -6*d**2 + 12*d - 3. Let b(c) = -7*c**2 + 12*c - 2. Let v(g) = -5*b(g) + 6*j(g). Is 27 a factor of v(t)? True Let n = -37 - -32. Let r be (-466)/(-2) - (-1 - n). Suppose -12 = 4*l, 279 + r = 4*w - 4*l. Does 31 divide w? True Let f = -2836 - -4502. Does 7 divide 42/(-315) - f/30*-4? False Suppose z + z - 2 = 2*f, -z - 3*f + 13 = 0. Suppose 40 = -z*n - 4*n. Does 12 divide 2028/42 + -1 + n/(-7)? True Suppose 2*a = a + 4, 4*a = 5*g - 2174. Suppose -1458 = -5*t - g. Is 17 a factor of t? True Let h(o) = 3*o + 17. Let y be h(-5). Suppose 0 = -4*u - 20, 2*g - 18 = -0*u + y*u. Suppose 0 = -g*p, -w = w + 5*p - 44. Does 12 divide w? False Let t(p) = -p**3 - 8*p**2 - 10*p + 1. Let r be t(-7). Let q(b) = -b**3 + 24*b**2 - 42*b + 1. Is 5 a factor of q(r)? True Suppose -c = 2*c + 4*d + 36, -26 = 4*c - 2*d. Let i be 8 + c + 6/2. Suppose 5*n = 20 + 5, -i*n = 3*m - 48. Is m a multiple of 11? True Suppose -3*v + 7578 = -5*i - 1316, -3*i - 11866 = -4*v. Is v a multiple of 4? True Let t(u) = 412*u**2 + 22*u + 63. Is 15 a factor of t(-3)? True Suppose -f + 4*f = -9. Let c be 4/(1 - f) - 3. Does 8 divide (-291)/(-12) - (c - 9/(-4))? True Suppose -132*r + 136*r = -224. Let x = 246 + r. Is 10 a factor of x? True Let r be 156/12*(-1 + 0/(-1)). Does 29 divide 49/((r/4)/(-13))? False Let w be -5 - (3 - -67)/(-2). Suppose -4*q - 5*i = -100, 2*i - w = -5*q + 112. Is 11 a factor of q? False Let r(q) = -294*q + 467. Does 44 divide r(-2)? False Let m = 28 + -66. Does 13 divide ((-57)/m)/(5451/(-2730) - -2)? True Suppose -3*k + 62 = 2*q, -4*k + 4*q - 37 = -133. Does 3 divide k/(-121) - (-1126)/22? True Let m(x) = -x**3 + 22*x**2 - 2*x + 50. Let b be m(22). Let h be (-11)/(11/(-12)) - 2. Let y = b + h. Is y a multiple of 15? False Let l = 15 + -10. Let d(j) = -25*j**2 - 12 + 13 + 5*j + j + 26*j**2. Does 14 divide d(l)? True Let y(i) = i. Let f(p) = 4*p + 14. Let x = -42 + 43. Let n(w) = x*f(w) - 5*y(w). Is 8 a factor of n(-10)? True Let l = 21291 + -15200. Is l a multiple of 22? False Let r(d) = -d**3 - 11*d**2 - 79*d - 16. Is r(-20) a multiple of 143? False Let u(z) = z**3 - 11*z**2 - 12*z - 2. Let v be u(12). Let y be (-5)/2*v*(-12)/(-20). Let o = 37 + y. Is 10 a factor of o? True Suppose -8*h = -14*h + 156. Let s(n) = -2*n**3 + 52*n**2 + 3*n + 4. Is 3 a factor of s(h)? False Suppose 3*f = -t + 19, -f - 2*f = -t - 11. Suppose -3*w + 25 = f*p, -p + 4*w + 52 = 3*p. Does 13 divide 4/(p/(-3)) + (-266)/(-4)? True Suppose a - 6*a - 230 = 0. Suppose -450 = 3*o + 2*o. Let r = a - o. Is r a multiple of 11? True Let i(d) = 23*d**3 + 16*d**2 + 14*d - 110. Does 21 divide i(6)? False Suppose 0 = 4*o + 12, -o + 49 = -0*h + 4*h. Suppose v - h = g + g, 0 = 4*v + 5*g - 104. Does 8 divide v? False Let k be 4*(2/(-3) - 119/(-21)). Suppose -k*q = -9*q - 528. Does 2 divide q? True Let r = 22 + -20. Suppose -3*z = -d - 6 + 1, -3 = 3*z - 3*d. Suppose z*s + 10 = y - 72, r*s = -5*y + 478. Does 22 divide y? False Suppose 2*w - 528 = 7*m - 11*m, -5*m = 15. Suppose 2*g - 336 = w. Is g a multiple of 47? False Let s = 132 + -124. Does 3 divide 6 - -46 - s/2? True Let m = 36 - 37. Let a(z) = -2*z. Let t be a(m). Suppose -i = -3*x + 37, -3*x + 5*i = t*i - 45. Is x a multiple of 11? True Suppose 4*z + z = 0. Suppose 30 = -10*g + 30. Suppose -5*f + 154 = 2*s, -5*f + g*f - 3*s + 156 = z. Is f a multiple of 9? False Let r(i) = i**3 + 4*i**2 + i + 1. Let c be r(-1). Suppose 3*d - 3*m - 539 = 559, d = -c*m + 354. Is d a multiple of 11? True Suppose 3*k = -8 + 239. Let i = 5 + k. Does 11 divide i? False Is -1523*((-10)/(-5) + -7) a multiple of 53? False Let y(f) = 589*f + 27. Let a be y(7). Suppose -5*m = -a - 560. Does 20 divide (-22)/10 + 2 + m/10? False Suppose 0 = -17*k + 12*k - 5*l + 6420, 0 = -4*l + 16. Does 40 divide k? True Let g(r) = -6*r**3 + 14*r**2 - 5*r - 4. Let c(l) = 5*l**3 - 13*l**2 + 4*l + 5. Let p(t) = -5*c(t) - 4*g(t). Is p(8) a multiple of 3? False Let f(q) = 20*q**2 + 48*q + 418. Is 159 a factor of f(-16)? True Does 160 divide (119/28)/17 + (-180090)/(-24)? False Suppose 3*t - 2*u + 4*u + 43 = 0, 5*u - 30 = 5*t. Let a(o) = 7*o + 99. Does 6 divide a(t)? False Let x(u) = -30*u**2 + 7*u + 2. Let g(j) = 29*j**2 - 6*j - 3. Let w(c) = 7*g(c) + 6*x(c). Is w(-3) a multiple of 35? False Let r(w) = -2*w + 56. Let b be r(4). Suppose 2*t - b = t. Is t a multiple of 4? True Let t(f) = f**3 + 27*f**2 - 66*f - 30. Does 29 divide t(-20)? False Suppose 0 = 5*d - 3*f - 32, -3*d + 7*f = 2*f - 16. Is 6 a factor of 24 - 0/(d - 3)? True Let h(a) be the third derivative of a**5/12 + 9*a**4/4 + 5*a**3/3 + 5*a**2 + 1. Is 10 a factor of h(-11)? False Suppose -6132 = -3*c - 3*f, 130*c - 3*f = 131*c - 2052. Is c a multiple of 6? True Suppose -112*i + 378 = -106*i. Is i - ((-2)/3 - (-24)/36) a multiple of 33? False Let h be 490/18 - (-10)/(-45). Is (-60)/(-16)*1368/h a multiple of 21? False Let a be (22 - 7)/(-3*2/(-18)). Let o be (-72)/(-45)*a/2. Is 18 a factor of (o/(-14))/((-1)/7)? True Suppose -11*w = -12*w - 4, 0 = o - 4*w - 5806. Is 10 a factor of o? True Let h(a) = -a - 9. Let t be h(-9). Suppose t*l - 5 = 5*k + 2*l, 0 = k + 2*l - 7. Does 12 divide 0 + k + 31 - 4? True Suppose 244*c + 29810 = 249*c + 5*p, -4*p - 16 = 0. Is 38 a factor of c? True Let y(q) = 5*q**2 - 6*q**2 + 46*q + 46*q + 7 - 82*q. Suppose 2*u - 25 = -3*t, 4*t + 0*t - 4*u = 40. Is 3 a factor of y(t)? False Let x(i) = 33*i**2 + 1025*i - 30. Is x(-32) a multiple of 74? True Let q(y) = -y**3 - 14*y**2 - 2*y - 13. Suppose 99 = -4*p + 2*i - 7, 78 = -3*p + 2*i. Let t = p - -14. Does 2 divide q(t)? False Let r be 34 + -25 - -1*1. Let k(l) = l**3 - 12*l**2 + 22*l - 5. Let w be k(r). Let b(z) = 6*z - 24. Does 27 divide b(w)? False Suppose -25 = 5*i, 0 = 3*v + 4*i - 3174 - 166. Is v a multiple of 6? False Let v = 42 - 0. Let t = 42 - v. Suppose t*o + 113 = 3*l - 5*o, -o = -4*l + 145. Does 9 divide l? True Let g be ((-1)/1)/(1/(-247)). Let f = g - 67. Does 12 divide f? True Let h(z) = 257*z + 520. Is 144 a factor of h(18)? False Suppose -25*i + 1583 = -1393 - 1824. Does 32 divide i? True Suppose 2*u = -4*m + 11888, -10*u = -14*u + 4*m + 23824. Is 62 a factor of u? True Let w = -102 - 283. Does 12 divide (48/(-14))/(10/w)? True Let g = 7817 + -3304. Is 28 a factor of g? False Let t be 12*((-28)/6 + 5). Suppose -t*f + 2*f = -526. Is 14 a factor of f? False Suppose 2*n - 3*v = 6104 + 277, 5*n + 5*v - 15965 = 0. Is 23 a factor of n? False Suppose -13 + 3 = -5*t. Suppose -3*f + 8*f = -t*u + 110, -3*f - 168 = -4*u. Does 15 divide u? True Let j = -285 + 455. Let r = -53 + j. Is 22 a factor of r? False Let a(d) = -417*d - 1724. Is 10 a factor of a(-11)? False Let y(u) = -18*u**2 - u + 65. Let a(f) = -6*f**2 + 22. Let k(t) = 17*a(t) - 6*y(t). Is k(-5) a multiple of 49? False Let i(m) = 186*m**2 + 34*m - 33. Is i(-5) a multiple of 117? False Suppose -11*u - 4 = -15*u. Is 104 + (0 - -5 - u) a multiple of 27? True Does 86 divide (43/(-4))/(19/(-2280))? True Let j = -5 + 8. Let f(s) = -3 + 11*s**3 - 7*s**3 - 5*s**j - 7*s**2. Is 8 a factor of f(-8)? False Let m be (0/(-2))/((-15)/(-10)*-2). Suppose m = -6*i + 3*i - 4*p + 432, 0 = 5*p. Suppose -i = -0*h - 9*h. Is 8 a factor of h? True Let v = -204 - -217. Suppose -21*c = -v*c - 2240. Is 40 a factor of c? True Suppose 30*a - 29*a - 3 = 0. Let m(f) = -4*f + 17*f**2 + 1 - a*f**2 - 8. Does 18 divide m(3)? False Let a(t) = -39*t**3 + 6*t**2 + 7*t + 12. Let f be a(-4). Suppose f = -11*u + 25*u. Is u a multiple of 46? True Suppose -4*j - 19 - 113 = 0. Let d = -28 - j. Suppose 2*h - 3*h + d*o = -37, -2*o = 3*h - 60. Is 9 a factor of h? False Suppose -3340*m - 2452 = -3344*m. Is 7 a factor of m? False Suppose 2*d = -3*t + 4*t + 17, 5*d - t - 47 = 0. Suppose l = 4*n + 323, l - d = 5*n + 315. Is 21 a factor of l? True Suppose 46*a + 108*a = 15*a + 163881. Is 8 a factor of a? False Let i = 277 + 14. Suppose 0 = y + 3 - i. Is 36 a factor of y? True Let z = 1453 + -888. Suppose -3*f = -428 - z. Is 13 a factor of f? False Suppose 3550 = 16*o + 9*o. Let w = -88 + o. Does 6 divide w? True Let w = 124 - 129. Is (w/(-15))/(2/1554) a multiple of 18? False Let o = 5041 + -2983. Is o a multiple of 49? True Let w(g) = -2*g**2 - g + 3. Let i be w(3). Is 24 a factor of 16*(i/(-3) + 6)? True Let h = 67 - 84. Let x(a) = -a - 8 + 6*a - 4*a + 45. Is 5 a factor of x(h)? True Suppose 8*g = -2*g + 19720. Suppose -22*z = -5*z - g. Is z a multiple of 29? True Let b be (6/(-4))/(8 + (-1295)/162). Let h = -186 - b. Is h a multiple of 15? False Suppose 5*r = -36 - 84. Let m = -16 - r. Does 16 divide ((-84)/m)/(-3)*40? False Let f = 126 - 124. Suppose -f*h + 450 = -p + 121, 0 = -4*p - 20. Does 52 divide h? False Suppose l = 2*l - 4. Suppose -2*s = -l*v - 358, 0*s = 2*s + 4*v - 398. Is s a multiple of 21? True Suppose 37*o + 188 = 36*o. Let l = 176 - o. Does 28 divide l? True Does 19 divide ((-361)/3)/((111/592)/(54/(-8)))? True Suppose 0 = -3*g - 4*r + 3583, -1191 = -g + 32*r - 35*r. Does 20 divide g? False Let l = -137 + 2210. Does 25 divide -3 + (l/18 - (-5)/(-30))? False Suppose i = g + 1306, 0*g = -4*i + 2*g + 5218. Suppose 8*j - 265 - i = 0. Is j a multiple of 9? False Let b = 5754 - 2864. Is 25 a factor of b? False Let i(v) = -v**3 - 86*v**2 - 111*v - 231. Does 14 divide i(-85)? False Let z(a) = a**2 + 6*a + 4. Let o be z(0). Suppose -o*q - 3*j + 382 = -60, -3*q - 3*j = -330. Is 17 a factor of q? False Is 9 a factor of 75 - (-12)/4 - (-6 + 3)? True Let u(a) = -a + 2. Let z(n) = 2*n + 22. Let x(r) = 30*u(r) - 3*z(r). Is x(-1) a multiple of 15? True Let l be ((-423)/15)/(2*2/(-20)). Suppose -3*k - 26 = -2*j - l, 2*k = 2*j + 76. Does 29 divide k? False Let i(h) = -2*h**3 + 50*h**2 + 63*h. Is i(25) a multiple of 25? True Suppose -21*w - 48 = -17*w. Does 10 divide (327/2)/((-6)/w)? False Let k = -285 - -489. Suppose -6*d + 4*d - 5*j = -85, -5*d - 4*j + k = 0. Is 10 a factor of d? True Let g be (7 - 2) + -7 + 33 + 0. Suppose 432 = g*m - 25*m. Does 12 divide m? True Let n be (-1)/(2658/(-1326) + 2). Let v = 431 - n. Is v a multiple of 14? True Let j = 2774 - 2738. Is j even? True Let h(v) = 3*v**3 + v**2 + 11*v - 7. Does 28 divide h(5)? True Suppose 10 = -8*i + 2. Let j be i/(2/(270/(-3))). Is 12 a factor of ((-4)/(-5))/((4 + -1)/j)? True Suppose -5*r = -s - 11651, -4*s + 9*s = -3*r + 6985. Is r a multiple of 27? False Let z(p) = -p**3 - 80*p**2 - 85*p - 253. Is z(-79) a multiple of 13? True Suppose 4*j - m = 11, -2*j = -7*j + m + 13. Is ((-56)/3 + j)/(9/(-162)) a multiple of 25? True Let c be 4/(-6) - 24/(-36). Suppose 3*z = -c*z - 5*g + 324, -2*g = 0. Is z a multiple of 15? False Let i(t) = 5*t**2 + 12*t - 70. Let l(q) = -2*q**2 - 9*q + 10. Let a be l(-5). Is 11 a factor of i(a)? False Let r(p) = p**2 + 5*p - 8. Let t be r(-7). Does 9 divide (-1563)/(-6) + (9/t)/3? True Suppose -11*h - 3132 = -15*h - 4*a, 5*h - 2*a = 3936. Does 11 divide h? False Suppose -2 = 4*u - 5*u. Suppose -s + 8 = u*v - 1, -3*s - 4*v + 21 = 0. Suppose -2*k + s*k - 132 = 0. Is k a multiple of 33? True Suppose 3970 = -s - 4*s. Let t = -271 - s. Is t a multiple of 34? False Let r = 12 + 71. Suppose 0 = -2*h + n - r + 29, -5*h + 2*n = 136. Let u = h + 83. Is 11 a factor of u? True Let m(w) = w**3 - 4*w**2 + 3*w - 8. Let b be m(4). Suppose b = 2*a - 0. Does 11 divide 16/12*(1 + a)*7? False Suppose 29150 = 34*w - 21000. Is w a multiple of 59? True Suppose 0 = -29*u + 149*u - 15552 - 1968. Does 6 divide u? False Let r(m) = 18*m**2 + 21*m + 12. Let o be r(-5). Let q = 571 - o. Does 10 divide q? False Suppose -22 = -5*o + 48. Suppose -o*b - b = -3495. Does 22 divide b? False Let l = -76 + 1787. Does 9 divide l? False Let a = 574 + -361. Suppose 0 = z - 267 - a. Does 40 divide z? True Does 63 divide 2/(-14) + (-165380)/(-35)? True Suppose 4*b = l - 10010, -51*l + 52*l - 10000 = -b. Is l a multiple of 31? False Does 14 divide (30/375 - (-4192)/100)/((-6)/(-28))? True Suppose 9*g = -824 + 4973. Suppose 5*l - g = 54. Does 8 divide l? False Let k(g) = g**3 + g + 4. Let h be k(0). Suppose 0*f = -h*f + 2088. Is 29 a factor of f? True Suppose 4*g + 2*v + 2*v - 4220 = 0, g + 2*v = 1060. Does 25 divide g? True Let c be 220/(-33) - (-4)/6. Does 23 divide 128/10*(-240)/c? False Is ((-14980)/630 - 4/18)*(-366)/8 a multiple of 18? True Let c(p) = p**2 - 2*p - 5. Let b be c(-3). Suppose b*f - 7 = 9*f. Let k(n) = -n**3 + 9*n**2. Is 15 a factor of k(f)? False Let t(b) = -663*b + 51. Is 51 a factor of t(-11)? True Let r(f) = f**3 + 8*f**2 - 8*f + 11. Let v be (3 + (-3)/2)*-6. Let k be r(v). Is (22 - k)*(-46)/(-8) a multiple of 23? True Let f = 2790 - 2446. Is f a multiple of 4? True Does 54 divide (-80)/6*((-10690)/50 - 13)? True Let f(y) = 15*y**2 + 2*y - 4. Suppose -2*w - 1 + 13 = 0. Suppose -5*g + 4 = -w. Is 17 a factor of f(g)? False Let y = -142 + 241. Suppose -120 = -2*g - 4*t, 2*g + 5*t - 26 - y = 0. Is 25 a factor of g? True Suppose -3*g = -c - 7, -5*g + 2*c + 3 = -8. Suppose g*z - 1800 = -9*z. Does 30 divide z? True Suppose 5*v = -0*v. Suppose 2*r + 2*r = v. Suppose r = 2*o - 14 - 10. Does 2 divide o? True Let k = -155 - -151. Is (-29073)/(-55) + k/(-10) a multiple of 23? True Let z(u) = -3*u + 19. Let v be z(5). Suppose 79 - 499 = -3*m - 4*l, -5*l = v*m - 560. Is 28 a factor of m? True Suppose 591 + 1015 = 5*g - 244. Is 4 a factor of g? False Let f(b) = -136*b + 97*b**2 + 267*b - 134*b. Is 13 a factor of f(-1)? False Let p = 210 - 205. Suppose 0 = -w + 2*j + 14 + 30, p*w - j - 202 = 0. Is w a multiple of 20? True Let p(z) = -z + 15. Let b = 61 - 46. Let j be p(b). Suppose s + 3*l - 67 = 0, j*l = 2*s + 5*l - 131. Is 9 a factor of s? False Let x(n) = -n**2 + 14*n - 22. Suppose -3*y + 86 = 5*g, 0*y - 5*y - 3*g + 138 = 0. Suppose -2*p + y - 11 = 0. Does 26 divide x(p)? True Let p(y) = y**2 - 11*y + 22. Let j = 60 + -85. Let q = -12 - j. Does 16 divide p(q)? True Suppose 15644 = 5*o + b, -193*o = -190*o - b - 9388. Does 21 divide o? True Let j be 44 + (-1 - 0 - 0). Let b = 40 - j. Is (-4 + (-236)/12)*b a multiple of 17? False Suppose v - 27 = 5*a, -2*v + 25 = -5*a - 4. Does 24 divide ((-128)/a)/(12/90)? True Let q(f) = -24*f - 13. Let a be q(-6). Suppose -5*j = 2*t + a + 87, 0 = 2*t + 4*j + 222. Let w = -15 - t. Is 13 a factor of w? True Let n = 33 + -20. Suppose x = 4*j + 250, 0 = -2*x + 12*j - n*j + 473. Is 34 a factor of x? True Suppose -10*l = -471 - 689. Let d = 167 - l. Is 8 a factor of d? False Let y = -7370 - -13023. Does 11 divide y? False Let a(k) = 2*k**2 - 6*k - 81. Let u be a(22). Suppose 0 = -z - 0*o - o + 2, -4*o = z - 8. Suppose -5*n + 3*m + u = z, -3*n + m + 709 = 260. Does 16 divide n? False Let i be 2 - 54/(2 - 1). Suppose 0 = -11*k + 32 - 43. Is 7 a factor of i/k + (0 - -1)? False Suppose 521*q = 522*q - 3889. Does 117 divide q? False Let y = -43 - -23. Let l = -15 - y. Let u(h) = h**2 - 4*h + 6. Is u(l) a multiple of 2? False Let a(p) = p**2 - 13*p - 11. Let j be a(14). Let i be 21/28*(j - -1). Suppose 0 = -2*z - 2*z + 16, i*g - 3*z = 60. Is 5 a factor of g? False Is (918/170 + (-5)/1)/(2/2520) a multiple of 21? True Suppose 4*d - 1001 = -c, 505 = -3*c + 5*d + 3491. Does 17 divide c? False Suppose m - 1171 = -2*k + 1942, 3095 = 2*k - 5*m. Does 75 divide k? False Let v = 106 + -72. Let p = -29 + v. Suppose -3*h + 4*t + t + 41 = 0, 3*h + p*t = 91. Is 22 a factor of h? True Let o(n) = 5*n**2 - 11*n + 6. Let l be o(9). Suppose -3*q - 6*b + b = -l, 2*q = 3*b + 208. Is 4 a factor of q? True Let d = 52 - 50. Let n be 5 - d/(-4)*-2. Suppose -40 - 160 = -n*p. Is p a multiple of 25? True Let k(j) = 14*j + 18. Suppose -189 = -5*y - 39. Let s = y - 22. Is k(s) a multiple of 26? True Let x = -47 - -47. Suppose x*t + 0*t = -3*t. Suppose 0 = -t*z + 3*z + 9, 399 = 4*n - z. Is 13 a factor of n? False Let n(b) = -14*b + 10. Let q be n(-3). Suppose -2*y - q = -8. Is 1 - (y - 2/(-2)) a multiple of 11? True Let h = 31 + -31. Suppose 15 = -5*z, s + 3*z + 9 = -h*z. Suppose s = 5*l - 91 - 59. Is 7 a factor of l? False Let d = -2617 + 2976. Is 15 a factor of d? False Suppose -76*y + 60804 = 78*y - 76256. Is 89 a factor of y? True Let i(p) be the third derivative of p**8/20160 - 19*p**7/5040 + p**6/30 + 7*p**5/30 + 13*p**2. Let y(f) be the third derivative of i(f). Is 6 a factor of y(18)? True Suppose -15*x + x + 21134 = -5956. Is x a multiple of 54? False Let g(j) = -21 + 2*j - 29 - 3*j + 55. Does 25 divide g(-20)? True Let s(v) = -v**3 - 17*v**2 - 35*v - 48. Does 8 divide s(-25)? False Suppose 43*f + 1473 - 54117 = -7236. Is f a multiple of 32? True Suppose -55*b + 259135 = -144290. Is 45 a factor of b? True Let z(b) = -b**2 + 8*b + 3. Let j be z(9). Let f(l) = 3 + 3 + 2 - l. Does 7 divide f(j)? True Let u(p) = -37*p + 6. Let q(v) = -v + 1. Let n(s) = 6*q(s) + u(s). Does 10 divide n(-6)? True Let g be 22*(14/4 - 3). Let t = g - 8. Is 14 a factor of (35/2 - t)/((-1)/(-4))? False Let p = 9 - 5. Let r be (-4)/(-16) + (-1)/p. Suppose o - 31 = -3*t, r*o - t = 2*o - 67. Does 4 divide o? False Let c be (1 + (-4)/1)*8/(-6). Suppose c = 4*v - 4. Suppose -6*y + 400 = -v*y. Is 20 a factor of y? True Let d(y) = 2*y + 65. Let x be d(14). Suppose k - 78 - x = 0. Is k a multiple of 12? False Let m(x) = 8*x**2 - 27*x - 9. Let r be m(9). Suppose 60*g - r = 56*g. Is g a multiple of 16? False Is 21 a factor of ((-225)/(-10))/(-15)*-4326? True Suppose 12*v - 7*v = 20, 5*v = -4*l + 20840. Suppose l = 5*s + 10*s. Is 31 a factor of s? False Let b(g) = -g**3 + 14*g**2 + 18*g - 15. Let u be b(15). Suppose -u - 14 = -2*h. Does 5 divide h? False Let m(f) = 246*f**2 - 158*f**2 + 5*f + 13 + 2*f. Is 23 a factor of m(-2)? False Does 82 divide (6 + 665/14)/(1/2)? False Let s(f) = -f**3 - 13*f**2 - 104*f - 10. Is s(-16) a multiple of 14? True Suppose 1676 = v + 4*x, 29*v - x + 1688 = 30*v. Is 141 a factor of v? True Suppose 300 + 405 = 15*y. Suppose -y*k + 256 = -39*k. Is k a multiple of 2? True Suppose 0 = z + 5*a - 0 + 6, 4*z = -2*a + 66. Suppose -318 = -z*s + 4470. Is 36 a factor of s? True Let f be ((-15)/15)/((-2)/358). Suppose 161 = t - f. Does 20 divide t? True Suppose -5*c + 0*c + c = 0. Suppose c = l + 5*l - 24. Suppose -3*f - l*j = 3 - 50, 0 = -5*f - 2*j + 97. Does 7 divide f? True Let w = -4468 - -5823. Is w a multiple of 140? False Suppose -3*o + 79 = -4*q - 0*q, 70 = -5*q - 2*o. Let r(s) = -s**2 - 16*s + 2. Let n be r(q). Is 16 a factor of (n - 2 - 1)*-59? False Suppose -5*v - 115 = -0*v. Let s(t) = -614 - 615 - 3*t + 1842 - 617. Is 10 a factor of s(v)? False Suppose 2*b + 20 = 6*b. Suppose -3*k + 3*z = -177 - 792, 0 = -b*k + 2*z + 1609. Suppose -3*t + k = 4*j + j, 0 = 2*t - 4. Does 14 divide j? False Let p = -156 - -159. Is 24 a factor of (-970)/p*(-30)/25? False Suppose -5*t - 38*j + 19161 = -39*j, -5*j - 15333 = -4*t. Is t a multiple of 86? False Let w(y) = -2*y**3 - 16*y**2 + 20*y - 23. Let g(k) = 5*k**3 + 31*k**2 - 41*k + 48. Let p(l) = -3*g(l) - 7*w(l). Is p(18) a multiple of 16? False Let w be 0/(7 - 5 - (5 - 2)). Suppose 0 = -3*o + 3*x + 714, w = 4*x - 5*x + 2. Is 60 a factor of o? True Let q(f) = 2*f - 19. Let o be q(13). Suppose -r - 3*a = 37, 172 = 2*r - o*r - 2*a. Let y = r + 60. Does 13 divide y? True Let d = 1088 - -1627. Is d a multiple of 15? True Let f = 421 - -630. Does 39 divide f? False Let y = 7213 - 3188. Does 35 divide y? True Let m(p) = -p**3 - 14*p**2 + 4*p - 22. Let z = 38 + -53. Is m(z) a multiple of 33? False Is 53 a factor of 5020 + (-658)/(-141)*(-3)/2? False Suppose -2*z + 4 = -2. Suppose -655 = -z*i - 0*i + 4*m, 1110 = 5*i - 3*m. Is i a multiple of 25? True Let h(j) = j**3 - 6*j**2 + 2*j - 27. Let c be h(10). Suppose 2*o + 3*u = c, -o = 2*o - u - 573. Is 6 a factor of o? True Suppose -8*i = -31 - 9. Suppose 2*n - n - i*r = 35, 4*n - 83 = r. Is 3 a factor of n? False Let s be 1 + 7 + 6 + -2. Let u(f) = f**3 - 11*f**2 - 12*f. Let j be u(s). Suppose j = 5*r - 51 - 54. Does 3 divide r? True Let r(y) = -y**3 - 5*y**2 - 3*y. Let m be r(-5). Let t be (108/10)/(3/m). Suppose -3*z = -t - 72. Is z a multiple of 14? True Suppose m + 24470 = 5*q, -5*q - m = -q - 19567. Is 21 a factor of q? True Let t be (-4)/6 - (203/3)/(-7). Suppose 0 = -15*l + t*l + 504. Is 28 a factor of l? True Let f(x) be the first derivative of -4*x + 3 + x**3 + 3/2*x**2. Is 7 a factor of f(-3)? True Let d(a) = 28*a + 16. Let g = 55 + -51. Is 8 a factor of d(g)? True Suppose 3*l + 4498 = 118*r - 116*r, -3*r + 6766 = 5*l. Does 27 divide r? False Let w = -61 + -20. Suppose -299 = -2*r - 5*i - 0*i, -3*r + i = -406. Let t = r + w. Does 16 divide t? False Let i(p) = p**2 - 19*p + 82. Let u be i(9). Let x(v) be the second derivative of -v**5/20 - 2*v**4/3 - 7*v**3/6 + 4*v**2 - 2*v. Is 17 a factor of x(u)? False Let j(a) = 23*a**2 + 4*a - 11. Suppose 8 = 2*l, -6*l + 3*l + 4 = -4*f. Is j(f) a multiple of 55? False Let v(k) = 19*k + 124. Is 21 a factor of v(91)? False Suppose 5*t + 4*s + 8154 = 36764, 17164 = 3*t + 2*s. Is 102 a factor of t? False Suppose 9*d + 688 = 4*d + 3*y, -4*y = 4*d + 576. Let z = d - -284. Is z a multiple of 8? True Let q(a) = -2*a**2 + 17*a - 10. Let g be q(9). Let w be (g - -17)*((-5)/(-2))/(-1). Suppose n - w*j - 26 = 0, n = 3*n + 5*j - 112. Is 7 a factor of n? False Suppose -448*b = -217*b - 226*b - 36000. Is 120 a factor of b? True Let i be (-1 + 3/5)*(11 - 101). Suppose -i*y + 21 = -33*y. Suppose -27 = y*g - 8*g. Is 6 a factor of g? False Is 139 a factor of -11 + (-574)/(-56) + 29959/4? False Let q(c) = -12*c**3 - 5*c**2 + c + 4. Let n be q(-4). Suppose 0 = 40*b - 32*b - n. Does 9 divide b? False Let h(c) = -6*c**2 + 3*c - 2. Let p(b) = b**2 - 1. Let z(d) = 9*d**2 - 7*d + 6. Let k(a) = 2*p(a) + z(a). Let o(t) = -5*h(t) - 2*k(t). Does 7 divide o(2)? False Let z = -409 + 237. Let d = z - -263. Is 13 a factor of d? True Suppose 4*f = 100 + 56. Suppose -2*b = -f + 37. Is 23 a factor of (4/1)/((2/12)/b)? False Suppose 0 = -2*j - 4*m + 55 + 57, 2*j - 116 = -2*m. Suppose -7*f - j = -10*f. Is ((-155)/f)/((-1)/8) a multiple of 6? False Let j(r) = -89*r - 359. Is 44 a factor of j(-9)? False Let q(i) = 47*i**2 - 92*i**2 - 3 + 55*i**2 - 2*i. Let l be q(5). Suppose 2*b - l + 71 = -3*z, 3*b + 3*z = 252. Is b a multiple of 23? False Is 4 a factor of ((-4)/(-2) - 31)/((-154)/1848)? True Suppose 5*d - 6*d + 18 = 0. Suppose 20*g - 17*g + d = 0. Is 12 a factor of 95 + ((-6)/4 - 15/g)? True Suppose -y + 433 = -d - 318, 3752 = 5*y - 2*d. Suppose 0 = -5*r + 2*z - 0*z + y, z - 587 = -4*r. Is 10 a factor of r? False Suppose -512 = -3*d + d. Suppose -d = -4*h - 4*k, 6*h - 4*h - k = 116. Is 5 a factor of 1208/h + (-6)/45? True Let f = 46 + -46. Suppose f = 5*r + 3*r - 1008. Is 53 a factor of r? False Suppose -19 - 47 = -22*x. Suppose -x*w = 8*y - 7*y - 214, -3*w = -y + 226. Is y a multiple of 44? True Let l(i) = -6*i + 32. Let a(c) = -c. Let w(n) = 10*a(n) - l(n). Let b be w(15). Let v = 142 + b. Does 5 divide v? True Let r be (-2)/10*-5 - 7. Let v(l) = l**2 + 6*l + 4. Let c be v(r). Does 7 divide c/(-10)*-25*(-9)/(-3)? False Let h(k) = 43*k - 1. Let p be h(-2). Let g = p - -181. Suppose 5*x + g = 304. Is x a multiple of 7? True Suppose 9*q - 27283 - 24182 = 645. Is q a multiple of 30? True Suppose -40 = j - 11*j. Suppose 0 = j*r - v - 131, 163 = 3*r + 2*r - 2*v. Is 11 a factor of r? True Let b = 182 - 178. Suppose 809 = b*x + 137. Is 21 a factor of x? True Suppose -26*b - 3*s = -29*b + 9069, 0 = -5*b + 2*s + 15118. Does 36 divide b? True Suppose -6*q + 1 = -7*q, k - 11 = q. Suppose -2*t = k, -3*m - 2*m - 2*t + 815 = 0. Is m a multiple of 11? True Let x(o) = 80*o + 676. Is 3 a factor of x(-8)? True Suppose -64*c + 58*c + 12 = 0. Suppose -2*a - 1296 = -5*a + p, -1296 = -3*a - c*p. Does 59 divide a? False Let z(f) = -33*f**3 - 4*f**2 + 17. Is 34 a factor of z(-4)? False Let o be 273 + (2 - -4) + -1. Suppose 7*i = o + 100. Does 9 divide i? True Suppose 17 = 4*z + 3*n, 0 = 4*z - n - 21. Suppose 2*j - 71 = z. Is j a multiple of 3? False Suppose -9 = -30*k + 27*k. Suppose -k*g + 8*g - 25 = 0. Is g/(15/44)*(-12)/(-8) a multiple of 11? True Let n = -50 + 91. Let m = n - 38. Let u(w) = w**3 + w**2 - w + 5. Is u(m) a multiple of 22? False Let n be ((-10)/(-2))/(3/3). Suppose 103 = n*h + 18. Suppose h*d - 20*d = -57. Does 4 divide d? False Suppose 0 = -29*r + 2039 + 49. Is 8 a factor of r? True Let g(s) = -s**3 - 15*s**2 - 4*s - 33. Let d be g(-15). Suppose 13*m + 378 = d*m. Does 4 divide m? False Suppose -2*x - 3*d = -0*d - 150, 0 = 3*x + 5*d - 226. Suppose 4*w + 148 = i, -3*i = 4*w + 31 + 101. Let g = w + x. Does 8 divide g? False Suppose 0 = 2*i - j - 12300, 5*j = 2*i - 9033 - 3259. Does 66 divide i? False Suppose 0 = -h - 3, -2*h - 11322 = -30*t + 26*t. Is 69 a factor of t? True Let r(w) = 15*w**2 - 8*w + 4. Let z(x) = 209*x**2 - 110*x + 55. Let u(s) = -55*r(s) + 4*z(s). Does 3 divide u(-2)? False Suppose 308 - 103 = u. Let x = u - 164. Does 6 divide x? False Let a be (-3)/5*(-15)/(1 - 4). Let o(l) = -26*l - 42. Is 2 a factor of o(a)? True Let j(z) be the second derivative of 25*z**4/6 - 18*z. Let v be j(1). Is (2 + 0 - -14)*v/10 a multiple of 10? True Suppose -2*d + 13 + 35 = -2*n, d + 5*n - 24 = 0. Let w(v) = v**3 - 23*v**2 - 21*v + 57. Does 43 divide w(d)? True Let l be 18 - (0 + -6 - -9). Does 24 divide (-71 + -1)/((-3)/l)? True Let b(m) = -124*m - 774. Does 10 divide b(-16)? True Let v = 1177 - 99. Is v a multiple of 18? False Let o = -2271 - -2925. Is 11 a factor of o? False Suppose 0*b + 115 = 5*b. Suppose 4*a - 3*a = -5*s + 16, s + 3*a = -8. Suppose u - b = s*t, 0*u - 31 = -u - 4*t. Is 9 a factor of u? True Let m(y) be the second derivative of 16*y + 0 - y**2 - 1/2*y**3 + 5/3*y**4. Is m(-1) a multiple of 5? False Let k(q) = -q**2 + 10*q - 6. Let w be k(9). Suppose 0*o - o - 4*v + 67 = 0, w*o + 2*v = 181. Suppose 74 + o = b. Is 14 a factor of b? False Let k = -1771 + 2053. Is k a multiple of 47? True Let r be (1 - 362 - -3) + 6. Let c = 613 + r. Does 25 divide c? False Let j(s) = 2*s + 6*s + 7 - 3 + 19 - s**2. Let l be j(10). Suppose -45 - 111 = -l*k. Is k a multiple of 13? True Suppose -5945 = -5*x + 3*q - 8*q, 4*q = 2*x - 2384. Is x a multiple of 35? True Suppose 0 = -2*m + 3*m + 1. Let i be 2 + m + -3 - -4. Suppose -i*k - 5 = -55. Is 3 a factor of k? False Let j(c) be the first derivative of -c**5/12 + 5*c**4/24 + c**3 - 18. Let p(u) be the third derivative of j(u). Does 14 divide p(-8)? False Suppose 0 = 11*b - 20384 + 4247. Suppose -6*a + 813 = -b. Is 26 a factor of a? False Does 13 divide 4 + (-117676)/(-91) + (2/(-14) - 0)? False Let s(v) = -3*v**3 - 5*v**2 - 4 + 13*v**2 - 7*v**2. Is 6 a factor of s(-4)? True Let z(x) be the first derivative of x**3/3 - 2*x**2 - 14. Let i be z(4). Suppose -5*r + v + 208 = i, -2*r - r = 3*v - 114. Does 35 divide r? False Let q be 1/((-16)/17 - -1). Suppose -q = -t - 14. Suppose 62 = t*u - 118. Does 15 divide u? True Let h(v) = v**3 - 8*v**2 - 9*v + 12. Let t be h(9). Let a(d) = -2*d + 60. Is 5 a factor of a(t)? False Suppose -3*x = -2*z + 596, 2*z - 9 + 7 = 0. Let g = -158 - x. Does 10 divide g? True Suppose 2*a = 10 + 8. Suppose -3*q = 5*y - 2*q - 4, a = 4*y - 5*q. Is 35 a factor of ((-700)/5 - 0)*y*-1? True Let z be 12/(-28) + 17/7. Suppose 0 = 8*m - 7*m - z. Suppose -6*r - 5*c = -m*r - 87, 2*r = -5*c + 51. Does 9 divide r? True Suppose 0 = 5*t + 4*w - 48556, -14151 = -3*t - 3*w + 14985. Is 17 a factor of t? False Suppose 0 = 12*d - 75 + 15. Suppose -d*x - 53 = -438. Does 3 divide x? False Let n be 1/1 - (14 - 15). Suppose -3*t = 3*g - 2*t - n, 3*g - 4*t + 23 = 0. Is (-1)/(-4) - g/(4/31) a multiple of 8? True Does 54 divide (1*(-678)/(-18))/((-13)/(-1638))? False Suppose -2*a + y + 12921 = -2917, 4*y + 23752 = 3*a. Is a a multiple of 198? True Suppose 2*q = 5*u - 13935, 42*u - 5*q - 11148 = 38*u. Is 14 a factor of u? False Suppose -2 = a + 2*h, 2*a = 5*a - 5*h - 5. Suppose -2*c + 4*w - 8 = -a*w, 0 = w. Is (-1 - (c - 3))/(2/9) a multiple of 4? False Is 2 a factor of 24655/20 - 9 - ((-14)/(-8) - 1)? False Suppose 2*i - 62 - 16 = 2*u, 2*i + u = 72. Suppose -38*y + 84 = -i*y. Is y a multiple of 21? True Suppose -6470 = -0*k - 4*k + 7546. Is 88 a factor of k? False Let x(h) = -h**2 - 5*h - 5. Let k be x(-5). Let d be ((-48)/20)/((-6)/k - 1). Is 6 a factor of (3 - 0)/(d/(-44))? False Let y(r) be the third derivative of r**4/24 - 5*r**3/2 - 10*r**2. Let v be y(13). Is (14 + -23)*6*v a multiple of 12? True Let g(q) = -14*q**2 + 9*q**3 + 0 - 10*q**3 + 8 + 22*q. Does 8 divide g(-16)? True Let z(a) = a**2 + 56*a + 50. Is z(16) a multiple of 31? False Suppose s - 780 = -4*s. Let f = 1055 + -1056. Is (f/3)/(2*(-2)/s) a multiple of 3? False Is 2 + 5867 + (-9 - (-7 - 6)) a multiple of 13? False Suppose 3*f = 2*x + 7, 5*x = -2*f - 0*f - 27. Let k(i) = -277*i. Let v be k(f). Suppose -63 = -z - 4*n, 2*z = -3*z - n + v. Is 11 a factor of z? True Let t(s) = -98*s + 1229. Is 7 a factor of t(10)? False Suppose 34*l = 31*l + 69. Suppose 300 = l*r - 21*r. Is 15 a factor of r? True Let z(t) = 2*t**2 - 7*t + 2. Suppose -i - 4*i - 29 = -3*n, -5*i - 5 = 5*n. Let f be z(n). Let w = 11 - f. Is w a multiple of 6? True Let l(m) = -2*m**3 + 45*m**2 + 39*m + 61. Is l(23) a multiple of 13? True Suppose -2*w + 798 = w. Suppose -2*l - c + 66 = -0*l, l + 2*c = 27. Suppose 0 = -5*j + h + w, -4*j - h + 176 = -l. Is j a multiple of 33? False Suppose 606*g = 596*g + 17950. Is 143 a factor of g? False Is ((-1712)/(-40))/(-1)*-87 - (-2)/5 a multiple of 98? True Let g(i) = -9*i - 6. Let h be g(5). Let f = 36 + h. Let n = f + 33. Is 6 a factor of n? True Let w(i) = 5*i + 1852. Does 4 divide w(51)? False Let m = -82 + -55. Let t = m + 254. Let d = t - 81. Is d a multiple of 9? True Let j = -3473 - -3487. Does 14 divide j? True Let k(z) = 3*z**2 + 13*z + 2. Let h be k(-5). Let n(v) = 2*v**3 - 23*v**2 - 11*v + 28. Is n(h) a multiple of 9? False Let l = -2911 + 2981. Does 5 divide l? True Suppose -4*a - f = -a - 6, 0 = 3*a - 3*f - 18. Suppose 2*w + 22 = -r - 63, 0 = -4*w - a*r - 165. Let n = w - -95. Does 10 divide n? True Suppose -5230 = -5*q - 577 + 2697. Does 6 divide q? True Suppose 0 = 3*b - 22439 + 16238. Is b a multiple of 28? False Let q(a) = -a**3 + 31*a**2 - 20*a - 29. Let x = -179 + 209. Is q(x) a multiple of 12? False Suppose 5*y + 172 = 182. Suppose -m = y*m - 5*o - 137, 0 = -m + o + 49. Is 6 a factor of m? True Let r = 2125 - -125. Is 10 a factor of r? True Let l(h) = 7*h**2 - 2*h + 6. Let i be l(2). Let q = -21 - i. Let g = q - -159. Is 12 a factor of g? True Is 2863/49*(24 - 17) even? False Let h be (-1)/(-2) + (-22)/4. Let t be 21/(-6)*1/(-7)*-2. Is h + 5 + -3*(-20 - t) a multiple of 28? False Let v(q) be the second derivative of -q**3/6 + 9*q**2/2 - 14*q. Let o be v(-11). Does 13 divide -45*(-3 - (-48)/o)? False Suppose -20148 - 143576 = -17*t - 27*t. Is t a multiple of 20? False Suppose -2038 = -4*n + 11940 + 262. Is n a multiple of 59? False Let v = 2323 + -1205. Suppose -286 + v = 13*g. Does 3 divide g? False Suppose 5*s + 1860 = -15*s. Let a = s + 122. Does 2 divide a? False Let j = 4317 - 4316. Let n(l) = 6*l - 3 - 1 + 1. Does 3 divide n(j)? True Is (-24)/((15 - 18)*(-2)/(-1144)) a multiple of 88? True Let h = 16371 - 8099. Is h a multiple of 88? True Let w(y) = y**2 - 8*y + 7. Let l be w(5). Let z = -8 + l. Is 2/((4/(-54))/(z/12)) a multiple of 9? True Let d(v) = -2*v**3 - v**2 + 1. Let x be d(-1). Let s(j) = -39*j**3 + 2*j**x - 156 - j + 157 - 4*j**2. Is 20 a factor of s(-1)? False Let d be 1396/6*(-126)/(-84). Let j = d - 96. Is 10 a factor of j? False Suppose r = -2*k + 76, -5*r = -8*k + 11*k - 345. Suppose d - 270 = -r. Is d a multiple of 17? True Does 86 divide 1/3 + ((-36)/(-54))/(8/41276)? True Is 6 a factor of 26/(-91) + (-110392)/(-56)? False Let a = 9 + -16. Is (a + 16)*(-23)/(-3) a multiple of 11? False Suppose 5*g - 4*p = 7*g - 6278, 5*g - 6*p = 15695. Does 43 divide g? True Let a be -3*(73/3 - 1). Let x = a + 145. Suppose -12 = y - x. Does 9 divide y? True Let n(t) = 72*t**3 + 24*t**2 - 43*t + 3. Is n(4) a multiple of 48? False Let a = -2186 + 2946. Is a a multiple of 70? False Let q(h) = 16*h + 2. Let z be q(-1). Let l(k) = 2*k + 25. Let o be l(z). Is (o - -2) + (-3 - 1) + 70 a multiple of 20? False Suppose 6*f = 9*f - 2151. Does 48 divide (f/6)/(5/(-5 + 15))? False Let p(r) = 11*r**2 + 7*r - 7. Let u be p(2). Let w = 77 - u. Is 4 a factor of w? False Suppose 3*a = 5*c - 22, 0 = 3*c + 5*a - 7*a - 14. Does 25 divide 392/12 + c*8/12? False Let t(j) = -5*j. Let c = -5 + 4. Let p be t(c). Suppose -p*u = 124 - 999. Is 35 a factor of u? True Let l be (-14)/(-6) - 2 - 22/(-6). Let g(a) = 122*a - 13. Let t be g(l). Suppose -2*y = -7*y + t. Is 19 a factor of y? True Does 10 divide 6490/12 + 3*(-130)/468? True Suppose -2*c + 2399 = -w + 9535, 2*w - 3*c - 14274 = 0. Is w a multiple of 85? True Suppose -u = 5*x + 2 - 1, -x + 3*u + 3 = 0. Does 70 divide (-4 - x)/(-4) + (280 - 1)? True Suppose 3*o = -2*o - 345. Let w = 122 + o. Let q = w - 32. Is 3 a factor of q? True Suppose 3*n - 10 = 2. Suppose -7*k + q + 439 = -n*k, -3*q = k - 153. Is k a multiple of 7? True Let u be 124/3 + (-3)/9. Let g = 1251 + -1202. Let x = g - u. Is x a multiple of 2? True Let b be 1 - -34 - (3 + (1 - 3)). Let y = b + -67. Let o = y - -99. Does 11 divide o? True Suppose 172*m - 1292598 = 10*m. Does 12 divide m? False Let t(h) = -4*h + 52. Let d(r) = -2*r**2 - r + 10. Let a be d(-3). Is 6 a factor of t(a)? True Let g(d) = d**2 - 3*d + 19. Let y(v) = 2*v**2 - 3*v + 20. Let c(j) = -6*g(j) + 5*y(j). Is 6 a factor of c(4)? False Let r = -49 + 55. Suppose 0 = -r*l + 3*l - 558. Does 23 divide l/(-36)*15 - (-1)/(-2)? False Is 14 a factor of (6 + -5)*1/(12/1014)*8? False Let m be (1456/63 + -4)*9. Let a = -254 + 131. Let f = m + a. Is f a multiple of 10? False Let h(y) = 191*y - 67. Let j(x) = -96*x + 34. Let p(m) = -6*h(m) - 11*j(m). Is p(-4) a multiple of 40? False Let g = -4252 + 5468. Is g a multiple of 53? False Let l = 78 - 44. Suppose -32*c = -l*c + 12. Suppose c*s - 110 = 5*s. Is s a multiple of 14? False Let j(v) = 2882*v**3 + v - 1. Let m be j(1). Suppose -6*t - 5*t = -m. Does 12 divide t? False Suppose -16*g = -13*g. Suppose 5*d + 9*d - 1750 = g. Does 56 divide d? False Let u(m) = 2*m**2 - 11*m + 8. Let p be u(10). Suppose -5*s + p = -3*s. Let x = 133 - s. Is 20 a factor of x? False Let l(v) be the third derivative of 1/120*v**6 - 7*v**2 + 0*v + 0 - 1/24*v**4 - 1/30*v**5 + 1/2*v**3. Is 3 a factor of l(3)? True Let t be (-3)/15 + (-14)/5 + 3. Suppose t = 2*l - 2*a - 162, -3*l + 2*a - 4*a = -228. Is l a multiple of 9? False Suppose -8011 = -27*x + 25*x - 3*w, -x - 2*w + 4006 = 0. Is 28 a factor of x? True Let n(l) = 6*l**2 + 24*l - 792. Is n(-33) a multiple of 25? True Let u = -15 - -45. Let h be (-144)/(-42) + (u/(-21) - -1). Suppose h*n + 5*c - 77 - 86 = 0, -223 = -4*n - c. Does 14 divide n? True Suppose 5*l - 45 = 3*q, 4*l = -q - 2*q + 9. Suppose 841 - 283 = l*v. Is v a multiple of 10? False Let h(d) = -19*d + 5. Let a be h(-5). Let m = -81 + a. Does 5 divide m? False Suppose 0 = -11*o + 21*o - 30. Suppose o*n - 584 = -5*n. Is n a multiple of 28? False Suppose -2*m + 26 = 4*w, 2*w - 11 - 7 = -2*m. Suppose 0 = q + w*o - 451, 3*q - 101 - 1219 = -o. Is 34 a factor of q? False Let v(j) = -j + 20. Let b(z) = z**3 + 16*z**2 - z - 11. Let m be b(-16). Let y be v(m). Suppose 3*x + y = 3*t, -18 = -2*t - x - 2. Does 6 divide t? False Let v(f) = 101*f**2 + 61*f + 359. Does 22 divide v(-8)? False Suppose -l + 125 + 69 = 2*u, 5*u - 5*l = 515. Suppose -i - r + u = -3*r, -4*r = 4*i - 372. Suppose -i - 137 = -5*b + 3*d, 5*b + 4*d - 239 = 0. Does 10 divide b? False Let f(i) = -6*i**2 + 44. Let v(a) = -4*a**2 + a + 44. Let y(z) = -3*f(z) + 4*v(z). Does 34 divide y(-9)? True Let p be 0/2*(-8)/16. Suppose -l - 955 = -5*k, p = -k - 5*l + 3*l + 202. Is k a multiple of 14? False Let z be 16/(-6)*6/12*-3. Let o be 4/18 - 1292/(-18). Suppose k + o = z*k. Does 4 divide k? True Suppose 0 = -64*n + 61*n + 3*h + 2388, -4*n - 2*h + 3196 = 0. Is 12 a factor of n? False Let r be -2 - (-3)/(6/16). Let h be (-80)/(-15)*r/(-4). Does 15 divide (-2)/h - 0 - (-956)/16? True Let p(h) = -h + 7. Let x be p(7). Suppose 3*c - 4*c = x. Suppose c = -5*q + 11*q - 780. Is 13 a factor of q? True Let r(d) = 5*d**2 + 38 - 2*d**2 - 5*d - 12*d - 2*d**2. Let p = -9 + 26. Does 8 divide r(p)? False Suppose -2*y = -2*t + 10, 5 = -2*y + 1. Is 10 a factor of (-8217)/(-63) - t/7? True Suppose 0 = 4*l + 7 + 1, -5*l - 10 = 2*z. Suppose z = -6*t + 3809 - 719. Is 16 a factor of t? False Suppose -25 = 14*r - 19*r. Suppose -5*o + r*z + 10 = 0, -4*z + 0*z + 8 = 4*o. Suppose -o*t - 97 = -3*t + 3*s, -2*t - 2*s = -226. Is t a multiple of 14? False Let l(r) = -14 + 10 + 11 + 8*r - 129*r. Does 8 divide l(-1)? True Let b(r) = -r**2 + 35*r - 10. Let x be b(24). Is 14 a factor of x - (5/3)/(10/12)? True Suppose 10*l - 23192 = 34698. Is l a multiple of 99? False Let a(m) = -m**3 - 13*m**2 + 16*m + 53. Let f be a(-14). Let h be ((-1)/(-2))/((-2)/76). Let q = f + h. Is 4 a factor of q? False Let i be 136/12 + (-15)/(-9). Let c be (6/(-8))/(i/(-52)). Suppose 6 - 90 = -c*q. Is q a multiple of 14? True Suppose -5*u + 141 = -4*u. Let t be (1 + -2)*-4 - 64. Let j = u + t. Is 18 a factor of j? False Let p be ((-48)/84)/(2/7). Is p - (3 + -59 + 6) even? True Let i = -1789 - -5385. Is i a multiple of 31? True Let w(q) = 6*q + 50. Let x be w(-8). Suppose 3*a = 3*p + 246, -7*a + 8*a + x*p - 67 = 0. Is a a multiple of 11? True Let c = 53 + 8. Suppose 2*n - 5*p - 315 = -3*n, -n + 3*p = -c. Is n a multiple of 6? False Let a be 6*10/45 + 305/3. Suppose -3*c = 3*t + a - 523, 2*t - c = 292. Is t a multiple of 16? True Is (0 + 4)*10283/52 a multiple of 23? False Let u = 8665 + -6041. Is u a multiple of 14? False Let h = -68 + 71. Suppose c = -3*c - h*l + 400, 5*c - 500 = l. Does 20 divide c? True Suppose 2747 = j + x, x = -114*j + 109*j + 13735. Is j a multiple of 65? False Suppose -6*t - 1706 = -3*t - 2*u, 3*t + 1721 = -u. Is -5*(2 - t/(-10)) a multiple of 29? False Let h(v) = 9*v**2 + v - 17. Let j be h(-7). Suppose 0 = -5*k + 3*m + 744, -j - 43 = -3*k - 5*m. Is 50 a factor of k? True Let s(w) = -183*w + 573. Is 72 a factor of s(-13)? True Suppose 2*k + 8352 = 2*y, 2*y - 3833 - 4519 = 4*k. Is y a multiple of 12? True Let k(v) = v**3 + 3*v**2 - 4*v + 3. Let u be k(2). Let x be (-8)/6*(-15)/5*1. Let c = u + x. Is c a multiple of 14? False Let l = 246 + -128. Let j = l - 27. Suppose -361 + j = -6*p. Is 9 a factor of p? True Let x = 52 + -34. Suppose -5*m = u - 4*m - x, -4*u + m + 92 = 0. Is 11 a factor of u? True Let t = -1716 + 4941. Does 129 divide t? True Suppose 367 = 25*i - 4833. Does 8 divide i? True Let b be 15/9 + (-42)/(-18). Suppose 5*p + 7*q - 1345 = 4*q, 0 = 4*p + b*q - 1068. Is 13 a factor of p? False Let x be (1 + 4)*(5 - -82). Let w = x - 307. Does 16 divide w? True Suppose -5*u = -3*z - 1444, -z + 220 = 2*u - 362. Is 5 a factor of u? True Suppose -2135 - 3356 = -19*x. Suppose -2*a + 3*f + x = -84, 0 = -a + 4*f + 194. Is a a multiple of 16? False Let r(n) = -36*n - 23. Let k(b) = -18*b - 12. Let f(z) = -11*k(z) + 6*r(z). Suppose -5*p + 13 = -4*h - 10*p, 2*h - 4*p = 0. Does 6 divide f(h)? True Suppose -2*p + 3838 + 15580 = -5*n, -4*p + 38812 = 2*n. Is p a multiple of 19? False Suppose 4*s - 856 = -4*f + 8*s, 0 = 4*f - 5*s - 853. Suppose -5*m + 28 = -f. Is m a multiple of 23? False Let j = 5057 - 1624. Is j a multiple of 24? False Let m(w) = w**3 + 11*w + 5518. Does 147 divide m(0)? False Suppose -4*a + 8 = 0, 0 = 5*f + 7*a - 10*a - 3934. Is 13 a factor of f? False Let c = 751 - -1373. Is c a multiple of 59? True Let q = 2357 - 2247. Is q a multiple of 3? False Let j = 6030 + -3710. Is j a multiple of 16? True Suppose 4*q - 15 = 4*a + 1, -4*q = -16. Let s(x) = x + 7*x**2 + 24*x**2 + a*x. Is 16 a factor of s(1)? True Let z(t) = 4*t + 12. Let j(s) = s. Let p(f) = -3*j(f) + z(f). Suppose 28*d - 24*d = 52. Is 12 a factor of p(d)? False Suppose -180*k - 38136 = -194*k. Is k a multiple of 6? True Suppose 2*t + 20 - 4 = -4*j, 0 = -4*j. Let g be (2 + (-30)/t)*(21 + -1). Suppose 12*s + g = 17*s. Is s a multiple of 15? False Let w(x) = 397*x**2 - x - 3. Let s be w(-1). Suppose s = 4*i - 421. Is 5 a factor of i? False Let k = -45 + 43. Let u(d) = d**3 + 3*d**2 + d + 2. Let f be u(k). Suppose -f*p - 4*n = -2*p - 40, 2*n = -5*p + 140. Is p a multiple of 9? False Let y = -2148 + 3017. Is y a multiple of 79? True Let a be 1 + ((-16)/20)/((-2)/10). Suppose 8*z + a*t - 80 = 3*z, 72 = 5*z - 3*t. Does 5 divide z? True Suppose -4*f - 10 = -5*a, f + 0*a + 6 = 3*a. Suppose f = 3*o + 9, -3*x + 5*o - 47 = -323. Let j = 142 - x. Is 11 a factor of j? True Suppose 0 = 78*l - 63*l - 660. Suppose w = 3*w - 208. Let u = w - l. Does 6 divide u? True Let w = -3395 + 4679. Does 38 divide w? False Let r = -4971 + 5081. Is 11 a factor of r? True Does 64 divide (-318576)/(-33) + 2 - 46/(-253)? False Let u(h) = -4*h**2 + 23*h + 8. Let f be u(6). Let z(m) = 156*m - 4. Does 44 divide z(f)? True Let d(x) = 3*x**2 + 10*x + 22. Let t(i) = -10*i**2 - 30*i - 66. Let g(c) = -17*d(c) - 6*t(c). Is g(-4) a multiple of 18? True Suppose 65 = 6*z - z. Suppose -z*j + 6*j + 1568 = 0. Is (30/7)/(8/j) a multiple of 40? True Suppose 0 = -w + 776 + 1314. Does 3 divide w? False Let x = 37 + -50. Let c = 17 - x. Suppose -4*j + c = -186. Does 18 divide j? True Suppose 3*s = -u - u + 74, -106 = -5*s + u. Suppose -s + 1 = -7*p. Suppose -p*d - 35 = -2*c, -d - 20 = -4*c - 5*d. Is c even? True Let w(g) = g**2 - g - 2. Let b be w(3). Suppose -4*t = -7*t + 213. Suppose -t = -k + b. Is k a multiple of 12? False Suppose -3*m + 31056 = n, -3*n - 51774 = -492*m + 487*m. Does 87 divide m? True Suppose -3*y + 20596 = -101*a + 105*a, 8 = 2*a. Does 10 divide y? True Suppose 133*u = 102*u + 9796. Is u a multiple of 158? True Let q be 1*22 + (-11)/(-11). Let j(k) = k**3 - 23*k**2 + 8*k - 24. Is j(q) a multiple of 16? True Let a be (8/(-6) + 2)*-90. Let f = -348 - -322. Let d = f - a. Is d a multiple of 14? False Suppose 9*m - 5 = 14*m. Let i = -5 + m. Does 17 divide 1*(-276)/8*i/9? False Let v(m) = -3*m + 36. Let f be v(-16). Suppose f - 34 = 2*w. Is w even? False Let o = 12 + 10. Let f = o - 25. Is 3/(f/156*-18)*12 a multiple of 26? True Suppose -6*s + 40486 = 9*r - 13*r, 2*r = -2. Does 34 divide s? False Suppose x - 4*o + 4 = 1, -3*x - 4*o + 23 = 0. Suppose 0 = x*u + 21 - 91. Is u a multiple of 7? True Let q(v) = -v**2 - 11*v - 9. Suppose -45 = 37*g - 32*g. Is q(g) a multiple of 8? False Let o(g) be the first derivative of g**4/4 - 16*g**3/3 + g**2/2 - 9. Let k be ((-48)/10)/(24/(-80)). Does 4 divide o(k)? True Suppose -1 = n - 0. Let v be 0*(-4 - n)/6. Suppose -5*p + 100 = -v*p. Is 5 a factor of p? True Let l(w) = 7*w**3 - 6*w**3 + 5*w - w**2 - 6*w. Let m be l(2). Let q = m + 32. Is 20 a factor of q? False Let s be (-7 - -2)*2/(-2)*1. Suppose 5*f + 5*v - 40 = 0, -2*v + s*v = -5*f + 34. Suppose k - f*k = -24. Does 4 divide k? False Let j(n) = 3. Let c(x) = 1. Let k(l) = -8*c(l) + 3*j(l). Let b(r) = 2*r**2 - 2*r - 1. Let a(p) = 2*b(p) + 4*k(p). Is 5 a factor of a(3)? False Does 7 divide 4*40/(-16) + 1360? False Suppose -7 = -2*u - 3. Suppose -2*x + 4*t + 2 = 0, -u*t + 3*t + 23 = -4*x. Does 19 divide (-233)/x - (-6)/(-45)*-3? False Let s(z) be the second derivative of z**4/3 - z**3/3 - z**2/2 + 11*z. Let x(k) = k**3 + 5*k**2 + 3*k - 7. Let m be x(-4). Does 40 divide s(m)? False Suppose -b + 2*j - 8 = 4*b, -2*j + 8 = -3*b. Let a be (0 - 2/6) + 130/30. Suppose -a*f + 155 + 109 = b. Does 28 divide f? False Let m(f) = 5*f**2 + 2*f + 1. Let q be m(-1). Suppose -q*x + 245 = z - 521, -x + 195 = 2*z. Does 42 divide x? False Let x = 500 - -2290. Is x a multiple of 22? False Let u = 60 + -59. Let q(c) = 298*c + 5. Is q(u) a multiple of 14? False Let d = -31 - -34. Suppose 3*m + d*q - 109 = 98, -5*q = m - 65. Suppose -9*x - x + m = 0. Is 2 a factor of x? False Let q be 55/(-2)*148/37. Is 35 a factor of (-15610)/q - 3/(-33)? False Let f(t) = 253*t**2 - 39*t + 155. Does 14 divide f(4)? False Let k = 29 + -124. Is 1009/4 - (k/20 + 4) a multiple of 41? False Let j(f) = -9*f + 5*f + 1 - 8*f. Let x(a) = -a + 13. Let k be x(15). Is j(k) a multiple of 25? True Let i(f) = -1063*f - 1591. Is 130 a factor of i(-7)? True Let m = 75 - -15. Suppose 0 = -2*y - 4*d + 196, -3*y + m = d - 229. Does 9 divide y? True Suppose 71*d = -8*d + 29783. Is 15 a factor of d? False Let h be ((-5)/10)/(2/24). Is ((-144)/(-80))/(h/(-160)) a multiple of 16? True Let h = -378 + 1364. Is h a multiple of 9? False Let s = 28 - 11. Let h(b) = -2*b**2 + 35*b + 11. Let a be h(17). Suppose -3*i = -s - a. Is i a multiple of 5? True Let t(s) be the third derivative of -s**6/60 - 17*s**5/30 - s**4/12 - 2*s**3/3 - 75*s**2. Does 5 divide t(-17)? True Let j = 202 - 204. Is 24 a factor of (5*8/50)/(j/(-480))? True Suppose 838 = 27*v - 11447. Is 8 a factor of v? False Let b be (-10 + 0)*(-24)/60. Suppose 0 = -b*g + 12 + 8. Suppose 2*t = g*k + 1 + 122, 2*k = -t + 39. Is 11 a factor of t? False Suppose 0 = -3*y - 75. Let d be (0 + 2)*(-10)/(y/(-5)). Let p(j) = -2*j**3 - 4*j**2 + 5*j - 2. Does 19 divide p(d)? False Is 3/42*2654 + 190/(-14) + 13 a multiple of 8? False Let j be (-460)/(-9) + (-1)/9. Let f = 152 - 108. Let a = j - f. Is a a multiple of 7? True Let p be ((-2)/(-6))/(1/1095). Suppose d + 5*j = 234, 2*d - p - 124 = -3*j. Is 45 a factor of d? False Let g be 8/6*(-2241)/(-6). Let q = g + -336. Is 18 a factor of q? True Let q be 124/(-10)*-1 - (-32)/(-80). Suppose 0 = x - 4*j - 376, -2*j = j + q. Is 40 a factor of x? True Let q(v) = -v**2 + 4*v + 7. Let r be q(-6). Suppose -3*i + 728 = 5*g, -5*g + 147 = -4*g + 2*i. Let z = g + r. Is z a multiple of 24? False Let d(s) = -3*s**3 - 9*s**2 + 8. Let g = 9 - 13. Does 7 divide d(g)? True Let r(c) = c**3 + 12*c**2 + 5*c + 22. Let v be r(-9). Let n = 421 - v. Is 14 a factor of n? False Let d be 128/(-4)*(-10)/(-4). Let i = d + 164. Suppose -2*y - 14 = 5*z - i, 0 = 2*y + 10. Is z a multiple of 8? True Let w(s) = -5 + 562*s + 9*s**2 + 34 - 575*s - s**3. Is w(7) a multiple of 6? True Let h(p) = -p**2 + 9*p + 22. Let s be h(11). Suppose s = -3*w - 3*w + 1710. Suppose w = 4*t - t. Is 14 a factor of t? False Suppose -5*u - 840 + 6036 = -2*q, 3*q = 6. Does 13 divide u? True Suppose -5*y = -10*y + 30. Suppose 60 = -m + y*m. Does 19 divide m/1*5/2? False Let p = 37 + 14. Suppose -48*r - 1095 = -p*r. Is 24 a factor of r? False Let r = 14196 + -6936. Is r a multiple of 165? True Let g be 0 + 586 - (-4 + 6/3). Is 15 a factor of g/10 + -5 + (-84)/(-20)? False Let y(o) be the second derivative of -7*o**3/3 - 3*o**2 - 4*o. Let g be y(-2). Let t(x) = -x**3 + 22*x**2 + x - 3. Is t(g) a multiple of 12? False Let x(h) = 112*h + 665. Is 17 a factor of x(78)? True Suppose 73*z + 101153 = 104*z. Does 34 divide z? False Let g be ((-24)/3)/((-2)/(-3)). Let s = 52 - 117. Does 13 divide (g/5 - -2)/(1/s)? True Suppose 7*c - 15564 = -352 + 1266. Is 31 a factor of c? False Suppose 0 = 3058*h - 3079*h + 15309. Does 15 divide h? False Let a(o) = o**3 + 9*o**2 + 7*o + 6. Let z be a(-8). Is 6 a factor of (8 + -1 + 2)*1*z? True Let l(w) = -w**2 + 6*w + 7. Let f be l(7). Suppose -6*d + 8*d - 8 = f. Suppose 5*i - 3*i = -4*c + 354, -2*c + d*i + 192 = 0. Is 14 a factor of c? False Suppose 0 = -k, -2 - 355 - 1938 = -5*c + 2*k. Is 9 a factor of c? True Suppose 6*z = 24 - 60. Let d(j) = j**3 + 12*j**2 - 6. Is d(z) a multiple of 15? True Let u be ((-36)/(-27))/((-2)/(-3)). Is 28 a factor of -1 + (-673)/(-2) + 1/u? True Suppose 3*f - 17100 = 3*q, 6382 - 29166 = -4*f - 4*q. Does 30 divide f? False Let j be (4/14)/(3/189). Let d be (80/12)/((-4)/66). Let r = j - d. Is 28 a factor of r? False Let s(u) = -u**2 - 6*u. Let a be s(-5). Let f be (25/20)/(a/20). Suppose 0 = f*h - 2*h - 174. Does 29 divide h? True Let w(i) be the third derivative of -i**7/2520 + i**6/16 - i**5/10 - 10*i**2. Let c(u) be the third derivative of w(u). Is c(0) a multiple of 9? True Let l(s) = -4 - 12*s**2 + 11*s**2 - 2*s + 20*s. Does 6 divide l(7)? False Suppose b - 5*u - 2838 = 0, 12*u = 10*u - 10. Is b a multiple of 23? False Suppose 15*n - 9555 - 3447 = -132. Does 13 divide n? True Let g(v) = v**2 + 5*v - 5. Let q be g(-5). Let i(h) = h**3 + 10*h**2 - 4. Is i(q) a multiple of 21? False Suppose -4*t = 7*u - 11*u - 4, -5 = 2*t + 5*u. Suppose 3*a = 6*w - w + 60, t = 2*a - 4*w - 40. Does 11 divide a? False Suppose 16*m = 21*m + 1050. Let s = m - -482. Is s a multiple of 16? True Suppose -2*w + 0*f - 191 = f, 0 = -5*f - 5. Suppose -5*q - 415 = -3*x, 5*x - 2*q = 646 + 33. Let z = w + x. Is 5 a factor of z? True Let u(o) = -o**2 + o + 979. Is 11 a factor of u(0)? True Suppose 0 = 5*b - 53 + 23. Is 2972/b + (-18)/(-27) a multiple of 62? True Let g(k) = -k**3 - 7*k**2 + 2*k + 36. Let b be g(-6). Let v(p) = -5*p**3 - 4*p - 7. Let z be v(5). Is 20 a factor of b/16 + z/(-16)? True Suppose 27*j - 21*j = 36. Does 6 divide (0 + (-112)/j)/(82/(-369))? True Let u(p) = p**2 + 11*p - 35. Let q be u(-14). Let n(t) = t**3 + 4*t**2 - 12*t + 9. Is 34 a factor of n(q)? False Suppose h = -b + 3209, 4*h - b - 7479 = 5342. Is 14 a factor of h? True Suppose 3*o + l = 6612, -2*o = 4*l + 671 - 5069. Is o a multiple of 105? True Let y(k) = -k + 1. Suppose 10*m - 5 = 15*m. Let u be y(m). Suppose -5*w + 285 = -0*w + 4*f, 2*f - 116 = -u*w. Is 14 a factor of w? False Let j = 46 + -37. Suppose -10*b + 378 = -j*b. Does 18 divide b? True Let n(k) = -17 - 10*k - 18*k**2 - 17*k**2 + 34*k**2. Let a be n(-8). Let j(v) = -26*v + 2. Is j(a) a multiple of 12? False Let d = -22 + 27. Suppose 0 = r - d. Suppose 21 = r*b - 404. Is 15 a factor of b? False Let s be 3 + -8 + 6 + -317. Is -7*(s/14 + 4) a multiple of 10? True Let f(d) = 55*d**2 + 3*d - 4. Let p be f(1). Let n = p - 34. Does 4 divide n? True Let v = 7753 + -4453. Is 15 a factor of v? True Let p = -44 - -86. Suppose -8*a = -a - p. Let r(v) = v**2 - 4*v + 1. Does 5 divide r(a)? False Is (3 + -1 + 0)*7/28*614 a multiple of 10? False Suppose 4*x - 4*y = -0*x + 1092, 3*y = 2*x - 542. Let d be (-3968)/28 + (-6)/21. Let c = x + d. Does 38 divide c? False Suppose 12*u = 10*u + 2. Suppose 5*x + u + 29 = 0. Does 12 divide ((-72)/(-14))/x*-42? True Suppose 2*s = -s - 3*q - 657, 2*s = 3*q - 438. Let p = s + 429. Is 14 a factor of p? True Suppose 0 = -5*j + 3*l - 257, -2*j - 3*l = -j + 37. Let f = -42 - j. Does 4 divide f? False Let k(m) = 10 + 4*m + 44*m + 18*m. Let v be k(3). Suppose 4*a + z = -z + v, 70 = a - 4*z. Does 8 divide a? False Suppose 0 = -2*m + 4*i + 3864, 8*i + 3864 = 2*m + 6*i. Does 69 divide m? True Suppose 0 = -13*n + 942 + 1307. Let z = n - 126. Is 11 a factor of z? False Let t(p) = -p - 30. Let o be t(-20). Is (-3969)/(-35) - (26/o - -2) a multiple of 6? True Suppose 3*d - 456 + 155 = -k, 0 = 5*d - k - 499. Is d a multiple of 5? True Suppose 35*l - 7*l - 210700 = -22*l. Does 8 divide l? False Suppose 5*g + 11570 = 5*z, 82*z - 2*g + 11542 = 87*z. Is z a multiple of 60? False Let c = 4501 - 2641. Is c a multiple of 10? True Let y(g) = -29*g**2 - 5*g - 20. Let t(q) = 59*q**2 + 10*q + 38. Let c(o) = 6*t(o) + 11*y(o). Is c(-2) a multiple of 23? True Let y = 34 - -38. Let c be 48/27 - (-16)/y. Suppose -5*t = c*f - 64 - 54, -3*t + 73 = -f. Is t a multiple of 8? True Let z(a) = 40*a**2 + 39*a - 189. Is 27 a factor of z(4)? False Let w(o) = -10*o**2 + o + 3. Let h be w(2). Let f be 2 + ((-4)/(-2) - h). Let y = -14 + f. Does 15 divide y? False Suppose -4*f - 4*j + 48 = 0, 0 = 4*f + j + 3 - 63. Is 12 a factor of 5178/f - 3/(-8)? True Suppose -2*g = -5*i - 20, 0 = 4*i - g + 6*g + 16. Does 11 divide 47751/231 + i/(-14)? False Suppose 4*g - 2*g = -2*a + 830, 0 = 2*g + 3*a - 827. Suppose 0 = -h - 2*z + g, 5*h - 3*z + z = 2066. Is h a multiple of 18? True Suppose 5846 = 2*c - 3*l, -5*l + 8923 = 5*c - 5667. Suppose -c = -27*r + 7*r. Is 73 a factor of r? True Suppose 17*c - 23*c + 264 = 0. Suppose 0 = 4*i + n - c, -2*n + 18 = 5*i - 34. Suppose -16*g = -i*g - 76. Is 8 a factor of g? False Let o = -18 + 40. Let h be (56/10)/1 + o/55. Let m = h + 6. Is m a multiple of 12? True Let y = 4969 - 3553. Is y a multiple of 8? True Suppose 2*q - 3084 = 32*l - 36*l, 5*q - 3*l - 7762 = 0. Does 62 divide q? True Suppose 2*o - 1721 - 845 = 4*a, -4*a = -o + 1281. Is o a multiple of 43? False Let k(f) = -2*f**3 + 7*f**2 + 3*f + 4. Let x be k(4). Suppose x = j + 2*u + u + 18, -5*u = 4*j + 44. Let h(l) = -6*l - 15. Does 7 divide h(j)? True Let x be (30/5)/(-3 - -1). Is (-1 - (-4 - x))/2 - -27 a multiple of 10? False Let z(y) = -6*y**3 - y**2 + 7*y - 83. Is 108 a factor of z(-8)? False Let r(h) = -3*h**2 - 25*h + 19. Let q(b) = -8*b**2 - 76*b + 58. Let y(g) = 5*q(g) - 14*r(g). Does 7 divide y(16)? True Let m(t) = -t**3 - t**2 - 6*t - 15. Let j be m(-6). Suppose -4*o - 2*x + 180 = 2*x, 4*o - 3*x - j = 0. Is 6 a factor of o? True Let o(m) = -m**3 + 8*m**2 - 7*m + 6. Let q(u) = -4*u + 19. Let n be q(4). Suppose -p - 2*w = 3*w - 5, n*w = -4*p + 20. Is 7 a factor of o(p)? False Suppose 0 = -12*z + 7177 - 625. Is z a multiple of 7? True Let h(l) = -2*l**2 - 20*l - 50. Let u be h(-13). Let r = u - -534. Is 14 a factor of r? True Suppose -u + 636 = -5*u. Let z be -1 - (0 - u/(-3)). Suppose 4*g - 101 = 3*v + z, 5*g = -3*v + 198. Is g a multiple of 13? True Let i be 12/21 + 90/(-35) + -4. Is 14 a factor of 195 + (9 + i - 5)? False Let b(m) = 2 + 2*m**3 - 12*m**2 - 7*m**3 - 11*m + 6*m**3 + 22*m. Let p be b(11). Suppose p*o - 4*o = -66. Does 11 divide o? True Let i(g) = -2*g**3 - 5*g**2 + 3*g + 2. Let m be i(7). Let p = -605 - m. Does 34 divide p? False Let t = -183 - -317. Let h = t + -104. Does 11 divide h? False Let k = 1984 + -754. Is k a multiple of 10? True Let t be (0 - 2)/(24/(-9))*64. Suppose -5*q + a = -140, -2*q + 5*a - 3*a = -t. Suppose 2*u = 31 + q. Does 12 divide u? False Suppose -152399 + 87453 - 398690 = -62*o. Is o a multiple of 17? False Suppose -10*h + 9*h = -13*h + 73872. Does 81 divide h? True Suppose 0 = 5*d + 5, 5*s + 0*d - d = -39. Let x(y) = -19*y - 23. Let p(w) = 9*w + 12. Let k(b) = 11*p(b) + 6*x(b). Is k(s) a multiple of 10? False Let h = 165 - 164. Is 4 a factor of (h/(-1) - (-13)/3)*27? False Let g(u) = -u + 1. Let w(h) = 3*h**3 - 5*h**2 - h - 7. Let v(t) = -3*g(t) - w(t). Is v(-4) a multiple of 7? False Let w = 232 - 117. Suppose 72 = 116*s - w*s. Does 6 divide s? True Suppose -159*n + 469335 + 38223 = 57111. Is 86 a factor of n? False Suppose 59*i + 29452 = 68*i - 59. Is 10 a factor of i? False Let y(p) be the second derivative of p**6/120 + p**5/30 - p**4/8 - p**3/6 - 7*p**2/2 + 10*p. Let h(f) be the first derivative of y(f). Does 2 divide h(-2)? False Let i be 3 + (10 + -7 - (0 + -1)). Suppose -182 = -i*t - 28. Does 18 divide t? False Suppose -2*c - 3*p + 225 = -0*c, -2*p = 4*c - 470. Let g = c - 37. Suppose -2*f = -5*v - g, -6*f = -4*f - 2*v - 80. Is f a multiple of 10? False Does 87 divide (1/2)/((-115)/(-840420))? True Let k(y) = 7 - 2 - y + 3 + 7*y**2 - 5. Let d be (-1)/3*(8 + 1). Is 20 a factor of k(d)? False Suppose 2*p - 32*p + 292800 = 0. Is 93 a factor of p? False Let t(r) = 2*r + 117. Suppose 2*d - 10 = -3*x + 2, 2*d = 4*x - 16. Is t(d) a multiple of 10? False Let f = -4747 - -12055. Does 28 divide f? True Suppose -96 = -3*r + o - 28, 0 = 2*r - 2*o - 52. Suppose -870 = r*y - 26*y. Is 10 a factor of y? False Let w(p) = p**2 - 14*p + 4. Let s(f) = -2*f + 8. Let x be s(-4). Is 5 a factor of w(x)? False Let j = -63 + 136. Let a = -22 + j. Does 51 divide a? True Let k be 4 + ((-2)/4)/((-3)/(-6)). Suppose 0 = -5*u + 2*h + 157, -4 = h + k*h. Is 12 a factor of u? False Suppose 4*w - 365 = -5*g, w - 56 = 4*g + 30. Let j = 108 + w. Is 17 a factor of j? False Let a be ((-6)/9)/(1/(60/(-8))). Suppose a*w + 1 = 16. Let c = 19 - w. Is 15 a factor of c? False Let o(v) be the third derivative of v**5/20 - 5*v**4/12 - 2*v**3 + v**2 + 5*v. Is o(-6) a multiple of 26? True Suppose 10*k - 12*k = 600. Is 3*(-1)/(-6) + k/(-40) a multiple of 3? False Let u = 16 + -24. Let y = u - -12. Does 3 divide 15 - (-7 + y)/(-3)? False Let q = -421 + 1149. Is 52 a factor of q? True Let k = -11 - -46. Suppose m - k = -w - 4*m, -4*w + 140 = -4*m. Let s = w - 11. Is s a multiple of 4? True Let l be 1/((-33)/(-14790)) - (-8)/(-44). Suppose -37*f + l = -35*f. Is f a multiple of 16? True Suppose -3148 = -13*u + 1454. Let b = u + -189. Is 31 a factor of b? False Suppose -10*y - 29 = -49. Suppose 0 = -y*b + 2*p - 7*p + 57, -p + 92 = 3*b. Is 4 a factor of b? False Let n(q) = 44*q - 22. Is n(11) a multiple of 3? True Let d = -250 - -503. Let s = d + -159. Does 5 divide s? False Suppose -t + 77 = -0*t - 3*l, -3*l - 397 = -5*t. Suppose 0 = -12*o + 2*o + t. Suppose -o = -3*h + 109. Is h a multiple of 5? False Let l = 3253 + -2445. Does 59 divide l? False Let d be 9/(-6)*(3 - 1) - -1. Let n be 8 + (-1 - -5)/d. Does 26 divide (-314)/(-3) + (-4)/n? True Suppose 4*a = -h + 645 - 2286, -4*a = -5*h + 1659. Let r = -255 - a. Is r a multiple of 12? True Let s = 73 - 45. Suppose s*o - 33*o = -125. Is o a multiple of 4? False Does 38 divide 50/15*(-6)/4 - (-7945 + 2)? False Suppose -5*q + 55 = -3*p, -p + 3*p = 0. Suppose 133 = -4*z + q*z. Is 11 a factor of z? False Let j(g) = 2*g**2 + 14 - 12 - 10 + 5*g. Let f be j(-5). Suppose f = 2*k - 135. Is 19 a factor of k? True Let s = -3078 + 5188. Suppose b = -5*l + 2116, b + s = 5*l - 4*b. Is l a multiple of 47? True Let k be 5*7/105*3*26. Suppose -k*l + 228 = -84. Is l a multiple of 6? True Suppose -6*f + 924 = -2412. Suppose 0 = 7*s - 1704 + f. Is s a multiple of 41? True Suppose 5*x - x = 312. Let p = 8 - 6. Suppose p*g - 36 = x. Does 19 divide g? True Suppose 6377 = 115*k - 12483. Does 6 divide k? False Let t(i) = -i**2 + i + 3. Let n be t(-5). Let r = -21 - n. Suppose -8*m = -r*m - 8. Is m a multiple of 4? True Suppose 0 = -5*u - 4*t - 1 - 22, 4*u + 4*t + 16 = 0. Let p = 87 + u. Does 4 divide p? True Suppose -x - 4*n - 13 = -n, 3*x - 4*n - 26 = 0. Let a(s) = -8*s + 3*s**2 + 5 - 2*s**x + 1 + 6*s**2. Is a(5) a multiple of 47? True Is 143 a factor of 3 + 5/((-70)/(-41552))? False Let r(c) = 984*c - 524. Is r(5) a multiple of 25? False Suppose 1987 = -0*s + 6*s - 4133. Is s a multiple of 34? True Let m = 6555 - 2861. Is m a multiple of 10? False Suppose 0 = -70*g + 48479 - 8159. Does 2 divide g? True Suppose 986 + 1488 = 3*r - 919. Is 7 a factor of r? False Suppose 0 = -5*f - 15, -2*n + f + 15 = -84. Does 48 divide n? True Let l be 1/(-3)*(3 - (11 - -4)). Suppose u + f = -6, -3*u = -2*u - l*f + 11. Let k(y) = y**2 + 5*y + 22. Is 36 a factor of k(u)? True Suppose -35 = 3*w - 5*g, 0 = 3*w + w + 5*g. Is (572/6)/(w + 85/15) a multiple of 18? False Let l(z) = -67*z**3 + z**2 - z - 1. Let g be l(-1). Let s = -101 + g. Is s/(-4) - (-9)/12 a multiple of 3? True Suppose -134 = -4*j + 46. Does 3 divide (160/24)/(10/j)? True Let f be 3/(-15) + 641/5 + -1. Suppose f = 2*q + 13. Is q a multiple of 20? False Suppose 2*r - 78*u = -81*u + 5193, 3*r = -u + 7800. Is r a multiple of 36? False Let a(q) = -q**2 - 24*q + 7. Let d be (3 + 4 + -1)/3. Suppose 0 = d*n - 0*n + 40. Is a(n) a multiple of 9? False Let a = 2753 + -1036. Is 17 a factor of a? True Let o(a) = a**3 - 23*a**2 + 42*a + 10. Let t be o(21). Let y(x) be the second derivative of x**3/6 + 5*x**2/2 - x. Is y(t) a multiple of 15? True Suppose z - 5815 = -f, -38*z + 17441 = 3*f - 36*z. Does 149 divide f? True Let h(w) = 3*w - 5. Let f be h(3). Suppose 9*q - 7*q + 329 = 3*t, 0 = -5*t - f*q + 585. Does 9 divide t? False Suppose -4*q + a = -q - 7, -2*a = -3*q + 2. Suppose -5*d = -q*i - 1 - 8, 3*d + 4*i - 31 = 0. Suppose -148 = -d*y + 167. Is y a multiple of 30? False Let u(o) = 24*o - 6. Let m(g) = g**2 - 4*g - 3. Let i be m(6). Does 12 divide u(i)? False Let r(a) = 2*a**3 - a**2 + 42*a + 916. Is r(0) a multiple of 7? False Suppose 0 = 2*q + r - 10, -3*r = 4*q + q - 26. Let o(w) be the second derivative of w**4/12 + w**3/2 - 2*w**2 + w. Is o(q) a multiple of 8? True Let n = 9 + 77. Suppose 4*m + 0*m - 16 = 0. Suppose -m*d + n = -6. Is 23 a factor of d? True Let k = -15 + 2514. Is 147 a factor of k? True Let l(r) = 13*r**2 - 113*r - 56. Is l(19) a multiple of 19? False Let s be 21 + -2 + 4 - -4. Suppose -s*g + 24*g + 15 = 0. Suppose -g*q + 0*q = 0, 0 = t + 2*q - 24. Is t a multiple of 6? True Let h(j) = 2*j**2 - 12 + 7 - 5*j**2 + 29 + 6*j. Let o(u) = -4*u**2 + 5*u + 24. Let l(r) = 5*h(r) - 4*o(r). Is 12 a factor of l(-10)? True Let t(p) = -p**2 + 11*p + 65. Let g be t(13). Let z = -19 + g. Is z a multiple of 20? True Let n(a) = 68*a**3 - 4*a**2 - 25*a + 117. Is n(4) a multiple of 35? True Suppose 4112*i - 73630 = 4102*i. Is 193 a factor of i? False Let f(y) = y**3 - 17*y**2 - 2*y - 14. Let g be f(17). Let v = 64 + g. Suppose -w - c + 19 + v = 0, -5 = c. Does 40 divide w? True Let w = 15 - 13. Suppose w*n = 4*i - 600, 0 = n - 0*n. Suppose -12*b = -9*b - i. Is 11 a factor of b? False Let t(y) = 3*y + 75. Let c be t(-24). Suppose 4*x - s - 43 = -121, 0 = -3*x - 2*s - 64. Does 5 divide x/(-3 + 3/c)? True Is 1 + 10504/(-65)*(-10)/(-4)*-2 a multiple of 2? False Suppose -26*x - 6459 = -a - 31*x, -2*x - 25770 = -4*a. Does 20 divide a? False Suppose 13*n = -10*n + 10328 + 2644. Does 94 divide n? True Let m(c) = -c**3 + 6*c**2 + 12*c + 34. Let k be m(8). Suppose 0 = -2*q - k*y + 226, 2*y = q - 81 - 47. Is q a multiple of 13? False Let j(k) = 10*k**2 - 11*k - 5. Let n = -74 + 79. Is 19 a factor of j(n)? True Suppose 0 = -d - 386 + 424. Suppose -34*o - 100 = -d*o. Is o a multiple of 25? True Suppose -3*k + 77 = 2*d - 8, 3*d - 114 = -4*k. Let h(b) = -b**3 + 29*b**2 - 45*b - 63. Is 8 a factor of h(k)? False Let r(x) = 91*x + 168. Does 8 divide r(15)? False Is 4 a factor of (-7)/(-14)*-5*65840/(-50)? True Is (16926/(-455))/(2/(-10)) a multiple of 4? False Let w = -1 - -18. Suppose -w*k = -21*k + 16. Is 19 a factor of -37*(k + -3)/(-1)? False Suppose -5*w + 28506 = -219*c + 215*c, -3*c + 3 = 0. Is w a multiple of 9? False Let o = 91 + -176. Let y = 13 - o. Is y a multiple of 7? True Suppose 4978 = -36*b + 38*b. Is 16 a factor of b? False Let b(k) be the first derivative of k**4/4 + 7*k**3/3 - 2*k**2 + 14*k - 182. Let d = -4 + -3. Does 21 divide b(d)? True Let v(g) = -g**3 + 3*g - 16*g**2 + 12*g**2 - 6 - 5*g**2 + 3. Let b be v(-8). Is 16 a factor of 3 - (b + 1/2*-4)? True Let b(s) = -s**2 - 9*s + 2. Let h be b(-9). Suppose h*r - 364 = 6*r. Let k = r + 160. Is k a multiple of 23? True Let w be (2/(-6))/((-204)/(-18) + -11). Let u be (0 + 1)*(0 - 3). Does 9 divide ((-2)/u)/(w/(-33))? False Let a = 48 - 46. Suppose 4*f + f - 839 = 3*j, 0 = -j + a. Suppose 0 = 3*w + 5*s - 203, -2*s = 4*w - 97 - f. Is w a multiple of 22? True Let v = -36 + 38. Suppose 7*m - 15 = v*m. Suppose 2*w - 2 = 0, -m*w = 3*l + 2*w - 92. Is l a multiple of 10? False Let l be 6 + (2093 - (5 - 6)). Suppose 0 = 6*p + p - l. Does 25 divide p? True Suppose 5*y - y - 3*c - 179 = 0, -2*y - 4*c = -62. Let s = y + -39. Suppose -o + 2*x - 46 = -s*o, 4*o = -3*x + 199. Is 6 a factor of o? False Is 99 a factor of 44108*(-5)/(-100) + (-6)/15? False Suppose -77*d + 107920 = -20747. Does 3 divide d? True Let u be ((-2)/(-6))/1 - 6260/60. Does 17 divide (((-51)/2)/3)/(2/u)? True Let z(u) = -1648*u - 140. Is z(-1) a multiple of 37? False Let l = -25 + 28. Suppose 8*i = l*i + 10. Suppose -4*h = -d + 6, i*d - 4*d + h + 47 = 0. Is d a multiple of 17? False Let j(u) = -8*u + 7*u + u**2 - 58 - 10*u + 0*u**2. Is j(-17) a multiple of 11? True Suppose 7*v - 2*t - 2706 = 2*v, -4*v + 4*t = -2160. Let d = -226 + v. Does 16 divide d? False Let x(o) = 3*o**2 - 8*o + 63. Let a(n) = 4*n**2 - 7*n + 63. Let y(t) = -2*a(t) + 3*x(t). Is y(9) a multiple of 6? True Suppose 0 = 5*f + 5*z + 10, -4*f - 6*z + z = 10. Suppose 2*k - i = 1 - 2, f = 4*i - 4. Suppose -3*l - 3*n + 2*n + 76 = k, -4*n = 4*l - 96. Is l a multiple of 5? False Let i = 516 - 290. Let s = i + -169. Does 9 divide s? False Is 54 a factor of (((-1692)/(-30))/3)/((-1 + -5)/(-210))? False Suppose 3*c - 13418 = -g, 0 = -4*c + 122*g - 127*g + 17876. Does 54 divide c? False Let f(x) be the second derivative of x**4/2 + x**3/6 + x**2/2 - 43*x. Let y(p) = p - 4. Let g be y(3). Does 3 divide f(g)? True Let q(b) = 2*b**2 - 84*b - 95. Is q(-11) a multiple of 17? True Let l(g) = -g**3 - 4*g**2 + 21*g + 2. Let b be l(-7). Suppose i - 70 = b*p + 58, 0 = -5*i - 4*p + 668. Is 13 a factor of i? False Let l = 9 - 5. Let s(p) = 3*p**2 + 8*p - 2. Let f(c) = 3*c**2 + 8*c - 1. Let d(y) = -3*f(y) + 4*s(y). Is 25 a factor of d(l)? True Suppose b - 18 + 14 = 0. Let w = -17 - -25. Is 19 a factor of (88/(w - b))/((-2)/(-9))? False Let r be 46/69*3*133. Suppose -3*x + 607 + r = -m, -x = m - 287. Does 17 divide x? False Suppose j + 13 - 16 = 0. Suppose -4*h = -j*h - 4*h. Let k(s) = 3*s + 13. Is k(h) a multiple of 2? False Let v(j) = -5255*j**3 + 2*j**2 + 9*j + 8. Is 72 a factor of v(-1)? True Let t(h) = -h**2 + 9*h + 4. Let l be t(9). Suppose v - 5*i - 61 = -0*v, v + l*i = 16. Is 4 a factor of v? True Suppose 0 = -2*a - 8, a = 5*y - 3*a - 166. Suppose 0 = -2*q + y - 4. Does 4 divide q? False Suppose -3*y - 12 = -4*g + g, -3*g + 6 = 3*y. Suppose l - 24 = -g*l. Suppose 18 = -l*d + 9*d. Is 2 a factor of d? True Suppose 2*c - 6 = 0, -4*c - 345 = 11*z - 8*z. Let k = z + 186. Does 4 divide k? False Let v = -1931 - -3390. Suppose -2*z - 124 = 5*k - 694, 4*k - v = -5*z. Is z a multiple of 7? False Let r be (-32)/8 + 1 + -62. Let w = r + 95. Let f = w + 12. Does 14 divide f? True Suppose 15202 = -110*u + 56972 + 117510. Does 181 divide u? True Let a be (1 - 1/5) + (-21)/(-5). Let k = -12 + 15. Suppose -k*z = -a*z + 210. Is 18 a factor of z? False Let h = 552 - 932. Let q = h + 752. Does 31 divide q? True Suppose -4*r - 3*w = 35, -2*w + 10 = -2*r - 6*w. Let b(c) = c**3 + 9*c**2 - 23*c + 23. Is b(r) a multiple of 28? False Let t(x) = 13*x**2 - 437*x - 91. Is 17 a factor of t(35)? False Let f(c) = -c**3 + 40*c**2 + 125*c + 141. Is f(42) even? False Suppose -3*t - 9 = -4*t. Let y(j) = 3 + 88*j - 85*j - 5 - 2*j**2 + t*j**3. Does 2 divide y(1)? True Let l be (0 + 2)/((-3)/(-252)). Suppose -6*k + 0*k = l. Is (-8)/k - (-1075)/35 a multiple of 13? False Let h be (-303)/(12/(-4)) + 0. Suppose 166 + h = a. Let o = -149 + a. Is o a multiple of 16? False Suppose -12*k + 10*k = -22*k + 11220. Does 15 divide k? False Let q(l) = -l - 1. Let s be q(-11). Suppose 0 = s*a - 2*a - 2912. Suppose 60 = u - 3*r, -2*r = 5*u - r - a. Is 18 a factor of u? True Suppose -2*v = 5*o - 3300, 0 = 4*o + 2*v + 900 - 3540. Is 44 a factor of o? True Suppose -2*u + 18 = 4*k - 2, -2*u = -4*k + 20. Suppose u = 3*m - 4*i - 3 - 15, 3*i + 1 = m. Suppose -b + 7 = -m. Is 16 a factor of b? False Let z(r) = 188*r + 31. Is z(11) a multiple of 22? False Let n = 4 + -10. Does 8 divide 264 - (2/1)/(n/9)? False Suppose -5*c + 25 = 0, -3*c - 16800 + 3203 = -4*s. Is 9 a factor of s? False Suppose 5*o = -k + 23995, -5*o - 5*k = -9791 - 14184. Does 50 divide o? True Suppose 0 = -0*i + 2*i - 2*r + 4, 2*i + 5*r = 17. Let k be (66/(-9))/(2/(-3)). Does 7 divide (559/k - i) + (-40)/(-220)? False Let d(k) = -8*k**3 + k**2 - k + 4. Let w(y) = -16*y**3 + y**2 - 2*y + 7. Let r(h) = 5*d(h) - 3*w(h). Let v be r(2). Suppose j - v = -0. Is 27 a factor of j? False Is 1508/2 + 2 - (18 + -2 + -15) a multiple of 11? False Suppose -2*p = -1860 + 604. Let w = 893 - p. Suppose -w = -5*z - 65. Is 10 a factor of z? True Let j(a) = -a**3 + 24*a**2 + 28*a + 60. Let m be j(24). Let u = -124 + m. Is 58 a factor of u? False Suppose 0 = 4*n + 2*b - 192, 5*n = 6*b - 2*b + 266. Suppose 0 = 28*m - 33*m + n. Let g = 51 + m. Is 21 a factor of g? False Let c(m) = m**2 - m. Let h be c(2). Suppose h*v + 2*v = 4. Let g(a) = 24*a + 1. Is 6 a factor of g(v)? False Is -929*1*-1 + 73/73 a multiple of 155? True Let j(h) = 2*h + 1. Let f(s) = 31*s - 13. Let l(r) = -f(r) + 4*j(r). Is 6 a factor of l(-6)? False Let o = -133 + 127. Is 35 a factor of (o - -15 - 16)*(1 - 6)? True Suppose 0*o + 2170 = v - 5*o, 4*v = 5*o + 8605. Does 50 divide v? False Let a(p) = -7*p - 9. Let t be a(-2). Let j(v) = 23*v + 27. Let g(q) = -12*q - 13. Let s(r) = t*g(r) + 3*j(r). Is 44 a factor of s(8)? True Suppose 2*w + 2*d - 80 = 0, 21 + 25 = w + 3*d. Suppose -33*y - 1624 = -w*y. Is 14 a factor of y? True Let n be ((-2664)/120)/((-1)/5). Let s = n - 51. Does 2 divide s? True Let c = 5053 + 1559. Does 19 divide c? True Let o(s) = -s**3 - s**2 + 3*s - 2. Let t be o(-4). Suppose -t = -3*n - 4. Is 19 a factor of n/(-8)*57/5*-8? True Is (-27)/(-2)*4200/36 + 5 a multiple of 116? False Let k(l) = -223*l**3 + 4*l**2 - 2*l - 7. Is 3 a factor of k(-2)? True Suppose -5*m = 5*c - 1205, -3*m + 375 + 343 = 2*c. Suppose 0 = -4*s - 4*o + m, -4*s - o - 142 = -381. Is s a multiple of 36? False Does 11 divide (106720/(-96))/(1*4/(-12))? False Let p = 133 + -133. Suppose 5*h - 880 = -5*x, -6*x + 2*x + 4*h + 664 = p. Does 19 divide x? True Suppose -479 = -8*i + 977. Suppose -2*d = -i - 266. Is d a multiple of 14? True Let r = -434 + 2702. Let b be (-3)/(-12) + r/16 + 1. Suppose -b = -2*u - p + 63, -113 = -u - 3*p. Is u a multiple of 32? False Suppose 4*u + 52 = 4*l, -4*u + 14 = 5*l - 6. Suppose 3*r - 84 = -2*k, -4*k - 2*r = -k - 116. Is 784/k - l/(-36) a multiple of 11? True Let l = 7406 + -4845. Is l a multiple of 10? False Let g be (4/6)/((-14)/(-1491)). Let i = g - -51. Is 7 a factor of i? False Let b = -182 + 145. Let c be (-6)/3 - 0 - 2. Let o = c - b. Does 12 divide o? False Suppose -342*a + 960 = -340*a + 3*p, 5*a = 3*p + 2400. Is 96 a factor of a? True Suppose 3*u - 42 = -27. Suppose 0 = -u*q - 7 - 43. Is 1 - 282/(-8) - q/(-40) a multiple of 8? False Suppose -12*q + 6220 = -75083 + 4263. Is q a multiple of 70? False Is 13 a factor of 6395 - ((-4)/10 + 15/(-25))? True Suppose 8*d - 6*d = 94. Let l = d - 52. Does 36 divide (-334)/l + 8/40? False Let v = 32 + -27. Suppose 3*j = v*x - 368, -2*j - 218 = -3*x - 3*j. Is 10 a factor of x? False Let c = -53 - -58. Suppose 5*i - 95 = -c. Is i a multiple of 6? True Is 124 a factor of ((-21)/28)/(45/(-285060))? False Let o be -3 + ((-584)/(-12) - 2/3). Let p = 16 + o. Is 11 a factor of p? False Let c be (-3)/(-7) - (-76)/133. Is 35 + 0 + (5 - 6/c) a multiple of 2? True Let y(l) be the third derivative of 53*l**5/60 + l**4/4 + 11*l**3/6 - 10*l**2 + l. Does 12 divide y(-2)? False Suppose 4*g - 1 = 7. Let u(j) = 55*j. Is u(g) a multiple of 22? True Let p = 8844 + -6230. Is p a multiple of 96? False Let f = -5597 + 10001. Is 33 a factor of f? False Suppose 2*u = 10, -3*t = 7*u - 3*u - 6380. Is t a multiple of 53? True Suppose 1275 = -53*d - 103. Let p(r) = 8*r - 8. Let x be p(6). Let l = d + x. Is l a multiple of 3? False Suppose 0*z + 5*z + 865 = -5*h, -5*z = 4*h + 863. Suppose -b + 0*b - 98 = 0. Let d = b - z. Is d a multiple of 25? False Let o(w) = -907*w + 649. Is o(-5) a multiple of 64? True Let r = -13 + 21. Let d(q) = 5*q - 137. Let p be d(35). Let x = p - r. Is 10 a factor of x? True Let d be (-2 + 2)/(1*(-9 - -10)). Let p = 12 - 23. Let k = d - p. Is 3 a factor of k? False Does 11 divide 374*((-1 - -16) + 1 + 7 + -6)? True Is (-9)/45 + -78123*(-2)/30 a multiple of 14? True Suppose -4*w - 13962 = 4*w - 55946. Is 62 a factor of w? False Let g = 4 + -1. Suppose g*o = 4*o - 180. Does 15 divide o? True Let o be 6/((-2)/(-4)*3). Suppose o*y + 211 = 323. Does 2 divide y? True Suppose -6*o + 5*o + 2184 = 0. Suppose -5*m = -m - o. Suppose -465 = -4*v + 5*b, 16 = -5*v - 4*b + m. Is 22 a factor of v? True Let s(m) = 6*m**2 - m + 10. Let u be s(6). Suppose -5*t + u = 5*l, 0 = -4*t - 3*l + l + 184. Let v = 90 - t. Is 15 a factor of v? False Let n be 61/9 + 4/18. Let q = 1898 - 1881. Suppose -n*j = -25 - q. Is 6 a factor of j? True Suppose 0 = t - 112 - 3. Suppose -1972 = -8*q + 916. Suppose t = -6*n + q. Is n a multiple of 8? False Let h be ((-12)/24)/(1/2462)*-2. Is (-66)/55 - h/(-10) a multiple of 35? True Let l = 1506 + 4782. Is l a multiple of 24? True Let k be -3*((-3)/(-12))/(1/(-4)). Let n(j) = 19*j**3 - 3*j**2 - 5*j + 5. Is 14 a factor of n(k)? True Suppose -8*i + i + 35 = 0. Suppose 21 + 939 = i*g. Does 12 divide g? True Let o = 103 - 110. Does 6 divide 4/(-10) - (o + 321/(-15))? False Let i(k) = k**3 + 8*k**2 - 33*k - 88. Let v be i(-10). Let j = 12 - 8. Suppose -v = j*y - 7*y. Is 12 a factor of y? False Suppose 5*j + 42 = -3*g - 5, 38 = -4*j - 2*g. Let o(x) = -4*x - 12. Let z be o(j). Suppose -56 - z = -3*i. Is 10 a factor of i? False Let m(g) = -g + 8. Let w be m(6). Suppose 5*q = 2*s - 6*s + 12, -s + 4 = q. Suppose s*r = w*r + 210. Is 11 a factor of r? False Let x be 0 + -4 + 12 + -4. Suppose 2 = -x*q + 14. Suppose 4 = 2*m, q*m + 230 = 5*s - 2*m. Is s a multiple of 8? True Let u(b) = -b**3 - 68*b**2 + 31*b - 238. Does 44 divide u(-70)? True Let v = -482 - -1098. Let a be (-2 - -7) + 0/1. Suppose a*y - v = -41. Does 23 divide y? True Let l = 474 - 476. Let i = -10 + 7. Does 2 divide (i - -11) + l*1? True Let m(c) = -12*c**3 - 16*c - 5 - 1 - c**2 + 7*c. Does 18 divide m(-3)? False Suppose -243 = 14*z - 3855. Suppose 2*y = 4*q + 116, 5*y = -3*q + 5*q + z. Does 6 divide y? False Let u be (-1)/(-5) - 2227*28/(-20). Suppose -8*h + u = 238. Does 59 divide h? False Let p = -4340 - -7646. Does 29 divide p? True Let z be (-6)/(-21) - 284/14. Let m(c) be the first derivative of -9*c**2/2 + c - 415. Is m(z) a multiple of 45? False Let a = -231 - -246. Is 35 a factor of (-294)/(-126)*3*a? True Suppose 2*r = -0*r + g + 8, 4*r - g = 16. Suppose 3*k - 11 = -y + 1, -5*y - r*k = -38. Suppose -y - 5 = -f. Is f a multiple of 4? False Suppose 2*j + 2*j - 4 = 0. Let u(a) = a + 1. Let l be u(j). Suppose 0 = -l*h - h + 219. Is h a multiple of 15? False Let f be (-339)/(-12) - 11/44. Suppose 0 = -29*u + f*u + 148. Is u a multiple of 13? False Let g(q) = 6*q - 10. Let v be g(4). Let r(z) = -z**2 + 14*z + 5. Let b be r(v). Suppose 5*f = -4*n + 245, n - 3*n = b*f - 135. Is n a multiple of 32? False Does 24 divide 3 + ((-750)/100)/(1/(-86))? True Suppose -674 = 4*l + 2*f, 5*f = 4*l - l + 473. Let h be l*(1 + 45/(-10)). Suppose -4*r + h = 145. Does 25 divide r? False Let k be -2 + -2 + 6 + -1. Let m be (0 + k)/1 + -3. Is 11 a factor of ((-77)/m)/((7/(-2))/(-7))? True Let j = 13203 - 8919. Is j a multiple of 9? True Let n = 7854 + -4074. Does 42 divide n? True Let q(v) be the second derivative of -v**4/12 + 5*v**3/6 - 7*v**2 + 3*v. Let u be q(8). Let w = 85 + u. Is 16 a factor of w? False Let k = -37 - -27. Let c = -6 - k. Suppose 166 = -c*a + 766. Does 36 divide a? False Let f be (24 + 3)*(0 - 12/(-2)). Suppose -4*g = -9*g - 500. Let r = f + g. Is r a multiple of 35? False Let z(j) = 1652*j - 312. Is 20 a factor of z(6)? True Let g(p) = 5 + 4*p - 2*p**2 - 7 + 4*p**2. Suppose -m = -4*c - 35, 3*c + 28 = -5*m + 19. Does 33 divide g(c)? False Let t = -3638 + 7030. Is 32 a factor of t? True Let v be (-2)/(-10) - 60/50. Let t(j) = -284*j + 3. Does 58 divide t(v)? False Suppose -87 = -5*f + 2*f. Let a(p) = -p**3 - 35*p**2 - 71*p - 162. Let y be a(-33). Suppose -x - y*l + f = 0, -x - l + 31 = l. Is x a multiple of 7? True Suppose 0 = d - 5, -3*a + 3*d + 1954 = -3845. Is a a multiple of 19? True Suppose -3*u + 5 + 5 = 2*g, -14 = -2*g - 5*u. Suppose -4*r + 8 = -g*r. Suppose 3*h - r*m = -57 + 281, -4*h + 267 = m. Does 11 divide h? False Let q = -146 - -159. Suppose -q*u + 272 = -1106. Is u a multiple of 53? True Let u(v) = -v**3 - 6*v**2 + 10*v + 11. Let s be u(-7). Let i(z) = 4*z**2 + 6*z + 13. Is i(s) a multiple of 12? False Suppose -5*b + 65 = -5*k, -21 = -3*b + 5*k + 18. Suppose -b*p = -1639 - 1377. Is 26 a factor of p? False Suppose 0 = 6*u - 701 + 83. Let g = u + 183. Does 22 divide g? True Let n(z) be the second derivative of 43*z**4/12 + 4*z**3/3 - 3*z**2 - 13*z. Is 5 a factor of n(1)? True Is 10 a factor of 1 - -583 - ((-48)/6 - -5)? False Let r(k) = -k**2 + k. Let x(b) = -3*b**3 + 14*b**2 - 12*b - 20. Let t(o) = -3*r(o) - x(o). Does 33 divide t(6)? False Let s(u) = -2*u**3 - 11*u**2 - 12*u + 4. Let b be s(-6). Suppose -106*z = -b*z + 180. Is 27 a factor of z? False Let f be 5 - 6 - (-1 - (-8)/(-1)). Does 19 divide 59 - f*(-5)/(-10)? False Let k(s) = 4*s - 1. Let y be k(1). Suppose -4*v + 4*c + 216 = 0, -3*v - y*c + 139 = -53. Let u = v + 57. Is u a multiple of 27? False Let n be (347/3)/(1/6). Suppose 2917*g + 65 = 2930*g. Suppose -5*c = 4*t - n, 0 = 3*c + 2*c - g*t - 685. Does 21 divide c? False Suppose 2*u - 24*u = 18*u - 223240. Is 9 a factor of u? False Suppose 3*i - 48 = -0. Suppose -i = 3*y - 7*y. Does 4 divide (-1)/y - 1014/(-24)? False Let t(o) = -5 - 5 + o**2 - 19 + 8*o - 7. Does 9 divide t(-18)? True Let k be 13/(26/12) + -6. Suppose -u - 3*u + 144 = k. Does 7 divide u? False Let r be 1 + 2 + (-15)/(-3). Let f(k) = 2*k - 14. Let x be f(r). Suppose 32 = 4*p - x*p. Is 16 a factor of p? True Let b be 2 - 2 - -1 - -108. Let s = 1739 - 1800. Let o = b + s. Does 24 divide o? True Suppose -120*w + 1017 = -43*w + 93. Is 3 a factor of w? True Let h be (-12)/10 - 11/(-55). Let j(v) = 5*v**3 + 2*v**2 + 2*v + 1. Let x be j(h). Is (2 - -12)*(-4)/x a multiple of 3? False Suppose 0 = 5*k + 357 + 778. Let w = 2898 - 2992. Let p = w - k. Does 19 divide p? True Let p(n) = 2*n**3 + 18*n**2 - 112*n - 42. Does 15 divide p(10)? False Suppose -4*i - 8 = 4, 5*i = -3*j + 3705. Let h = -719 + j. Suppose 3*z = h - 146. Is 13 a factor of z? False Let x(h) be the third derivative of -h**6/120 - h**5/60 + h**4/12 + 4*h**3/3 - 5*h**2 + h. Is 29 a factor of x(-7)? False Let x(m) = m**2 - 3*m + 5. Let q(y) = y**2 - 4*y + 6. Let w(f) = -3*q(f) + 4*x(f). Let j be w(-7). Suppose j = 3*c - 48. Is 25 a factor of c? False Let x(l) = -l**3 - 6*l**2 + 10*l + 63. Let f be x(-6). Suppose -4*s + 3*h + 719 = -2*s, -1086 = -3*s + 3*h. Suppose s = f*p + 136. Is 11 a factor of p? True Let y(r) = 44*r**2 - 38*r - 162. Is y(-6) a multiple of 22? True Let w = 38 + 100. Let l be (22/(-4))/(12/24). Let u = l + w. Is 27 a factor of u? False Is 3 a factor of ((-56)/42 + 1)/(3/(-1179))? False Let i be -1*2/(-20)*-5*0. Suppose -w + 1 = i, -2*g + 3*w = -19 - 218. Does 22 divide g? False Is 69 a factor of -6 + (8 + -39)*(-93 - -6)? True Let q = 248 - -5549. Does 31 divide q? True Does 68 divide 1 - (-1422 + 2) - (-10 + 5)? False Let y(h) = -11*h - 1. Let c(q) = -3*q**3 - 6*q**2 - 4*q - 6. Let x be c(-3). Let o be (-9 - -11)/(2/x*-3). Does 40 divide y(o)? True Suppose 5*f + 4386 = 22*f. Suppose -f = -4*n + 3*d - d, 4*n = d + 263. Does 9 divide n? False Suppose -354*l + 32076 = -345*l. Does 9 divide l? True Suppose -4*b + 4*w + 15756 = 0, b - 4*w = -4*b + 19694. Is 11 a factor of b? True Suppose 0 = 4*k - 20 - 48. Does 6 divide 6 + -4 + -1 - k/(-1)? True Suppose g = -4*p + 11, -p + 4*g + 11 - 21 = 0. Suppose 0 = -p*w + w - 5*a + 182, -w + 5*a = -152. Is 29 a factor of w? False Suppose -4*o - 57 = -1. Let m = -5 + 8. Is 12 a factor of (m + o/6)*177/2? False Let l(i) = i**3 + i**2 - 5*i - 20. Let x be l(0). Let a = x - -38. Is 18 a factor of a? True Let r(x) = -2*x**2 - x + 18. Let k be r(-3). Suppose -4 = 2*s + 2*g - 220, -312 = -k*s + 3*g. Is 28 a factor of s? False Let z(l) = -4*l**3 - l - 2. Let u be z(-1). Suppose 5 = c - s, u - 2 = -3*c - 5*s. Suppose c*m = 5*m - 386. Is m a multiple of 33? False Suppose 0 = 4*q - 2*b - 32, 5*q + 4*b - 14 = -0. Suppose 4*d = q*d - 4. Suppose -62 = -d*z - 26. Is 3 a factor of z? True Let a be (((416/4)/(-4))/1)/(-2). Suppose -a*r - 827 + 2452 = 0. Does 30 divide r? False Is 57 a factor of ((-7662)/10 + (-58 - -53))/((-1)/5)? False Let v be (-2224)/(-6)*-1*459/(-204). Suppose -9*l = -12*l + v. Is l a multiple of 14? False Let r(z) = 5*z**3 + z**2 + z - 2. Let y be r(1). Is 4038/10 - 1/(y/4) a multiple of 31? True Suppose 0 = 81*p - 72*p - 81648. Does 126 divide p? True Suppose 67 = -3*c + 76. Suppose -6*w - 608 = -4*z - 2*w, -5*z = 3*w - 800. Suppose -23 = -c*f + z. Does 15 divide f? True Let o(q) = q**2 + 17*q + 39. Let n be -6*2/((-4)/(-3)). Let c(z) = 4*z + 10. Let v(b) = n*c(b) + 2*o(b). Is v(-8) a multiple of 33? True Let t be 1 + 2*(-6)/(-4). Suppose -10 = -t*j + 5*g, -2*j - g = 2*g + 6. Suppose -4*n + 617 - 105 = j. Does 16 divide n? True Suppose 75*l + 2354 = 82304. Is 4 a factor of l? False Let x = -575 + 906. Let m be (-446)/(-4)*(-4 - -2). Let z = m + x. Is 30 a factor of z? False Let f(w) = 49*w + 680. Does 149 divide f(74)? False Does 53 divide (41/2 - 2)/((-184)/(-28336))? False Let j(o) = -o + 7. Let v be j(-3). Suppose -7*z = -v - 11. Is ((-2)/z)/((-3)/81) even? True Let n(d) = -307*d**3 - 10*d**2 - 31*d + 18. Does 14 divide n(-3)? False Let h(m) = -m**3 - 6*m**2 + 7*m + 2. Let q be h(-7). Suppose -56*d = -53*d. Suppose 4*x + n + n - 162 = d, -q*x + n = -75. Does 11 divide x? False Let z(a) = -7*a + 19. Let w be z(3). Is -234*3/w*(-10)/(-15) a multiple of 26? True Suppose 35*s = 30*s - 340. Let n = -40 - s. Is 3 a factor of n? False Suppose -11928 = -3*b - r, b = -217*r + 222*r + 3992. Is b a multiple of 135? False Let l be 805 - (-4)/(-4)*(1 + -1). Suppose -4*j + 1072 = 4*m - j, -l = -3*m - 2*j. Suppose -b + 46 = -4*x - 22, -5*b - 3*x = -m. Is b a multiple of 14? True Let z be 33 + 4 + -1 + -2. Let r be z + (-9 - -5) + (-4)/2. Let s = 64 - r. Is s a multiple of 7? False Let h(x) = -x**2 + 6*x + 20. Let n be h(8). Suppose -n*k + m + 4 + 30 = 0, 2*m - 28 = -4*k. Is 2 a factor of k? True Suppose 0*h - 4*h = -2*u + 116, 110 = 2*u - h. Let m be 84/(-224) - u/(-16). Suppose m*w = 4*f - 9*f + 824, -154 = -f + 3*w. Is 32 a factor of f? False Let h(z) = z**3 + 3*z - 174. Let w be h(0). Let v = w - -206. Is 2 a factor of v? True Let g = 374 - 261. Suppose -g*z + 118*z = 660. Is z a multiple of 7? False Let g(j) = -j**2 + 6*j - 3. Let z be (15/12)/(1/4). Let a be g(z). Suppose -4*t + 4*p = p - 238, -3*t + a*p = -178. Is t a multiple of 38? False Suppose 4*v + 144 = 4*f, 5*v - 100 = -3*f - 0*v. Suppose -f*z + 126 = -34*z. Does 9 divide z? True Suppose -5*n + 2*w + 5295 = -w, -2137 = -2*n + 5*w. Is 27 a factor of n? False Let x(v) = -4*v + 62. Let p be x(15). Suppose 315 = -p*j + 9*j. Is 4 a factor of j? False Let n be (12/(-4))/6*-4. Let k be 7/5 - n/5. Let i = 21 - k. Does 10 divide i? True Suppose 31*c = 27*c - 8. Let o be (2/(-6))/((4/30)/c). Is ((-3)/1 - -1) + -1 + o a multiple of 2? True Let j(f) = 17*f - 8. Let d be j(6). Suppose 0 = -4*i + d + 38. Is 3 a factor of i? True Let m = -110 + 116. Suppose -m*h + 2596 = 196. Is 25 a factor of h? True Suppose -46*z + 49*z + 36 = 5*a, 4*a + 4*z - 16 = 0. Let w(r) be the first derivative of 17*r**2/2 + 3*r - 1. Does 11 divide w(a)? False Let k(q) = 23*q**2 - 2*q + 2. Suppose 4*i = -i + 65. Suppose -u - i = -5*f, -23 = -f - 3*f + 5*u. Does 18 divide k(f)? True Suppose 54*k + 6869 - 73775 = 0. Does 21 divide k? True Suppose 7*u = 10331 + 6637. Is 45 a factor of u? False Let j = 46 + -42. Suppose 4*x = -j*r + 3*r + 68, 3*x = 5*r - 294. Is 12 a factor of r? True Suppose 5*o + 4*l - 1744 = 0, 63*o + 1739 = 68*o - l. Is 116 a factor of o? True Let f(r) = -r**2 + 28. Let j be f(-5). Is (44/(-10))/(j/(-210)) a multiple of 28? True Let x(r) = -19*r**3 - 9*r**2 - 71*r + 13. Does 15 divide x(-5)? False Suppose -2*o + 7*o - 4045 = -5*f, -2*o + 1625 = -5*f. Does 9 divide o? True Let z(k) = k**2 + 4*k + 4. Let b be z(-4). Suppose b*r = -v + 61, 2*v - 7*v = 2*r - 35. Let g = 39 - r. Is g a multiple of 8? True Let x(z) = -z - 15. Let m be x(0). Let j(o) = 3*o**2 + 8*o - 19. Is 67 a factor of j(m)? True Suppose 6*y + 1461 = 8*y + t, t = 5*y - 3642. Is 11 a factor of y? False Suppose 7*h - 4685 = 3939. Suppose -6*u = h - 5012. Suppose -4*t - t + u = 0. Does 15 divide t? False Let m(c) = c**2 + 4*c - 5. Let t be m(-5). Let o be (-2)/(-4)*(-72 - t). Let l = 51 + o. Does 3 divide l? True Suppose -3*b + 3*m = 2*m + 294, 4*m = 2*b + 186. Let p = 166 + b. Does 6 divide p? False Let w be (-1 - (-1)/(-3))*9/(-6). Let m be 1/((2 - (-64)/(-31))/w). Let o = m + 39. Is o even? True Suppose -7*o + 33*o = -29*o + 2640. Is 16 a factor of o? True Let g(u) = -1048*u + 571. Is 21 a factor of g(-2)? True Suppose 5*o - 3*k = 880, 0 = 3*o - 2*k - 899 + 371. Is ((-50)/(-15) + 4/(-3))*o a multiple of 16? True Is 5/5*(3197 + 4 + -5) a multiple of 86? False Let g = -1 - -1. Let t = 373 + -371. Suppose g = -5*s + 5*k + 130, -t*s + k + 138 = 3*s. Is 4 a factor of s? True Let q(h) = 109*h**2 - 3*h - 2. Let o be q(-1). Suppose a + 0*a - o = 0. Let f = -53 + a. Does 11 divide f? False Suppose -5*f + 4445 = 3*a + 985, -3440 = -3*a + 5*f. Is 23 a factor of a? True Suppose 4728 = 4*g + 9*k - 5*k, -2*k - 10594 = -9*g. Is g a multiple of 24? False Let s(h) = 8*h + 23. Let f(k) = k**3 + 5*k**2 + 2*k - 4. Let g be f(-2). Suppose 2 = g*q - 26. Is 17 a factor of s(q)? False Let g(t) = t**2 - 26*t - 63. Let p be g(28). Let j(x) = -x**2 - 13*x - 37. Is 3 a factor of j(p)? False Let v be 6/14 + 77/49. Suppose 4*o = 3*m - 176, 0 = -3*m - o + v*o + 161. Suppose -2*g + p = -26 - 4, -4*g + m = 2*p. Is g a multiple of 10? False Suppose u - 1 = 2, 0 = 5*m - 3*u + 29. Let q(v) = 30*v - 16. Let a(f) = -7*f + 4. Let w(g) = 9*a(g) + 2*q(g). Does 8 divide w(m)? True Let y be (2 - 0) + -1 + (-1384)/(-8). Let q = 284 - y. Is q a multiple of 55? True Suppose 2*k + 1619 - 9011 = 0. Is k a multiple of 43? False Let j = 10927 + -5278. Does 12 divide j? False Suppose -6*a + 8*a - 6 = 0. Suppose a*y + 121 = 4*y - 5*h, -3*y + 329 = 2*h. Let p = 190 - y. Does 23 divide p? False Let k = -3279 + 4323. Is k a multiple of 36? True Let s be 6/39 + 1*144/78. Suppose 0*f - f = -r + 14, -28 = -s*r - 4*f. Does 14 divide r? True Suppose 5*k = 8*r - 9*r + 386, 4*r + 4*k = 1544. Is r a multiple of 8? False Suppose -5339 = -20*w - 659. Let c = -96 + w. Is c a multiple of 23? True Let y = -66 + 60. Let j(k) = -21*k. Is j(y) a multiple of 21? True Does 11 divide ((-12)/1)/((-69)/1771)? True Suppose 21*y - 37236 + 13548 - 27090 = 0. Is y a multiple of 39? True Suppose -5*a = m - 287, 3*m = 5*a + 110 - 389. Suppose a - 957 = -5*s. Does 9 divide s? True Let z(h) = 1 + 3*h**2 + 0 + 3 + 18*h - 9. Is 12 a factor of z(4)? False Let s = 3331 - 1489. Does 76 divide s? False Let q(m) = -m + 1. Let x be q(-3). Let y be (5 - x)/((-4)/(-12)). Let d(l) = 3*l**3 + 2*l**2 + 2*l - 5. Is d(y) a multiple of 25? True Suppose 0 = -g - 4*g + 15. Suppose -g*d = -6*d + 975. Does 13 divide d? True Let b = -8068 - -16528. Is b a multiple of 18? True Let o = 160 + -148. Is 13 a factor of (-66)/(-18)*o/2? False Suppose 0 = v - 2*l - 11, -4*v + 3*l + 19 = -0*v. Is ((-94)/v)/(-1 + -3 - -3) a multiple of 17? False Suppose -4*f + v - 80 = -3*v, 3*f + 4*v + 74 = 0. Let y be 0*2/(-6) + f*1. Let p = 32 + y. Does 4 divide p? False Let p = -695 + 1514. Suppose i + 3*c - 161 = 0, 9*i - 4*i + c = p. Is 41 a factor of i? True Let c(d) = -d**3 + 13*d**2 + 6*d + 2. Let w be c(10). Suppose 5*q = 2*g + g + 252, 2*q = -4*g - w. Let j = -19 - g. Is j a multiple of 10? True Is 13 a factor of (16 - 1418)/(((-3)/(-9))/((-1)/3))? False Is ((-126)/5)/(3/15)*(-1440)/112 a multiple of 180? True Let t(w) = -w**2 - w - 1. Let s be ((-1)/2)/((-7)/(-14)). Let z(y) = y**3 + 9*y**2 + y + 1. Let k(v) = s*z(v) - 4*t(v). Is 20 a factor of k(-7)? True Let h(r) = 39*r**2 - 5*r - 155. Does 4 divide h(-6)? False Let i(y) = -y**3 - 5*y**2 - 6*y - 6. Let v be i(-5). Suppose v*q - 21*q = 12. Suppose q*s - 294 = 2*s. Is 29 a factor of s? False Let i be -1 + 2 - (-1 - 0)*2. Suppose 4*y + i*a - a - 26 = 0, -4*a + 32 = 4*y. Suppose -f - 3*f - 272 = -5*u, y*f = -15. Does 26 divide u? True Let y be 20/(-9)*-6*(-270)/(-4). Suppose y = 5*d - d. Does 15 divide d? True Suppose -46*a = -o - 45*a + 3217, 5*a - 12895 = -4*o. Is o a multiple of 28? True Let k = 35 - 36. Let n be (-4 - -2) + k - 45. Does 16 divide (24/(-9)*-6)/((-6)/n)? True Suppose -25861 + 19176 = -34*t + 30035. Does 8 divide t? True Suppose -n - 29 = -3*a, 0*a - 15 = -2*a + 5*n. Suppose -354 = -2*c - 352. Does 4 divide 6 + a - (-1 - 1 - c)? False Suppose 0*c - 30 = -3*c. Is 12 a factor of 44580/200 - (-1)/c? False Is 7/(-3 + 1 + -2 - 3877/(-969)) a multiple of 119? True Let s(k) = k**2 + 27*k + 50. Let r be s(-25). Suppose -x + 5*q + 0*q + 148 = r, 0 = 2*x - 2*q - 272. Is 16 a factor of x? False Let y be (-2 + 1)*(-3 - 172). Suppose 3*i = -2*m - 3*m + y, -2*m + 70 = 5*i. Is m a multiple of 10? False Let p = 3439 - -2316. Does 16 divide p? False Let v(d) = -2*d**3 - 4*d - 2. Let f be v(-2). Does 21 divide f/66 - 1348/(-6)? False Suppose 0 = i - 2 + 12. Let k be ((-5)/(-3))/5*0 - i. Let x = 30 - k. Is 10 a factor of x? True Suppose -133*b + 67*b + 12474 = -64*b. Is b a multiple of 50? False Suppose 4*r + k - 2548 = 2*k, -8*r = 5*k - 5124. Is 11 a factor of r? True Suppose 0 = -8*s - 0 - 16. Let w = -31 + 19. Is 4 a factor of -9*(-1)/(2*s/w)? False Let t(w) = -7*w. Suppose -m + 40 = 3*m. Suppose 2*f + 3*f + m = 0. Is t(f) a multiple of 4? False Suppose -90 = 6*d - 24. Let t(k) = -15*k - 23. Does 20 divide t(d)? False Let d = -193 - -158. Let w = 73 + d. Is 35 a factor of w? False Suppose -59*u + 80730 = 76*u. Is 46 a factor of u? True Let o(l) = -l**3 + 5*l**2 - 7*l + 4. Let g be o(3). Is 13 a factor of (5 - 3 - g)/(3/1560)? True Let c = 51 - 47. Suppose -159 - 145 = -c*g. Suppose -g = -4*i + 192. Is i a multiple of 44? False Let v(k) = -k**2 - 8*k + 14. Let i be v(-8). Suppose -2096 - 102 = -i*t. Does 23 divide t? False Suppose -2*a = -k - a + 211, -5*a + 223 = k. Suppose -193 = -3*p + 5*s, -84 = -5*p - 4*s + k. Does 3 divide p? False Let c = -163 - -553. Suppose 0*i + c = i. Is 39 a factor of i? True Let k = -64 - -181. Suppose -h = 2*h + f + 73, -5*h - k = -3*f. Let x = 30 - h. Does 22 divide x? False Suppose 5*f = 4*b - 35, 0 = -36*b + 33*b - 2*f + 9. Suppose -4*c + 3 = -3*c. Suppose -c*x = h - 25, 16 = b*x + 4*h - 21. Is x a multiple of 3? True Suppose 3*m + 4*x = -35 + 9, x = -m - 8. Let a be (-44)/m + (-4)/12. Suppose -72 = -a*o + 4*o. Is 8 a factor of o? True Let i(n) = -2*n**2 - 3*n + 6 - 3*n**2 - 2*n**3 - 4*n**2. Suppose -a - 5*w = -14, a - 4*w = 5*a + 8. Is 33 a factor of i(a)? True Suppose 0*l = -2*a + l + 33, -3*a + 46 = 2*l. Let z(h) = 5*h + 28. Is 9 a factor of z(a)? True Let z = -27 - -34. Let i(l) = -z + l + 13 - 1. Is 8 a factor of i(8)? False Let n(k) = -311*k**3 - 4*k**2 - 7*k + 6. Does 4 divide n(-2)? True Let k be 18/12 + 2822/(-4). Let h be (0 - k/10) + 8/(-20). Let x = 9 + h. Is 9 a factor of x? False Suppose -5*q + 173 - 58 = 0. Let g = 23 - q. Suppose g = 3*n - 0*n - 3*c - 477, 0 = 5*n - 3*c - 795. Is n a multiple of 35? False Suppose 8*t = -6820 + 11188. Is 14 a factor of t? True Let p = 33 + 41. Suppose -14 = -4*o - p. Is 4 a factor of (-3)/(-2 - o/12)? True Suppose 0*i - 6*i = 0. Suppose -13*j + 2*j + 858 = i. Let k = j + -46. Does 32 divide k? True Suppose 0 = 9*y + 10 + 80. Does 7 divide -1 + (-4)/y - 3136/(-10)? False Let m(c) = -2*c**2 + 35*c + 25. Let w be m(18). Suppose w*u = 4572 - 1170. Is 46 a factor of u? False Let f(v) = -10645*v + 10692*v + 3*v**2 - 22 - 6*v**2. Does 4 divide f(15)? True Let f = -3 + 4. Let h be 3*(-1617)/189 + 4/6. Is 13 a factor of (-66)/33*(h - f/1)? True Let y = -14130 - -20852. Is 86 a factor of y? False Suppose -4*a = -k + 4763, -6 = 2*a - 4*a. Is 11 a factor of k? False Let u(i) = i. Let y be u(6). Suppose -3*x - 3*z = -y*z - 1014, x - 3*z = 338. Is 11 a factor of x/6 + (-8)/24? False Does 9 divide 7*(2865/35 + -1)? False Let v(r) = -3*r**3 - 69*r**2 + 20*r - 44. Is v(-24) a multiple of 5? False Suppose -28*h + 24*h + 560 = 0. Let q = h + -108. Is q a multiple of 16? True Let o(j) = -13*j + 12 - 5 + 2*j**2 - 2 + j**2. Let s be o(9). Let z = -17 + s. Does 19 divide z? True Let f(v) = 5*v - 5. Let r be f(4). Does 2 divide 3/(-2)*(-380)/r? True Let s be (-2180)/15*(1 - 22/4). Suppose 977 = 7*u - s. Is 12 a factor of u? False Suppose -q + 65 = -2*d - 0*d, 0 = -2*q - d + 120. Let h = q - 29. Suppose -h*w + 43 = -31*w. Does 5 divide w? False Let t(f) = -f**2 - 6*f + 1. Let q(i) = -1. Let h(o) = 2*o**2 + 12*o + 4. Let r(g) = h(g) + 6*q(g). Let k(a) = -6*r(a) - 11*t(a). Does 3 divide k(-4)? True Is 97 a factor of ((-142550)/(-140) - 8/(-28))*6? True Let r(w) = w + 12. Let b be r(-7). Suppose b*g - 48 = 8*g. Does 4 divide 4 + -3 - -1 - g? False Suppose -12*t + 11542 = -11744 - 31314. Does 30 divide t? False Let o(j) = -4*j**2 - 7. Let n be o(5). Let m = n - -201. Suppose m = a + 25. Is a a multiple of 16? False Let p(z) = z**3 + 9*z**2 + 15*z + 2. Let m be p(-7). Does 9 divide (62 - m) + (4 - -1)? True Let a(m) = -m**3 - 7*m**2 + 17*m - 6. Let r be a(-9). Suppose 3*z = -z - 16. Is 4 a factor of (r - -21) + (z - -2)/2? False Suppose -10*x - x = -1848. Suppose -5*b = -4*b + a - x, 2*b - 2*a = 356. Is b a multiple of 17? False Suppose 6*g - 28 = 4*g. Let y = g + -9. Suppose -32 = -5*s + 5*i + 113, y*s = -5*i + 155. Does 17 divide s? False Let v(m) be the second derivative of -3*m**5/2 - m**4/6 + m**3/2 + m**2 + 12*m. Let c be v(-2). Suppose 5*r - c = 132. Does 36 divide r? True Let u = 72 - 69. Suppose 0 = -3*o - 15, t - 3*t + 127 = -u*o. Does 8 divide t? True Suppose 5*v + 0*v = -55. Let l(s) be the first derivative of s**4/4 + 10*s**3/3 - 11*s**2/2 + 12*s + 14. Is l(v) a multiple of 6? True Let t(w) = -2*w - 18. Let j be t(-9). Suppose 5*b = -5*o + 234 + 21, j = 3*b - 15. Suppose 0*k = k - o. Is 21 a factor of k? False Suppose -3*n = n - 12. Suppose 6*p - 2*p + 3*j - 166 = 0, -n*j + 86 = 2*p. Does 4 divide p? True Suppose -9*q = -2*y - 6*q - 138, 4*y + 232 = -5*q. Is y/147 + (408/21 - 1) even? True Let a(b) be the second derivative of -b**5/20 + b**4/3 - b**3/3 - b**2 - 15*b. Let i be a(3). Is 15 a factor of 6/(-12) + (-181)/(-2) + i? False Let p(a) = 24*a**2 + 15*a - 3. Let o be p(6). Let d be 3 + -3 - 7/(-1). Suppose -d*z + o = -1. Is 28 a factor of z? False Let k be ((-76)/(-3))/((-3)/(-54)*4). Let j = k + -105. Is 5 a factor of j? False Suppose 0 = -2*y + 3*y + y. Suppose u + q = 4 + 2, 4*q - 16 = y. Suppose -3*z - 2*o + 42 = 0, 5*o - 5 = z - u. Does 12 divide z? True Suppose -5*s - 3*w = -2*w - 5778, 0 = 2*s - 3*w - 2301. Is s a multiple of 105? True Let h = -21 + 23. Suppose h*p = -0*p + 74. Let r = p - -22. Does 17 divide r? False Let m be (-6)/10 - (-570)/75. Let h(o) = -m*o**2 + 84*o + 2*o**2 - 7 + o**3 - 88*o. Does 12 divide h(7)? False Suppose 2*x = 2*d + 34, x + 54 = 5*x + 3*d. Does 11 divide ((-138)/x)/((-4)/140)? False Let n(s) be the third derivative of 0*s + 19/6*s**3 + 0 - 1/2*s**4 + 17*s**2 - 1/60*s**5. Is 6 a factor of n(-13)? True Let s = 2809 + -565. Is 44 a factor of s? True Suppose 2 = -n + 1, 2*n + 2690 = 4*k. Does 48 divide k? True Let t(i) = i**3 - 16*i**2 - 16*i - 85. Is t(19) a multiple of 86? False Suppose 0 = -5*i + 4113 + 1712. Does 5 divide i? True Let l be ((-3)/(-6))/((-1)/(-4)). Suppose -4*n = -5*s - 68, 5*n = -s - l*s + 85. Suppose 7 = 2*p - n. Is p even? True Is (2 + (-7062)/(-24))*(-288)/(-27) a multiple of 53? False Let r be 3/(((-144)/224)/(24/(-14))). Is (-3)/r - (-5625)/24 a multiple of 13? True Suppose 26*r + 75*r + 17*r = 1016924. Is r a multiple of 139? True Let j = 5180 - 4476. Is 32 a factor of j? True Suppose -37*i = -36*i - 5421. Is 13 a factor of i? True Let w = 9185 - 6280. Does 83 divide w? True Is 16/(-6)*(-172125)/68 a multiple of 30? True Let w be (-2)/(-4)*(-2 + 5 + -3). Suppose w = 4*b + 57 + 3. Is 28 a factor of -22*b/6*1? False Suppose 2*d = -4*k, -2*d = -5*d - k + 5. Suppose 4*j - 4*q - 126 = 1666, -d*j + 917 = 5*q. Does 69 divide j? False Let t(f) = -286*f + 495. Does 16 divide t(-12)? False Suppose -2*f + l - 2 = -20, 5*f = -5*l + 45. Suppose -2*p = -5*u - f, -2 = -u - 3. Suppose -61 = -4*g - o + 372, -p*g = -5*o - 233. Does 35 divide g? False Let c = 12 - 12. Let p(a) = -2*a + 23. Let g be p(10). Suppose c*k + 21 = g*k. Does 7 divide k? True Let f be (-9)/3 + -16 - 0. Let g = f - 27. Let v = -11 - g. Is 5 a factor of v? True Let w(x) = 9 + x - 4 + 4 + 11. Let o be w(-15). Suppose l + 2*l = -p + 4, -o*l - 4 = -p. Is p a multiple of 3? False Suppose 5*y - 8419 + 3204 = 5*b, 2*y = -4*b + 2092. Suppose -2*o = 5*i - y, 198 = -i + 2*i + 4*o. Does 30 divide i? True Let b(z) = -261*z + 504. Is 9 a factor of b(-7)? True Suppose -5*c + 14186 = 4*z, c + 101*z = 96*z + 2854. Is 8 a factor of c? False Let z(l) = -l**2 - 92*l - 240. Is z(-32) a multiple of 56? True Suppose 0 = 5*d + 3*h + 9045 - 33176, 0 = -8*d + h + 38627. Does 34 divide d? True Suppose 6*r = 4*m + 7*r - 112, -4*m - 4*r = -112. Suppose 2*b + c + 3 - 20 = 0, 4*b = 4*c + 28. Suppose -4*a + m = -b. Does 3 divide a? True Suppose -2*a - 5*a + 11858 = 0. Does 121 divide a? True Suppose -3*g + 6 = 3. Suppose 0 = 6*t - 20 - 4. Is 4 a factor of (1 + g)*33/22*t? True Suppose 830*j = 809*j + 160020. Is j a multiple of 20? True Suppose -24*l + 95194 + 36278 = 0. Is 33 a factor of l? True Let u(f) = -f**3 - 12*f**2 - 11*f - 15. Let l be ((-3)/(-4))/((4 + 4)/(-128)). Is u(l) a multiple of 9? True Let t(i) = 12*i**2 - 62*i + 266. Does 32 divide t(14)? False Suppose -2*c = z - 9475, 9*c - 8*c - 4739 = z. Does 23 divide c? True Is 15 a factor of ((-350)/(-8))/((-10)/4*(-106)/3180)? True Suppose -22*n + 3439 = -34885. Is 100 a factor of n? False Suppose 1 = -5*r + w, 5 = -2*r + 2*w + 3*w. Suppose -3*n - 14*n + 3026 = r. Is n a multiple of 13? False Suppose 0 = 4*w + 6*w + 1000. Suppose -3*d = 64 - 490. Let x = w + d. Does 14 divide x? True Let z = -214 + -124. Let x = -212 - z. Is 13 a factor of x? False Suppose 2*k = 4*f + 4996, 3*f + 2011 = 2*k - 2984. Does 24 divide k? True Let t(o) = 4 - 14*o - o**3 + o**2 + 2*o**2 - o**2 + 12*o. Let g be t(2). Suppose 2*v - 100 = -g*v. Does 10 divide v? True Suppose 35 = -6*i + 13*i. Does 32 divide ((-812)/10 - 2)/((-1)/i)? True Suppose -l - l = -5*l - 4*r + 4488, 4*r = 0. Is l a multiple of 68? True Let d(y) = 303*y**3 + y**2 - 4*y + 2. Let c be d(1). Let z = c - 157. Is 8 a factor of z? False Let g be 7*4*3/6. Let c = 47 - g. Suppose -c*p + 34*p = 27. Is 27 a factor of p? True Let b(m) = 11*m + 1. Let u be (2/(-2))/(-1*(1 - 0)). Is 6 a factor of b(u)? True Let c(o) = 122*o**2 + 91*o - 484. Does 38 divide c(5)? False Let g = 632 - 693. Suppose 5*y - 107 = -762. Let n = g - y. Is n a multiple of 10? True Suppose -7*w = 4*n - 11*w - 14280, -5*n = w - 17826. Is 25 a factor of n? False Suppose 0 = 2*y + 8, 8*y + 20248 = 4*d - 0*y. Is d a multiple of 106? False Let b(m) = 36*m + 517. Is b(-4) a multiple of 103? False Suppose -2*b + 2950 = 3*v, 14*v - 15*v + 960 = -4*b. Is 49 a factor of v? True Suppose 4*j - 1 = 2*u + 3*j, u - j = -1. Let m(i) = u*i**3 - 4*i**2 + i**3 - 106 + 98. Is m(6) a multiple of 20? False Suppose 2*z + 536 = -33*q + 35*q, 5*q - 1348 = 3*z. Is 17 a factor of q? True Let l(p) = 33*p + 50. Does 2 divide l(9)? False Let s be 1 - (-3 - (-8 + 6)). Is s*(-4)/(-8) + (-388)/(-2) a multiple of 11? False Let z(c) = -c**2 - 9*c + 6. Let q be z(-9). Suppose o = q*o - 15. Suppose -122 = -o*i + 5*v, -2*i + 67 + 27 = 3*v. Is 11 a factor of i? True Suppose m - 3393 = -2*a, -3*m + 13467 = a + 3288. Is 77 a factor of m? False Suppose 2*o - 3*x = 9213, -4*o - 8622 = -3*x - 27033. Is 38 a factor of o? False Let i = -1261 + 2455. Is i a multiple of 5? False Suppose -5 = -w - 1, 3*y - 584 = w. Does 14 divide y? True Let c be (3/(-3))/(13/(-5447)). Suppose -21*g + 400 = -c. Is g a multiple of 13? True Let f = 6138 + -2737. Is 48 a factor of f? False Is 4 a factor of 11427/26 - (-4)/8? True Suppose 47*b + 5 = 42*b. Does 45 divide 1076/8 + -1*b/2? True Suppose 28169 + 5011 = 110*w - 95*w. Is 4 a factor of w? True Suppose 3*d + 2*d = r - 125, -4*d = -5*r + 520. Suppose f - 32 = r. Is 44 a factor of f? True Suppose -5*b + a = -0*b + 13, -4*a - 5 = -b. Let c = b - -12. Is c a multiple of 6? False Suppose 4*u - 2*i + 97 = -i, 68 = -3*u - 4*i. Does 27 divide 8/u*-12 - -1*50? True Is (440*7)/(((-28)/(-10) + -3)*-5) a multiple of 56? True Let m(x) = -71*x - 13. Let d be m(10). Let y = -467 - d. Suppose -y = -3*j - 5*j. Is j a multiple of 11? False Suppose -37773 = -11*o - 30107 + 100090. Is 31 a factor of o? True Suppose -4*l = 3*u - 1552, -l + 118 = -5*u - 247. Suppose 0 = -7*v + 2*v + l. Is v a multiple of 4? False Let i(u) = -u**3 + 5*u**2 + 0*u + 2*u + 0*u - 6*u + 3. Let d be i(4). Suppose 0 = d*c - 109 - 68. Is c a multiple of 22? False Let w(j) = 4*j**2 + 24*j + 4. Let h be w(-6). Suppose 0 = -2*q + 12*y - 15*y + 567, -h*q - 2*y + 1114 = 0. Is 23 a factor of q? True Let p(v) = 2*v**2 - 11*v - 2. Let t be p(8). Let x be 26/((-10)/(-15) + 0). Let a = x + t. Is a a multiple of 29? False Suppose 29*b - 5*b - 41097 = 5*b. Does 11 divide b? False Suppose -x + 43*g = 47*g - 2438, -2*x + 4821 = -3*g. Is x a multiple of 78? True Let p(b) = 2*b**3 - 32*b**2 + 12*b - 62. Is 11 a factor of p(19)? True Let a = 209 - 205. Suppose -3*v + a*i + 88 = 0, 6*v = 5*v - 5*i + 4. Does 4 divide v? True Let i(u) = 4*u + 4. Let j be i(1). Does 3 divide 5*15 - (j + -10 - 2)? False Suppose -14*o + 9*o = 3045. Let i = o + 932. Is 19 a factor of i? True Let i = -171 - -175. Is 17 a factor of 142 + i/6*(-1 - 2)? False Let y be (-4 - -2)*-2 - (-4)/(-2). Suppose y*x - 3*x + 2 = 0. Suppose 5*i = 2*n + 255, -x*i + n + 4*n + 123 = 0. Is 18 a factor of i? False Let t(b) = -2*b**3 - 8*b**2 + 14*b - 17. Let x(y) = -y**3 - y**2 + y + 3. Let g be x(2). Is t(g) a multiple of 17? False Suppose -10*i - 19*i - 9*i = -112822. Is i a multiple of 5? False Is (-4)/(-5) - (-623968)/340 a multiple of 108? True Let o be ((-5)/2)/(85/(-68)). Suppose -5*q + o*y + 487 = 3*y, y = -4*q + 389. Is 4 a factor of q? False Is 10 a factor of (-46 - -2)/(165/(-132) + 9/8)? False Let v = 3579 - 3470. Is v a multiple of 21? False Suppose -3*y = -2*t + 3457, 5182 = 2*t + t - y. Is 11 a factor of t? True Let k be (4/(-5))/(45/(-37350)). Let t = -472 + k. Does 12 divide t? True Suppose 4*t + 23327 - 1135 = 4*d, 3*d - 16662 = -3*t. Does 7 divide d? True Let h be (-2)/7 - 94/14. Let m(o) be the third derivative of -o**6/120 - 7*o**5/60 - o**4/6 - 3*o**3/2 + 57*o**2. Is 3 a factor of m(h)? False Let t(b) = 159 - b**2 - 38 + 5*b + 107. Is 18 a factor of t(0)? False Let l(k) = 3*k**2 - 2*k - 7. Let g be l(3). Suppose 246 = -12*b + g*b. Suppose 170 = -0*w + 4*w + 2*p, -3*w - 3*p + b = 0. Is w a multiple of 18? False Let v(x) = x**2 - 5*x + 12. Let t be v(0). Let l(w) = -w**3 + 14*w**2 - 9*w + 16. Is 7 a factor of l(t)? True Is 5/((50/(-35))/((-12)/7)) - -2568 a multiple of 21? False Suppose i - 15 = -4*x, i - 84 = -3*i - 4*x. Suppose 0 = -i*f + 19*f + 540. Is f a multiple of 27? True Suppose 5*g = -9*g + 1786 + 3618. Is g even? True Suppose 3*g + 14 = 5*g + 5*p, 5*g - 35 = -5*p. Let x(w) = w**3 - 4*w**2 + w - 1. Does 8 divide x(g)? False Let q(h) = 226*h - 228. Does 5 divide q(20)? False Is 71 a factor of (28/(-112) + (-2)/8)/(3/(-17040))? True Let b(o) = -748*o + 212. Is b(-6) a multiple of 94? True Does 67 divide -2 - (26339/(-3) + 12/18)? True Suppose 2181 = 11*o - 2274. Is o a multiple of 27? True Suppose -4*h - 7 + 7 = 0. Let g(d) = -d**2 + 4. Let j be g(h). Suppose -587 = -v - 4*v - j*x, -2*v - 2*x = -234. Is 25 a factor of v? False Let c = 33 - -148. Suppose -4*l + 202 = 2*x, -4*x = 2*l - c - 193. Let d = 129 - x. Is 11 a factor of d? False Suppose 4*x - 840 = 2*x + 2*i, 3*x + 5*i - 1236 = 0. Suppose -5*m = l - 60, -129 = -4*l + 4*m + 183. Suppose -6*u + l = -x. Does 41 divide u? True Let w = -44 + 47. Let q = w + 2. Suppose -n + 0*o = -3*o - q, -5*o + 71 = 4*n. Is 4 a factor of n? False Let c = -3871 + 4513. Is c a multiple of 2? True Let i(x) = -2*x**3 + 13*x**2 + 29*x + 12. Does 26 divide i(-7)? False Let r be (6/15)/((-1)/5). Let q be (12/9)/(r/(-63)). Suppose 4*g - 4*f - 80 = 0, 3*g - 3*f + q = 6*g. Does 17 divide g? True Suppose 7*q - 6637 = 10107. Suppose -10*t - 16*t + q = 0. Does 6 divide t? False Let p be ((-3)/6)/(0 - 5/1140). Suppose 2*y + a - 221 = 0, 0 = y + 2*a - p - 4. Is y a multiple of 7? False Suppose -7*s - 48*s + 61335 = -8*s. Is s a multiple of 24? False Let v(y) = 179*y**2 + 32*y - 60. Does 40 divide v(2)? True Let s(y) = 6*y - 1. Let d be s(1). Let p(x) = -9*x - 63. Let o be p(-7). Suppose d*v + 0*b - 426 = -2*b, 4*v + 2*b - 342 = o. Does 15 divide v? False Let p(z) = -26*z - 52. Let t(w) = -26*w - 54. Let q(s) = -3*p(s) + 4*t(s). Is 49 a factor of q(-18)? False Let h(k) = -133*k + 40. Let s be h(-8). Suppose -6*c = -s - 1056. Does 60 divide c? True Let u(z) = z**3 + 2*z. Let o(x) = -3*x**3 - 22*x**2 - 40*x + 17. Let y(v) = -o(v) - 4*u(v). Is 19 a factor of y(23)? True Suppose -4*d + 0*d = -b - 21, 3*b = -2*d - 7. Suppose -629 = -d*m - 53. Is m a multiple of 24? True Let m(s) = 2 + 144*s**2 - 8*s**2 + 61*s**2. Does 36 divide m(-1)? False Suppose -4*u + 4*y = 3*y - 4845, -3615 = -3*u - 3*y. Does 86 divide u? False Suppose 2*y = -a - 373, 4*y - 2*a + 771 = a. Suppose -23 = -5*z + 2, 0 = -4*h - 5*z - 1035. Let s = y - h. Does 11 divide s? False Let v(g) = 1 + 8*g**2 - 45*g**3 + 44*g**3 + 1 - 5 + 3*g. Let n be v(4). Let r = 137 - n. Is 16 a factor of r? True Suppose -3*x + 49 + 54 = -4*q, 4*q = -5*x + 129. Suppose -3*d + 8*d - 4*k - 90 = 0, x = 2*d - 3*k. Is d a multiple of 22? True Suppose -13*s = -s + 24. Is 18 a factor of s/(-6) + (-8820)/(-27)? False Let h(c) = -c**2 - 6*c - 4. Let m be h(-6). Let j(t) = -1 + 1 + 182*t**2 + t - 181*t**2. Is j(m) a multiple of 6? True Suppose 3*o + 0*o - o = 0. Suppose 2*d = -0*d - 4, o = 3*j - 4*d - 8. Let a(y) = -y**3 + 12. Is a(j) a multiple of 2? True Let x(t) = -231 + 212 - 9*t + t**2 + 0*t + 0*t. Is x(-9) a multiple of 9? False Let w = 15257 - 8721. Does 152 divide w? True Let r(f) = -f**3 - 19*f**2 - 168*f - 32. Does 111 divide r(-21)? False Suppose 65627 = -51*p + 351329. Is 23 a factor of p? False Suppose 745 = -23*t + 8381. Does 14 divide t? False Suppose -72 = -19*w + 4. Suppose 6*q = w*q + 376. Is q a multiple of 27? False Let f = 4803 - 3626. Does 31 divide f? False Let y(l) = -l**2 + 33*l + 17. Let i be y(24). Suppose 0 = -9*k + 638 - i. Is 2 a factor of k? False Suppose -1985 = -4*m + 3895. Suppose 6*u - m = u. Is 49 a factor of u? True Let u(k) be the first derivative of k**5/60 - k**4/24 - 11*k**3/3 + 7*k**2 + 11. Let h(q) be the second derivative of u(q). Is h(9) a multiple of 32? False Let a = 4029 - 3362. Does 44 divide a? False Let v(w) = 4*w. Let c be v(-5). Let h(n) = -4*n + 58. Is 46 a factor of h(c)? True Let m(v) = v**3 - 23*v**2 + v - 20. Let o be m(23). Suppose 2*l + 5*s = 529, 0*l + 5*l - o*s = 1245. Is 36 a factor of l? True Is (((-231)/22)/((-3)/443))/((-4)/(-8)) a multiple of 32? False Suppose -4*k - 629 + 4813 = 3*w, -2*k = 2*w - 2792. Does 4 divide w? True Let g = -4 - -5. Let v be (g/(-3))/((-2)/12) - -12. Suppose v = 3*n - 76. Is n a multiple of 5? True Let g(h) = -28*h**2 + 33*h + 121. Let z(d) = 13*d**2 - 16*d - 61. Let w(f) = 6*g(f) + 13*z(f). Is 13 a factor of w(17)? True Suppose 0 = -28*m + 11*m - 43 + 281. Is m a multiple of 7? True Suppose 5*n = 7*n - 4. Suppose -5*s = -n*s - 1170. Suppose 5*p - 650 = l, 3*l + s = p + 2*p. Is p a multiple of 13? True Let m(s) = 9*s - 10 - 5*s**3 + 6*s**3 - 2*s**3 - 9*s**2. Let a be m(-9). Let t = a + 181. Does 15 divide t? True Suppose -37*u + 40*u - 11040 = 0. Is u a multiple of 80? True Suppose 6*f = -8 - 28. Let z(r) be the second derivative of -2*r**3 - 2*r**2 - 4*r. Is z(f) a multiple of 8? False Let b(j) = 4*j**2 - 13*j + 36. Let n be b(5). Suppose -5*z - 383 = -3*i, -z - i + 26 - 109 = 0. Let r = n - z. Does 30 divide r? True Let a = 84 - 82. Is 36 a factor of (-3 + (-293)/(-3))*3/a? False Let b be (-25)/(-1) - (-2)/((-4)/(-2)). Let c = b + -25. Is 16 a factor of 1 + (2 - c) + 30? True Is 9 a factor of 3/(24/4380*(50/36)/5)? True Suppose -4*t + 425 = 5*c, t = 3*c - t - 233. Suppose 104 = -5*q - c. Let u = q - -106. Does 13 divide u? False Let t(g) = -g**3 - 11*g**2 - 5*g + 7. Let a be t(-10). Let m = a - -316. Does 7 divide m? True Let x(l) = -2*l - 19. Let d be x(6). Let g = d - -37. Suppose 26 = 4*w - 2*o, -2*w + 3 + g = -5*o. Is w even? False Let t(u) = u**2 + 11*u + 24. Let a be t(-9). Suppose a*i - 3*i - 375 = 0. Does 25 divide i? True Let n be 4/6*(-63)/(-42)*-201. Let u = -144 - n. Is u a multiple of 16? False Let a(o) = 53*o**2 - 2*o - 1. Let l = 44 + -44. Suppose 0 = j + 2*w - 7*w - 24, -2*j + 2*w + 8 = l. Is a(j) a multiple of 8? False Suppose -3*v + 335 = -6175. Does 16 divide v? False Let l(o) = 11*o**3 + 22*o**2 - 107*o - 1. Does 44 divide l(6)? False Let z(p) be the third derivative of -77*p**4/24 - 14*p**3/3 + 2*p**2. Does 17 divide z(-5)? True Let n(q) = -q**2 + 14*q - 25. Let f be n(12). Is 6 a factor of 4 - ((-4)/f + -55 + 1)? True Let q(v) = -v**3 + v - 1. Let c be q(0). Let b be c/(-7) - (-1955)/35. Suppose 14 = -6*n + b. Is 7 a factor of n? True Suppose -3*j = 3*w - 2196, -4*w + 529 + 206 = j. Is j a multiple of 22? False Let g(y) = -43*y**2 - 3*y - 2. Let a = 24 + -22. Let m(p) = -171*p**2 - 13*p - 8. Let d(c) = a*m(c) - 9*g(c). Does 6 divide d(-1)? False Let w(a) = -a**2 - 13*a - 19. Let t be w(-11). Suppose -35 = 5*v + p, t*p - 35 = 5*v + 5*p. Let s(l) = -l**3 - 7*l**2 - 4*l - 8. Is s(v) a multiple of 11? False Let p be (8/(-6))/2*45/10. Let n(r) = -r**2 - 10*r - 5. Is n(p) a multiple of 16? True Let o = 10155 - 3450. Is o a multiple of 120? False Let b be -70*(-3 + -9) - -4. Suppose -5*s + b + 1731 = 0. Let h = -329 + s. Does 32 divide h? False Let a be 3*(-3 - -2)*-1. Suppose 3*g = -4*q + 4, 0 = 3*g + a*q - 0*q - 6. Suppose -u = 2*d - 5*d + 362, 0 = g*d + 3*u - 474. Does 25 divide d? False Let d = 5435 + -3471. Is 30 a factor of d? False Is -30*(207/(-180)*-12)/(-1) a multiple of 23? True Let i(c) = 7456*c**2 - 6*c. Does 20 divide i(-1)? False Suppose 0 = -4*d + 20, 226*x - d + 34379 = 229*x. Does 17 divide x? True Let q(k) = k**3 + 44*k**2 - 114*k + 15. Is 79 a factor of q(-46)? True Let j = 28 + -28. Let d(q) = 42 - 78*q + q**3 + 151*q - 71*q. Is 21 a factor of d(j)? True Let y = -53 + 362. Let d = 450 - y. Does 16 divide d? False Let c = 38 - 200. Let y = -29 - c. Suppose -y = 5*t - 868. Is t a multiple of 26? False Let c(w) = -69*w + 2217. Does 11 divide c(24)? True Let z = -2273 - -4036. Does 43 divide z? True Let f(t) = -2*t**3 + 58*t**2 - 9*t + 104. Is f(27) a multiple of 9? False Let o(y) = -53*y - 48. Let x be o(9). Let c = -319 - x. Is 15 a factor of c? False Let n(y) = -30*y + 4. Let u be n(-1). Let s = u - 32. Let w(t) = 4*t**3 - 2*t**2 + 2*t - 1. Does 9 divide w(s)? True Let p(t) = 2211*t**2 - 48*t + 49. Does 59 divide p(1)? False Suppose -2*n = 4*r - 200, 5*r = -4*n + 130 + 126. Is 45 a factor of (-3 - 81/(-12))/(1/r)? True Let b = 8933 - 4563. Does 190 divide b? True Suppose 38*o = 35*o + 897. Let y = -207 + o. Is 23 a factor of y? True Let p = 4 + -1. Let t(d) = 12*d + 9*d**2 + 6 - 11*d**3 + 10*d**p + 2*d**3. Does 14 divide t(-6)? True Suppose 4*b + 25 = -b, -a = -2*b - 10. Let z(k) = -k**2 + k + 3. Let u be z(a). Suppose u*o + 2*o = 345. Is o a multiple of 23? True Suppose -3*c - 7 = -2*o, 3*c - 5 = 4*c - 2*o. Let u(z) = 53*z**2 + 1. Is 27 a factor of u(c)? True Suppose -2*b + 3*f = -2657, 26*b - 27*b = -3*f - 1321. Is b a multiple of 8? True Let o(z) = 76*z + 328. Is o(7) even? True Let y = -1686 - -2346. Is 6 a factor of y? True Let m(f) = 69 - 34 + 68*f - 25. Is 13 a factor of m(5)? False Let n(u) = 2*u**3 - 6*u**2 - 7*u + 28. Let l be n(4). Let x be (10/4)/((-2)/(-136)). Suppose 0 = 2*q + 5*v - x, -2*v + 340 = 4*q - l. Is 19 a factor of q? True Let g be 6*-5*(-2)/60. Let s(h) = 1 + 141*h**2 - 7 + 4*h + 8 - 5. Does 20 divide s(g)? False Let z(c) = -90*c - 785. Is 50 a factor of z(-43)? False Suppose -22*a = 3787 - 10189. Let h = 411 - a. Does 60 divide h? True Is ((-1168)/(-24))/(3/360*4) a multiple of 4? True Let q(u) be the third derivative of u**5/60 - u**4/6 + 2*u**3/3 + 13*u**2. Let g be q(4). Suppose -v + 0*v + 55 = 5*d, -5*v = -g*d - 275. Is v a multiple of 7? False Let g be (-128)/3*15/(-10). Suppose -2*v + 4 = g. Let j = v - -46. Does 3 divide j? False Let f(b) = -20*b - 4. Let y(v) = -2*v**2 + 34*v - 5. Let a be y(17). Is f(a) a multiple of 6? True Suppose -2*a - 3*a = 5. Let w(k) = 7*k**2 - 1. Let f be w(a). Is (-2)/f + 3*(-84)/(-27) a multiple of 9? True Suppose 2*f - 824 = -16*b + 19*b, -2*f - 3*b + 812 = 0. Is 17 a factor of f? False Let p(m) = -m**3 - 42*m**2 - 156*m + 91. Does 9 divide p(-38)? True Let r = -3819 - -4213. Does 3 divide r? False Let p = 78 + -78. Suppose 3*u - 312 = 4*j, p = -3*u - j + 452 - 140. Is u a multiple of 10? False Suppose 27 = c - g, -5*c + 145 = 3*g + 2*g. Suppose 42 = -4*q + 2*i - 0*i, -2*i = 3*q + c. Does 3 divide (192/(-40))/(2/q)? True Let z be ((-28)/(-8) + -4)*-8. Suppose 0 = z*w + 4*g + 2 + 2, -3*w + 5 = 5*g. Is (-8)/5*w/2 a multiple of 3? False Let i be 5/2*(-3 - 35/(-7)). Suppose w - p - 200 = 0, -3*w + 251 = i*p - 333. Does 20 divide w? False Suppose 0 = c - 2*c. Let k(v) = v**2 - 9. Let p be k(c). Let b(j) = j**2 + 7*j - 3. Does 15 divide b(p)? True Suppose 75*u + 20850 = 113325. Is u a multiple of 10? False Suppose -3*f - 60 = -5*y, 4*f = -0*y - y + 35. Let k = y + -6. Suppose -k*s = -6*s - 135. Is s a multiple of 7? False Let h be 33/3*121 - 4. Suppose 11*a - 1247 = h. Is 26 a factor of a? True Does 86 divide 84/7 - 18357/(-3)? False Let a(s) = s**2 + 19*s - 61. Let u be a(-16). Let k = 128 + u. Is 19 a factor of k? True Let f = 50 + -42. Suppose -z - z = f, 4*u - 4*z - 224 = 0. Suppose -2*a - u = -d, d + d = 5*a + 100. Does 6 divide d? True Let u = -8 + 23. Let j(l) = l**3 - 15*l**2 + 4*l - 35. Does 5 divide j(u)? True Let h(u) = -100*u**2 + 10*u + 18. Let r be h(-2). Let l = -52 - r. Is l a multiple of 14? True Let j(b) = b**2 + 6*b + 4. Let h be j(-6). Let s(l) = -l**3 - 7*l**2 - 6*l - 5. Let d be s(-6). Let w = h - d. Does 3 divide w? True Let s(j) = j**2 - 14*j + 3. Suppose 2*d + 156 = 3*u, -3*d + 48 = u - 5*d. Suppose -u = -4*c - h, 3*h = -0*c + 4*c - 62. Is s(c) a multiple of 2? False Let w(l) = -l**3 - 7*l**2 - 6*l + 6. Let i be w(-6). Let o = -1810 - -1957. Suppose -i*m - 33 = -o. Is 9 a factor of m? False Let y = -4806 + 15138. Is 42 a factor of y? True Let s be (-2 - (-3)/6)*(-20)/6. Suppose -c + s*c = 5*a - 596, a - 5*c = 115. Suppose -p = p - a. Is 10 a factor of p? True Suppose 19*u = 17*u + 428. Let z = u + -149. Is 65 a factor of z? True Let x = -213 + 193. Does 5 divide (146/4 + 1)*(-32)/x? True Let h(c) = -c**2 + 29*c. Let w be h(27). Suppose -w = -6*n + 54. Is 2 a factor of n? True Let p(q) = -q**2 + 14*q - 18. Let i be p(6). Suppose 34*g - i*g = 324. Suppose 3*b + 3 = 3*r - g, -3*b = 5*r - 124. Is r a multiple of 5? False Suppose -5405 = -2*w + 70 - 3. Is w a multiple of 6? True Suppose -5*p = 4*f + 57, 0 = -p + f + 2*f. Let r be (-7)/(-14) - p/2. Suppose -29 = -3*z + r*m, -5*z + 5*m + 39 = 6*m. Does 4 divide z? True Let i(s) = -7*s - 49. Let j(c) = 6*c**2 - c - 2. Let b be j(2). Let v(y) = -48*y - 344. Let n(l) = b*i(l) - 3*v(l). Is 18 a factor of n(0)? False Let z(r) = 15*r - 5. Let p be z(-3). Let x = p - -157. Does 15 divide x? False Let x = -14 + 21. Suppose 10*g - x*g = 0. Suppose 0 = 2*r - 10 - g, 3*w - 258 = -3*r. Is w a multiple of 24? False Suppose -5*n + 20 = -w, w = -2*n - 0*n + 8. Let l(p) = -14*p + 1052. Let r be l(75). Suppose 5*f - 23 = -4*o, 2*f + w = -r. Is o a multiple of 7? True Let z(m) = 9*m + 13*m**2 + m**3 - 2*m**2 + 7 - 21. Let s be (-3 - -2)*(4 - -1 - -3). Does 20 divide z(s)? False Suppose 0*m + 2*m + 24 = 4*f, -4*f = 4*m. Suppose 4*w - 1477 = -5*b, -f*b + 207 = -2*w + 939. Does 16 divide w? True Suppose 62*b - 13641 = 79979. Is 10 a factor of b? True Suppose x + 5*c - 102 = 0, 3*c + 28 = x - 58. Let w = x - 18. Is w a multiple of 5? False Let c(a) = 52*a**2 - 27*a + 89. Does 51 divide c(7)? True Let w be ((-2)/(-3))/((-7)/(-42)). Suppose -5*x - 2*p - 300 = -x, 3*p = -w*x - 300. Is (x/10)/(3/(-30)) a multiple of 16? False Suppose -4*o - 252 = -4*a, 3*a + 5*o = a + 105. Suppose 0 = 2*s - a - 192. Is s a multiple of 9? True Let c(o) be the second derivative of -o**3/2 + 10*o**2 - 18*o. Let l be c(7). Is -74*4/8*l a multiple of 37? True Suppose o + 3*z + 7 = 0, -z - 6 = -3*o + 3. Suppose 2*a - 488 = -o*a. Is 18 a factor of a? False Let y = 607 + -546. Is 3 a factor of y? False Suppose 855 + 850 = -11*r. Let c = -39 - r. Is 25 a factor of c? False Let b be -3 - (6/(-15))/(1/20). Suppose -5*y + b*k - 3*k + 20 = 0, -55 = -5*y - 5*k. Is 2 a factor of ((-9)/6)/(y/(-8))? True Let a = 37 + -35. Is (-318)/(-16) - a/(-16) a multiple of 10? True Suppose 2*j - 8*j = -54. Let q(z) = -z**3 + 8*z**2 + 8*z + 11. Let c be q(j). Suppose -3*x = o - 4*x - 28, -4*o = c*x - 88. Is o a multiple of 6? True Let d = 200 - 198. Is 34 a factor of (d + 28/(-6))*(-3927)/28? True Is (-9)/(99/(-2)) + 708921/99 a multiple of 93? True Suppose -z - 3*q + 5889 = 0, -4*z - 5*q = -6722 - 16834. Is z a multiple of 95? False Let n = 894 - 1148. Let p be (-4)/(-6)*15*-17. Let h = p - n. Is h a multiple of 12? True Let p(w) = 118*w - 12. Let m(a) = -177*a + 18. Let r(l) = -5*m(l) - 8*p(l). Is r(-1) a multiple of 5? True Suppose -340 = -26*f + 9*f. Is 19 a factor of -17*((1 - f) + 0/21)? True Let t(k) = -2*k**3 + 87*k**2 + 89*k - 109. Does 112 divide t(44)? False Let o = 125 + -128. Let w(v) = 5*v**2 - 13*v - 39. Is 2 a factor of w(o)? False Does 11 divide 1/(-4) + 5019/28 + 6? False Suppose 2*c - c - 5 = 2*j, 0 = -j. Suppose -4*i + 207 = -c. Is 12 a factor of i? False Let n(w) = -w**3 - 21*w**2 - 24*w - 41. Let r(t) = 20*t + 40. Let q be r(-3). Is n(q) a multiple of 3? True Let b(k) = -29*k + 14. Let g(o) = -14*o + 7. Let d(n) = 4*b(n) - 9*g(n). Is 15 a factor of d(25)? False Suppose -h + 3*c - 334 = 0, 9*c + 1044 = -3*h + 4*c. Let s = -231 - h. Does 14 divide s? True Suppose -5*x - 202 = -647. Let b = 196 + x. Is 57 a factor of b? True Let p(f) be the first derivative of 33*f**2/2 - 14*f - 36. Is 18 a factor of p(4)? False Is 37 a factor of -6 + (77/5 - -1)/((-94)/(-22090))? True Suppose -5*d + 5 + 10 = -5*h, 0 = -4*h - 2*d + 18. Suppose -3*w - 2*u = -956, h*w - 246 = -5*u + 373. Is 23 a factor of w? True Suppose 0 = -h + 22 - 4. Let i be -29*(-2)/h - 20/90. Does 12 divide i/3 - (1 - (50 - -2))? False Let x = -222 + 329. Let d = x - 59. Is (d/(-14))/((-1)/7) a multiple of 10? False Let u(j) = -j**3 + 15*j**2 - 6*j + 6. Let r be u(9). Suppose -3*d = 2*n - 294, -2*n - 128 = -d - r. Is n a multiple of 38? False Let h(v) = -2*v**2 - v + 15. Let s be h(0). Suppose 0 = -2*l + 7 + s. Let u = l + 34. Does 9 divide u? True Let z = -8 + 18. Let r(m) = 26 - 50 + z*m + 17 - 3*m. Is 5 a factor of r(6)? True Let o(h) = -h**2 - 16*h - 60. Let a be o(-8). Suppose -4*p - a*p + 680 = 0. Is p a multiple of 5? True Let i = 1371 + -940. Suppose -p - 4*p - 3*g + 438 = 0, 5*p = 4*g + i. Suppose w + p = 5*h, 0*w = 2*h + w - 32. Does 4 divide h? False Suppose -2*m = -4*o + 2*m - 8, -2*o - 4*m - 16 = 0. Let d = -362 + 366. Is (1*-9)/(22/o + d) even? True Suppose 2*m - 3*o = 14057, 4*o - 9663 = -4*m + 18461. Is m a multiple of 38? True Suppose -7072 = -5*t - 2*b, 2*t - 3*b + 4245 = 5*t. Suppose 2*d - 2*g - 271 = -827, t = -5*d - g. Let k = d - -458. Does 39 divide k? False Let y be (2/(-3))/(2/(-33)). Suppose y*c - 3311 = -0*c. Does 25 divide c? False Let c = 11503 + -7527. Is 14 a factor of c? True Suppose -7*l + 232 = -8*l. Let o = l + 316. Is o a multiple of 11? False Suppose -4*x + 3*b = x - 24, x = 5*b + 18. Suppose -n + 3 = u, n = 5*u + 12 + 9. Suppose 2*t - n*t - 3*k = -282, 3*t - 213 = -x*k. Is t a multiple of 23? True Suppose -n + 5*n = -5*n + 8910. Is n a multiple of 33? True Let n = 3228 + -1608. Does 54 divide n? True Let k = -4030 + 6370. Is k a multiple of 6? True Suppose 48*m = 47*m + 41. Let q = m + -26. Suppose -4*z + 4*y + q = -61, -4*y = 0. Does 5 divide z? False Suppose 2*g - 4159 = -4*x + 1525, 4262 = 3*x + g. Does 71 divide x? True Suppose 22*y - 30 = 7*y. Suppose -y*o + 4*o - 86 = 0. Does 9 divide o? False Suppose 3*n = 24*o - 25*o + 8053, -n + 2671 = 3*o. Does 6 divide n? False Suppose -19*j + 131032 = -125166 + 100873. Does 75 divide j? True Suppose -18*s - f = -15*s - 6368, -2*s = -4*f - 4264. Is s a multiple of 101? False Let a(q) = q**3 - 33*q**2 + 77*q + 252. Does 96 divide a(36)? True Let l be (-3 + 1 + 8)*-3. Let j be 24/(-108) - 76/l. Let h = 81 - j. Is 27 a factor of h? False Let a = 27 - 9. Let d(u) = 8*u**2 + 8*u**2 - 3*u + 9*u + u**3 - a*u**2. Is d(5) a multiple of 29? False Let v = -80 + 166. Let w = 431 - v. Is 25 a factor of w? False Let i = -16 - -20. Suppose i*h = -w + 869, w + 1075 = -3*h + 8*h. Suppose 14*q = 16*q - h. Is 16 a factor of q? False Let z = -42 + 45. Suppose -z = 11*s - 12*s. Suppose -s*q = 3*o - 408, o = 4*q + 83 + 53. Is 20 a factor of o? False Suppose 5*v = 5*h - 275, 5*h = -v - 7 - 42. Let l = v - -147. Is l a multiple of 19? False Suppose 3*i - 32 = y, 0 = 5*y + i + 25 + 71. Let d = -525 + 563. Let n = d + y. Is 6 a factor of n? True Let r = -2418 - -11844. Is 61 a factor of r? False Let o(w) be the second derivative of 5*w**6/144 - w**4/12 + 5*w. Let d(u) be the third derivative of o(u). Does 12 divide d(2)? False Let m = -4150 - -4270. Is 24 a factor of m? True Let s(r) = -4*r - 16. Let m(v) = -2*v**2 - 2*v - 1. Let n be m(2). Let y be s(n). Let d = 124 - y. Is d a multiple of 21? False Suppose 197120 = -7*s + 119*s. Is 32 a factor of s? True Suppose -d = 5*w - 9050, -2*w = 2*d + 648 - 4260. Is 31 a factor of w? False Let u be 109 - (1 - 0) - (-49 - -52). Is 5/20 + u/12 even? False Let y(h) = -h**3 + 20*h**2 - h - 5. Let k be y(20). Let x = k + 337. Is x a multiple of 13? True Suppose -8*l = 21*l - 107996. Does 25 divide l? False Let v = 333 - -621. Does 18 divide v? True Suppose 5*o - 6*o = -3, 0 = -r + 4*o - 580. Is 36 a factor of (r/(-14))/(8/28)? False Let u(d) = 11*d**2 - 86*d - 81. Is u(17) a multiple of 68? False Let d = -118 + 501. Let o = d + -260. Does 21 divide o? False Suppose 25*k - 29*k + 8 = 0. Suppose 4*a + 3*l = 1652, -836 = k*a - 4*a - 4*l. Is a a multiple of 11? False Let v = 83 + -218. Is (-30)/v - 554/(-18) a multiple of 17? False Is (-1)/((-36)/227688) - 3/(-9) a multiple of 32? False Let r be ((-4)/(-14))/((-6)/(-42)). Suppose -r*d = -4*o + 1207 + 141, -4*d - 680 = -2*o. Does 48 divide o? True Suppose 58863 = 43*a - 214918. Does 63 divide a? False Suppose 0 = -6*i + 337 - 145. Let x = -15 + -2. Let s = x + i. Is s a multiple of 15? True Suppose 3*f - 5*f - 26 = 0. Let m = 34 + f. Suppose j + 3 = -j - 5*c, j = 2*c + m. Does 3 divide j? False Let u be ((-96)/(-28))/((-4)/(-14)). Suppose -3*x - u = 0, -2*x = -i - 2*i + 188. Let d = i - -9. Does 23 divide d? True Is -8*(243*39/(-12) - 6) a multiple of 15? False Let q = -8048 + 17012. Is q a multiple of 83? True Let j(k) = 2*k**2 - 23*k - 11. Let y be j(12). Is 29 a factor of y - -58 - (-1 - -4)? False Suppose 5*l - 2*l - 9 = -5*s, -5*l + 15 = s. Suppose s = 4*q - 9*q. Suppose q*p - 99 = -p. Does 16 divide p? False Let u(g) = g**3 + 8*g**2 + 6*g + 1. Let y be u(-7). Let z(s) = -40*s + 70. Let b(k) = -13*k + 23. Let t(q) = y*b(q) - 3*z(q). Does 14 divide t(6)? True Suppose -7*a = 392 - 2072. Is 48 a factor of a? True Suppose 11*g - 16*g + 25 = 0. Suppose g*w - 665 = -4*s, -5*w + 0*w = -4*s + 615. Does 31 divide s? False Let v = 1550 - -3465. Is v a multiple of 17? True Suppose 0 = d + 3*x + 27, d - 3*x + 57 - 18 = 0. Let o = 37 - d. Suppose w - o = -5*v, 0*w + 5*v - 200 = -3*w. Does 35 divide w? False Is 846 + (-7)/(-7 + -7)*0 a multiple of 6? True Let b(o) = -o**2 + 11*o + 14. Let x be b(12). Suppose x*i = 7*i - 1835. Does 26 divide i? False Let a = -36 - -38. Suppose 13 = i + a*l, 4*i = -0*l + 5*l. Suppose -i*t - 22 + 152 = 0. Does 23 divide t? False Let z(w) = 95*w - 37. Let j(c) = c + 13. Let d be j(-10). Is z(d) a multiple of 61? False Let j(y) = -y**2 + 12*y + 19. Let u be j(11). Let x be (-2)/5 + 434/35. Let l = u - x. Is l a multiple of 9? True Let o = 78 - 56. Suppose t - 10 = -28. Let z = o + t. Is z a multiple of 2? True Does 90 divide 3 + 99/(-11) + (-7344)/(-4)? False Suppose 39*w = 14*w - 150. Let v(p) = -21*p**2 + 3*p - 108. Let z(q) = -6*q**2 + q - 31. Let n(t) = 5*v(t) - 18*z(t). Is 36 a factor of n(w)? True Suppose -4 = -2*g, -9*w + 7*w = -g + 4. Is 6 a factor of (-23)/w - (-35)/35? True Suppose -2*g - 2*g - 1232 = 0. Let k be (g/6)/((-188)/(-48) - 4). Suppose -6*y = y - k. Is 22 a factor of y? True Suppose -2*k + 3*k = 80. Let g = k - -17. Is 22 a factor of g? False Let l = -2073 - -2781. Is 5 a factor of l? False Let r(n) = 777*n**2 + 14*n + 21. Is 28 a factor of r(-3)? True Let p(x) = 18*x**3 - 8*x**2 + 9*x + 93. Is 51 a factor of p(5)? False Suppose 4*c = -2*u - c + 2505, -5*u + c + 6222 = 0. Is u a multiple of 15? True Is 6/12 - (-3843)/14 a multiple of 4? False Let t = 222 + -219. Suppose -220 = -3*d - 4*s + 426, d - 217 = -t*s. Does 51 divide d? False Let h = 73 - 78. Let s(y) = -23*y - 22. Is s(h) a multiple of 15? False Let q = 265 + -191. Let g = q - 58. Is g a multiple of 12? False Suppose 5*v - 22183 = i, -8869 = -24*v + 22*v - i. Is v a multiple of 34? False Suppose -8*n + 10*n + h - 9089 = 0, -n + 4558 = 5*h. Is 36 a factor of n? False Suppose 8*i = -4*i + 11004. Let p = -618 + i. Is p a multiple of 31? False Is 7 a factor of ((-3 - (-30)/18)*3 - -8) + 1116? True Let x(q) = 2728*q**2 - 116*q - 115. Is 53 a factor of x(-1)? False Suppose -10*v + 56 = -174. Suppose 0 = -4*t - 8*x + 9*x + 92, 5*x = -t + v. Does 2 divide t? False Suppose 86*q = 31*q + 16060. Does 7 divide q? False Suppose -10*a - 30 = -20*a. Suppose -a*n = 10*n - 1144. Is n a multiple of 11? True Suppose -14*f + 15*f = p - 2124, 5*f + 6378 = 3*p. Is p a multiple of 59? False Suppose 0 = 4*j - 7*j - 3*x + 9, -4*j = 3*x - 10. Is 57 a factor of 4 + 0 + -5 - (j + -572)? True Let v = -7923 + 12746. Is 13 a factor of v? True Suppose -78 = -6*s + 336. Let z = s - 32. Is z a multiple of 6? False Let s be 10 + (-4)/(-2) - 1. Suppose -5*w = -5*y + 1990, -w = 5*y - 1654 - 324. Suppose s*u = 7*u + y. Is u a multiple of 33? True Let a(q) = q - 29. Suppose 38 = 3*o + 2*z - 8, 5*o = -z + 72. Let g be a(o). Is 22 a factor of 20/g - (-194)/6? False Let b = -239 - -214. Is 3 a factor of (-35)/2*40/b? False Let g(b) = 37*b**3 + 4*b**2 - 7*b + 2. Let n be g(2). Suppose -2*l + 93 + 39 = -2*r, -4*l - 5*r = -n. Let p = l + -40. Is 5 a factor of p? True Let a(u) = -u**2 + 158*u - 132. Is a(42) a multiple of 91? False Let s = 1702 - 486. Does 14 divide s? False Let b(d) = -8*d - 105. Let a(v) = 8*v + 106. Let p(j) = -6*a(j) - 7*b(j). Does 11 divide p(19)? False Let k be 790/(-6) - 5/(-15)*-1. Is 12 a factor of (-120)/((-24)/k - (-13)/(-11))? True Suppose -4*t - 2*i + 786 = -5*i, 0 = 2*t + 2*i - 400. Let r be (-1)/(-4) + t/72. Suppose r*p - 405 = -5*q, q - 183 = -q + 3*p. Is q a multiple of 21? True Let a be (19/(-19))/((-1)/244). Is 7 a factor of a + (6 - -1*2/(-1))? False Let r(d) = 1 - 678*d**3 - 1 + 863*d**3 - d**2 + d. Is r(1) a multiple of 19? False Suppose 2*u + 4*u = 30. Let c be (-385)/u - (-2 - -5). Is 6 a factor of (c/28)/(6/(-21))? False Let r(z) = 6*z**2 - z. Let x be r(-1). Let l(q) = -3 - x - 8*q**2 + 0 + 2 - 8*q - q**3. Is l(-8) a multiple of 14? True Suppose 101*k - 205310 = 2*k + 45655. Is k a multiple of 27? False Let c(z) = z**3 + 28*z**2 - 90*z + 62. Does 12 divide c(-30)? False Let g(t) = 3*t**2 - 6*t + 12. Let a(i) = 2*i + 21. Let r be a(-7). Is 17 a factor of g(r)? False Suppose -p + 5*h + 197 + 2953 = 0, -h = -4*p + 12695. Does 25 divide p? True Suppose 4*y = 3*b - 17695, 6955 = -4*b - 3*y + 30565. Does 21 divide b? True Let l = -224 + 118. Let j = 2211 - 2031. Let n = l + j. Is 15 a factor of n? False Let d = 26 - 9. Let t = 2614 + -2611. Suppose t*i - 79 = d. Is i a multiple of 8? True Let d(f) = 413*f + 491. Is 11 a factor of d(10)? False Let x = 1216 + -371. Let z = -575 + x. Is 18 a factor of z? True Let k(c) = -c**3 + 15*c**2 + 16*c + 5. Let i = 35 - 19. Let j be k(i). Suppose z - 120 - 4 = j*v, -2*z = 2*v - 260. Is z a multiple of 19? False Let z = 183 + -180. Suppose -z*x + 444 = -3*f, -x - f + 72 = -68. Is x a multiple of 9? True Let g be 12090/12 - 1/2. Suppose 0 = -8*m + g + 97. Is 23 a factor of m? True Let z = 1625 - 442. Is 2 a factor of z? False Suppose -12414 = -3*t + 4*g, 2*t - g = -3164 + 11445. Does 19 divide t? True Let k(m) = 2*m + 5. Let z be k(4). Suppose f + z = 22. Suppose 0 = -3*c + 4*d + 37, 2*c - c - 3*d - f = 0. Does 15 divide c? True Let h = -14 + 17. Let r(f) = 3*f + f**h - 3*f + 7 + 2*f - 3*f**2 + 4. Is r(6) a multiple of 25? False Let z = 14 + -41. Let i(d) = -d**3 - 29*d**2 - 60*d - 25. Is i(z) a multiple of 16? False Suppose -125*f - 274895 + 877783 = 18*f. Is 68 a factor of f? True Suppose 2*y + 8*y + 9080 = 0. Let x be (-3 - -1)*y/8. Suppose 4*q + 3*t - x = 0, 0*t = 4*q + 2*t - 222. Is 13 a factor of q? False Suppose 29*y = 31*y - 3518. Suppose -6*u - 181 = -y. Is u a multiple of 47? False Let p(i) = 1126*i**2 + 21*i - 21. Does 2 divide p(1)? True Let p(i) = -3*i**2 - 2*i - 5. Let d(c) = -16*c**2 - 12*c - 25. Let y(l) = 2*d(l) - 11*p(l). Let t = -6 - -12. Is 8 a factor of y(t)? False Does 56 divide (-19 + 154/(-14))/(3/(-532))? True Suppose -25*h = -29*h + 44. Let u(q) = -18 + 4 - 5 - h*q + 17*q**2 + q**3. Is 42 a factor of u(-17)? True Let l be ((-729)/(-2))/(6/16). Suppose 5*r + 377 = l. Does 6 divide r? False Let x = -4956 + 7401. Is x a multiple of 34? False Is (-27)/((-891)/76566) + 4/(-22) a multiple of 20? True Let v(q) = 21*q + 35. Let c be v(2). Let i = c + -37. Does 2 divide i? True Let r(g) = g**2 + 22*g - 1. Let o be r(-24). Suppose o = 2*b - 577. Is b a multiple of 26? True Let y be 5 - -1 - (-3 - -3 - -4). Suppose 0 = y*k - 3*k - 5*g + 84, 3*k - g = 284. Does 11 divide k? False Suppose -4*n + 779 = -3*w, 5*n - 7*n + 3*w = -385. Is n a multiple of 2? False Suppose 0*v - v + 290 = 4*y, 5*y = 4*v - 1223. Let o(c) = -v*c - c**2 - c**3 + 0*c**3 + 306*c. Does 32 divide o(-4)? True Let t(h) = -h**3 - 7*h**2 - 5*h - 10. Let b be t(-10). Suppose 3*s - 5*s = -b. Does 34 divide s? True Suppose 4*y - 11396 = -5*m, 103*y - 106*y + 8547 = -4*m. Is 37 a factor of y? True Suppose -2*f + 4*f - 4*f = 0. Suppose 3*g - 5*g - 2*q + 82 = f, 128 = 3*g - 2*q. Is g a multiple of 4? False Is (-1 - -2)*(-352)/8*-6 a multiple of 66? True Let n(w) = 29*w + 1 - 5 - 5*w. Suppose -r + 9 - 6 = 0. Is 10 a factor of n(r)? False Let i be 31*(-13)/(78/(-12)). Is 14/(376/i - 6) a multiple of 26? False Suppose -35 - 13 = k. Let j = -46 - k. Suppose -3*h = 2*n - 34, -j*h + 5*n + 15 = 3*h. Is 3 a factor of h? False Suppose -2*f - 2*f = -4*z + 9748, 5*z = 4*f + 12180. Is 64 a factor of z? True Let o(z) = 5*z**2 - 3*z - 42. Let c be o(-5). Let v = c - -34. Is 44 a factor of v? True Suppose -816178 = -133*a + 49652. Is a a multiple of 14? True Suppose g = 4773 - 75. Is g a multiple of 81? True Suppose 0 = 4*p - 3*t + 7 - 20, 5*p + 3*t = 23. Does 12 divide (12 + -10)/(1/826*p)? False Let i = 0 - -216. Suppose -3*u + i = 6*u. Is 4 a factor of u? True Let d = -30 + 30. Let s be -1 + (-4)/(-4) - d. Let g(m) = -m**3 - m**2 + 3*m + 39. Does 33 divide g(s)? False Suppose -14*u + 629 + 24151 = 0. Is u a multiple of 49? False Let l(a) be the first derivative of -a**3/3 - 17*a**2 + 14*a - 54. Is l(-21) a multiple of 12? False Suppose -5*s + 3*x = -6, 3 - 1 = s - x. Suppose s = -20*r + 1873 - 153. Is 43 a factor of r? True Suppose 0 = -4*f + 3*v - 4, 5*f = 3*v + 2*v - 10. Suppose -z + 2*z + 5*p - 303 = 0, 562 = f*z - p. Is 10 a factor of z? False Let q = 105 - 84. Does 10 divide 5600/q + 1/3? False Let i = 128 + -125. Suppose 0 = -4*t + 2*j + 602, 148 = -i*t + 4*t - 3*j. Is t a multiple of 26? False Let f(i) = 0*i - 14 + 7 - 15 + 4*i. Let h be f(7). Suppose -3*w = -h, -4*y - 5*w = -7*y + 317. Does 11 divide y? False Suppose 3033 = 3*u + 363. Suppose -z - 290 = 3*c - 102, 5*z + 5*c + u = 0. Let d = z + 254. Does 20 divide d? False Suppose -680*k - 93618 = -722*k. Is 131 a factor of k? False Let u = -204 + 330. Suppose -5*v + u = c + c, -5*v - 146 = -2*c. Is 2 a factor of c? True Let b(m) = -4 - m**3 + 4 - m + 2*m**2 - m**2 + 3. Is 42 a factor of b(-3)? True Suppose 8 = 11*u - 15*u. Let m be (1/(3/6))/((-1)/u). Suppose m*h - 8*h = -252. Does 8 divide h? False Suppose -5*z + 2 - 27 = 0, -2*g + 641 = 5*z. Let v = g - -171. Is 42 a factor of v? True Let c(v) = -v**3 + 6*v**2 + 5*v - 8. Let p(h) = -h**3 - 7*h**2 - 7*h - 9. Let a be p(-6). Let d be ((-12)/(-8))/(0 - a/10). Is 7 a factor of c(d)? True Suppose 6*i - 24 = 0, i + 60 = -5*g - 101. Let a be ((-44)/(-2))/(1 + -2). Let m = a - g. Is 2 a factor of m? False Suppose -166*w + 18318 = -55386. Is w a multiple of 12? True Let j be ((-1)/4)/((-1)/4)*3. Suppose t + 2 = 0, 0*v + 1441 = j*v + t. Is v a multiple of 13? True Suppose 0 = b + 2*b - c - 35, 0 = 5*b - c - 59. Let y(t) = t - 9. Let p be y(b). Suppose p*v + 0 + 12 = 0, v + 196 = 4*z. Is z a multiple of 12? True Let o(w) = -634*w**2 + w. Let t be o(-1). Let q = t - -923. Does 24 divide q? True Let h = -1088 - -1308. Does 9 divide h? False Let j(p) = 260*p - 45. Let c be j(5). Let v = c + -886. Is 15 a factor of v? False Let o(u) = 2*u**3 + 74*u**2 + 71*u + 60. Is o(-35) a multiple of 25? True Let y(n) be the first derivative of 5*n**4/4 - n**3 - n**2/2 + 4*n + 11. Let w be y(-3). Let h = w + 254. Is h a multiple of 9? True Suppose -27*l - 40636 + 747308 = 89*l. Does 156 divide l? False Let q(l) = 2*l**3 - 7*l**2 - l - 10. Is q(8) a multiple of 6? True Let a = -2801 + 6301. Is 125 a factor of a? True Suppose 203 = -3*j - 217. Let y be 7/(j/8)*10. Let l(x) = -x**3 + 4*x**2 + 9. Does 35 divide l(y)? False Let u(p) = p**2 - 15*p + 59. Let l be u(9). Suppose -5*a - 123 = -10*a - 2*m, -a + 3 = -l*m. Is a a multiple of 2? False Does 22 divide (-112)/(-21)*6*(-351)/(-6)? False Suppose 0 = 3*k - 4*j + 2704, 3*j + 1796 = -2*k + 4*j. Let b be k/35 - (-4)/(-10). Let u = b + 32. Is 6 a factor of u? True Let h = -199 - 191. Is 4 a factor of 9/21 + h/(-21) - 3? True Let o = 4753 - 2748. Does 7 divide o? False Let l = 50 - 46. Suppose 408 = 4*w + 4*b, 0*w - l*b - 334 = -3*w. Is 26 a factor of w? False Let p(y) = 49*y**2 + y + 2. Let x be p(-1). Let s = -48 + x. Suppose -3*t = h - 126, 0 = s*h - h - 3*t - 114. Is h a multiple of 24? True Suppose 306*t + 3100 = 302*t. Is 27 a factor of -1084*(-1)/5 - (-620)/t? True Let g(j) = -3*j - 12. Let r = -8 + 3. Let t be g(r). Suppose -3*o + 0*o = 4*q - 80, 4*o + t*q = 109. Does 7 divide o? True Suppose -55*j = 118*j - 12*j - 291088. Is 21 a factor of j? False Suppose 5572 = 4*c - 4*l, 61*l - 66*l + 15 = 0. Does 14 divide c? False Let x be 0 + -2 + (-2 - -18 - 3). Suppose -29 - x = -4*s. Does 25 divide s/1*(-4 + (-115)/(-10))? True Let g(w) = -74*w + 1. Let v be g(-1). Suppose 30*s = 31*s + v. Is ((-6)/(-12))/(1 + s/76) a multiple of 5? False Let n = 3127 - -295. Is n a multiple of 59? True Let y(v) = 2*v - 6. Let q be y(4). Suppose 4*h - 106 = h + q*s, -3*h - s = -91. Is h a multiple of 2? True Let p(h) be the first derivative of 2*h**5/5 + h**4/12 - h**3/3 + h**2/2 - 6*h + 3. Let y(s) be the first derivative of p(s). Does 7 divide y(1)? False Let y = -4983 + 5464. Is 37 a factor of y? True Suppose -11*d + 95 = 8*d. Suppose -2*y = o - 182, d*y = 5*o + y - 980. Does 12 divide o? True Let h(k) be the first derivative of 1/2*k**2 + 4*k + 3. Is h(7) a multiple of 6? False Let m(y) = 6*y**2 + 3*y + 1. Let d be m(3). Suppose -2*k = -9 - 1. Suppose -3*a - d = -2*q, q - k*a - 10 - 22 = 0. Is 4 a factor of q? True Let m = 9094 + -6484. Does 30 divide m? True Let a be 1/(-4) + 27951/44. Let g = a - 427. Does 26 divide g? True Suppose 7*g + 920 = 11*g. Suppose g = -2*k + 7*k. Let i = k - 7. Does 12 divide i? False Let q be 8/(-3)*(-3)/(-4). Is 5 a factor of 46 - (14 + -6)/q? True Let g(h) = -h**3 + 5*h**2 - 3*h - 9. Let z be g(3). Suppose -v + 2*o - 5*o + 172 = z, -175 = -v - 4*o. Does 10 divide v? False Let m = 42 + -39. Suppose -x = 3*l - 55, 50 = 6*l - m*l + 2*x. Suppose f + o = -2*o + 140, 0 = -4*o + l. Is 25 a factor of f? True Let y = -158 - -175. Suppose y*k = 8*k + 3006. Does 21 divide k? False Let w(q) = -q**3 - 3*q**2 - 34*q + 48. Is 60 a factor of w(-9)? True Let k(x) = 54*x**2 - 4*x - 14. Let g be k(-2). Suppose 0 = 3*z + 3*b - g, -2*z - b + 0*b + 136 = 0. Does 6 divide z? True Let t(w) = w**2 + 16*w + 39. Let q be t(-13). Suppose r + 23 - 31 = q. Is r a multiple of 8? True Suppose -358 = 2*b - 4*b - 4*o, -b + 183 = 3*o. Is b a multiple of 12? False Suppose -a - 407 = -52*y + 47*y, 3*y - 252 = -2*a. Is 3 a factor of y? False Let p(d) = 52*d**2 - 30*d - 156. Is 9 a factor of p(-10)? False Let o be 6/(-4)*12/(-9). Suppose -o*l - 86 = -184. Is 13 a factor of l? False Let z(b) = 18*b + 64. Let i be z(12). Let l = i + -166. Is 19 a factor of l? True Suppose 5*p + 5258 = -4*h + 14743, -9 = 3*p. Is h a multiple of 4? False Suppose 0 = -6*s + 439 + 557. Suppose 3*b + 3*t = 237, 5*t + 611 = 5*b + s. Is 5 a factor of b? False Let x(z) be the second derivative of 23*z**4/6 + 5*z**3/6 + 2*z**2 + 42*z. Is x(-1) a multiple of 15? True Let s(a) be the second derivative of 0 + a**2 + 1/3*a**3 + 16*a + 1/12*a**4 - 9/20*a**5. Is s(-1) a multiple of 6? False Let y be (-6)/(-24) - 154/8. Let x = y - -33. Is ((-114)/4)/(x/(-56)) a multiple of 15? False Suppose 19*t = -79*t + 367093 + 155051. Is t a multiple of 72? True Let n(b) = 295*b**2 - 189*b - 756. Does 19 divide n(-4)? False Let a be 3/18*(-10 - -2)*-3. Suppose -a*q + 2*q = -94. Is q a multiple of 5? False Suppose 13731 = 9*w + 21*w - 7*w. Does 47 divide w? False Let a(r) = -r**3 - r**2 + 15*r + 10. Let g be a(-10). Suppose 2*x = g - 216. Suppose -4*u + x - 80 = 0. Does 8 divide u? True Suppose -4*x = -2*w - 7 + 9, -2*x + 5*w + 3 = 0. Is 2 + 21 - (0 + x) a multiple of 8? True Suppose -3*u + 6763 = 4*c, 7*u - 9*u + 4*c + 4502 = 0. Does 24 divide u? False Let o be 1*-1 - (-5 - -4). Let g be ((-78)/(-5))/((-2)/(-10)). Suppose g = 2*n - 4*b, o = 4*b - 18 - 2. Is 7 a factor of n? True Let g(x) = 4*x**2 - 2. Let u be g(1). Does 28 divide (26/12 - u/12) + 111? False Let u be (-32)/(-5) - 32/80. Is 6 a factor of (5 - u)*-6 + 150? True Let g(w) = w**2 + 17*w + 6. Is 23 a factor of g(25)? False Suppose 4*h = 363 + 61. Suppose 242 + h = 12*u. Is 6 a factor of u? False Let g(s) = -s**2 + 32. Let k be g(-4). Let f be (6/(-4))/(6/(-16)). Is k/((0 - f)/(-2)) even? True Is 28/(-8) - 16803/(-18) a multiple of 38? False Let o = -532 - -329. Let z = 329 + o. Is z a multiple of 23? False Let c = -1508 + 2738. Does 22 divide c? False Suppose 100931 = -57*i + 265677 + 192017. Is 11 a factor of i? True Let y(w) = 41*w + 2. Let c be y(-1). Is 22 a factor of (-3 - 459)*26/c? True Suppose -8018 + 33158 = 20*c. Does 13 divide c? False Suppose -10 = -2*h - 0*h. Let s be h/(-1 + -9)*10. Let x(d) = 2*d**3 + 12*d**2 + 2*d + 12. Is x(s) a multiple of 13? True Suppose -1165 = -6*u + 15517 + 8962. Is u a multiple of 9? False Let o be 5442/(-14) + 20/(-70). Let d = o - -689. Is 20 a factor of d? True Suppose o + l - 2001 = 2*l, 5*o - 9989 = -3*l. Is 14 a factor of o? False Let q(k) = -5*k**3 + 2*k - 1. Let t be q(-2). Suppose -91 = -3*a - i - i, 0 = a + 3*i - t. Let z = a - 2. Is z a multiple of 11? False Let d(y) = -2*y**3 + y**2 - 4*y - 3. Let p be d(-2). Suppose 26*a = p*a + 494. Is a a multiple of 26? True Let u(l) be the first derivative of 19*l + 5*l**2 - 12 - 3*l**2 - 4*l**2 + 8*l. Is u(-5) a multiple of 14? False Suppose 2*z + 64 = 5*k + z, -k = 4*z + 4. Suppose 0 = l + k + 18. Does 4 divide ((-24)/l)/(4/30)? False Let f = 3949 - 1197. Is f a multiple of 32? True Let u(n) = 132*n**2 - 103*n - 753. Does 18 divide u(-7)? False Suppose -29*s - 2*s + 62 = 0. Let o(u) = -u**3 + 2*u + 1. Let a be o(-2). Suppose -n = s, 0*r - n = -a*r + 442. Does 22 divide r? True Let k be (-2)/(1 - (-30)/(-18)). Suppose -l - u + 192 = 0, -k*l + 488 = -5*u - 112. Does 13 divide l? True Suppose 4*c - 5*o - 11 = 0, -4*o = -4*c - 5*o + 17. Suppose -c*j = 2*l - 38, -5*j - 3*l = -l - 46. Is 303/6 + 12/j + -3 a multiple of 11? False Let d be 0 + -3 - (3*-195 - 3). Suppose -3*m + 2*c = -d - 21, c - 397 = -2*m. Is m a multiple of 10? True Let f(q) = -q**3 + 3*q**2 + 10*q + 3. Let c be f(5). Let w(t) = -1 + 0*t**2 + 16*t**2 - 8*t**2 + t**c - 12*t. Does 4 divide w(-9)? False Let g(m) = 3*m - 26. Let u be g(9). Let d(t) = -3 + 12 + 2*t + u + 11*t. Is d(5) a multiple of 12? False Let t(k) be the third derivative of k**6/120 - k**5/10 + 7*k**4/24 - 7*k**3/6 + 3*k**2. Let j be t(5). Suppose 0 = -p + j, 3*v = -p + 3*p. Does 2 divide v? True Suppose 0 = 35*u + 47987 - 314792. Does 99 divide u? True Is 12 a factor of (-34614)/(-108)*(2 - -2)/(1/2)? False Let t(h) = 5*h**2 + 5*h + 12*h - 317 + 309. Is 56 a factor of t(8)? True Suppose 3*c + 3*v = 1851, 2477 = 3*c + c + v. Is c a multiple of 4? True Let l be 6 + (-105)/(-21)*8/(-10). Suppose -1 + 3 = 2*m, l*j + 2*m - 406 = 0. Is j a multiple of 15? False Does 28 divide (-21)/(28/182 + (170/(-208))/5)? True Let w be 6/(-9)*(-1)/((-4)/(-24)). Suppose -3*j = 3*t - 150, t + 250 = 6*t + w*j. Is t a multiple of 10? True Suppose 3*a + 8*g = 4*g + 8916, a + 3*g - 2972 = 0. Is a a multiple of 61? False Let d = 146 - 144. Suppose 5*a + 417 = q, 8*q - 11*q + 1251 = -d*a. Is 45 a factor of q? False Suppose -2*t - 20*w = -16*w - 1560, -t + w + 771 = 0. Does 43 divide t? True Let v be (-15)/25*5/(-1). Let i(q) = 29*q**2 + 7*q - 16. Is 15 a factor of i(v)? False Suppose 0 = -29*t - 13194 + 36597. Does 3 divide t? True Suppose 26*d - 104*d = -296244. Is d a multiple of 21? False Suppose -2*j = -2*y + 24, 5*y - 4 = -3*j + 48. Let m(f) = f**3 - 11*f**2 + 3*f - 5. Let t be m(y). Suppose -b + 196 = 4*n, 5*b = 2*n - t - 48. Does 8 divide n? True Is 11 a factor of (-5313)/(-46)*520/15? True Let h(v) = -769*v**3 - 3*v**2 + 7*v + 15. Does 69 divide h(-2)? True Suppose 51*z = 53*z - 5376. Is z a multiple of 12? True Is 3/(-15)*-3 + 3613462/430 a multiple of 12? False Suppose 5*i - 11*i - 30 = 0. Let g(u) = -38*u - 10. Is g(i) a multiple of 9? True Let v(y) = y**3 + y**2 - 2*y + 111. Let h be v(0). Suppose 2 = -n + 4. Suppose -113 = -n*x + 3*a + h, -a - 560 = -5*x. Is x a multiple of 16? True Let o be 441/3 + (3 - 2) + 0. Suppose -o = 6*r - 586. Does 24 divide -1 + (-4 - -5)*r? True Let u = -235 - -225. Is 2 + 76 + (-5)/(u/(-4)) a multiple of 15? False Let l = 14 + 99. Let t = l + -17. Is t a multiple of 16? True Let a(i) = 259*i - 28. Does 70 divide a(2)? True Let x = -1012 + 1775. Let a = 87 - 59. Does 9 divide (-3)/12 + x/a? True Let l(o) = 2*o - 13. Let j be (-28)/(-6) - (-7)/21. Let t be l(j). Is (2*-14 + -2)*t a multiple of 15? True Let j be ((-3)/2)/((-9)/114). Suppose -j*a + 11*a + 672 = 0. Does 21 divide a? True Suppose -3 = 390*p - 391*p, -5*t + 43686 = 2*p. Is t a multiple of 182? True Suppose 2*t - 16 = -g, 2*t = g + 11 + 5. Suppose x - 10 = -t. Suppose m = 4*s - 104, 4*m + 1 + 51 = x*s. Is s a multiple of 4? False Suppose 3*r - 40 = -5*j - 2*r, 3*r = 5*j - 48. Suppose j*a - 6*a - 588 = 0. Is a a multiple of 9? False Let f = 2345 - 1982. Is 11 a factor of f? True Let l(m) = m**2 + 19*m + 219. Is 15 a factor of l(-52)? True Let x(r) be the first derivative of r**3/3 + r**2 + r + 18. Let s be x(-1). Suppose 0 = -u - s + 6. Does 4 divide u? False Let n(a) = -18*a - 19. Let f(h) be the third derivative of -h**5/12 + h**4/6 + h**3/2 + 4*h**2. Let s be f(-1). Is 17 a factor of n(s)? False Let x = 5981 + -1197. Is 19 a factor of x? False Suppose -3*p = 2*o - 238, 5*p - 7*o + 12*o - 405 = 0. Let g = 172 - -58. Let d = g - p. Does 22 divide d? True Let h(z) = 2*z**2 + 52*z + 911. Is 17 a factor of h(-52)? False Suppose 0 = -1234*x + 1247*x - 7189. Is 4 a factor of x? False Let t(v) = -3*v**3 - 94*v**2 + 48*v + 33. Does 33 divide t(-33)? True Let t be 5 - (0 + 9 + -4). Suppose 5*x = 3*b - 275, 4*x - 356 = -4*b - t*x. Is b a multiple of 35? False Let f = 106 - -99. Does 4 divide 1/(-5*(-3)/f)*3? False Suppose -2*m = -4*h - 410, 0 = -5*h + 2*h - 4*m - 313. Let d = h + 192. Does 13 divide -3 + 7 + d - 2? True Let f be (-8)/5*8675/2. Let z be 4/6 - f/30. Suppose -3*p + z = p. Is p a multiple of 11? False Is (((-20)/(-3))/2)/(((-408)/(-11106))/34) a multiple of 24? False Suppose 0 = -2*p - z + 1265, -5*p + z = -z - 3176. Suppose k + 2 = 0, -4*l + 0*k - k = -p. Is l a multiple of 31? False Let b = -3609 + 5426. Is b a multiple of 21? False Suppose 6*y = 8*y - 6. Let d(j) = -j**3 + 8*j**2 + 8*j + 6. Let a be d(7). Suppose -3*q = 5*x - a, -y*x - 185 = -7*q + 2*q. Is q a multiple of 4? False Let q be -120*(-2 + 0 - 0). Let m = q + -227. Is 3 a factor of m? False Let u(d) be the second derivative of -d**3/6 + 10*d**2 + 13*d. Let p be u(12). Let h = 22 - p. Does 3 divide h? False Does 56 divide (15 - (-441)/(-28)) + 1454/8? False Suppose -19 = 6*y - 7*y. Let f(x) = x**3 - 19*x**2 + 6*x + 3. Does 33 divide f(y)? False Let k = -31 + 47. Let l be -4 + 1*k/4. Suppose l = -4*t + 187 - 59. Is 32 a factor of t? True Let r(k) = -12*k**2 - 529*k + 3. Is r(-43) a multiple of 13? False Let i(n) = 6*n + 17. Let z be i(-3). Is 4/(-1)*8/z a multiple of 8? True Let o be 1/3*693/11. Let f be (2/(-8))/((-7)/84). Is 7 a factor of (o/(-6)*f)/(1/(-2))? True Suppose 4*i = -5*b - 0*b + 1805, -720 = -2*b - 2*i. Suppose -3*m + 5*n + 1188 = 0, -5*n - 21 - b = -m. Is m a multiple of 13? False Let u be (0 + 4/2)*2. Suppose -u*j - 1043 = -3*b + 252, -2*b + 875 = -5*j. Does 25 divide b? True Let j(h) = 31*h - 5. Let r(b) = b + 1. Let l be r(1). Let c be j(l). Let g = c - 41. Is 4 a factor of g? True Let r be -2*(-18)/(-4)*-235 - -2. Suppose 9*a + 659 - r = 0. Is a a multiple of 18? True Let j(y) be the second derivative of -77*y**3/3 + 5*y**2/2 - 49*y. Is 11 a factor of j(-1)? False Let w = 20 - 20. Let t = w + 2. Suppose -t*g - 330 = -7*g. Does 22 divide g? True Suppose 3*o = -5*r + 4*o + 16, -4*r - 5*o = -36. Suppose 682 = 8*u - 4*u + p, 0 = r*u + 5*p - 690. Is u a multiple of 29? False Suppose 16 = -4*j - 24. Let v be (-15)/j*1*(-4)/(-3). Suppose 0 = k + v*k - 153. Is k a multiple of 17? True Let t = -11 + 32. Let r = 73 + t. Is (-6)/(-24) + r/8 a multiple of 7? False Let d(b) = 35*b - 10. Let p = -81 - -125. Let a be 121/p - 2/(-8). Is 19 a factor of d(a)? True Suppose 16*z - 520 - 3992 = 0. Is 5 a factor of z? False Let l be -2*303/(-66) - (-22)/(-121). Suppose -11*x + l*x = -32. Is x a multiple of 8? True Let c be ((-400)/(-65) - (-4)/(-26))/1. Suppose c*z - 81 = 75. Is z a multiple of 10? False Let d be 7*5*3*146/35. Let i = 838 - d. Is 50 a factor of i? True Let o be (-2 + 1)*(-391 - -5). Suppose -4*m = -3*f + o, 5*f + m = f + 502. Does 42 divide f? True Does 12 divide 162 - -2 - (-10)/(-2)? False Suppose -39*n = -32*n - 20111. Is n a multiple of 17? True Suppose 8*y - 3*y = 360. Suppose -4*g + 2*n + 442 = g, 5*g - 443 = 3*n. Suppose g = 4*a - y. Is a a multiple of 10? True Suppose -p + 810 = 2*c, 0 = -3*p - p - 16. Is 11 a factor of c? True Let v(s) = 1 + 1606*s**2 - 3*s - 1604*s**2 + 43*s**3 + 26*s**3 + 26*s**3 + 4*s**3. Suppose 3*h + 5 - 8 = 0. Does 11 divide v(h)? True Let w be (15/6 - 3)/((-1)/28). Does 36 divide 9 - w - (-148 - 1)? True Suppose 0 = -n - 5*l + 1116, -200 = n - l - 1310. Is n a multiple of 25? False Is (2 - 23)*(12896/12)/(-13) a multiple of 56? True Let k be (-30)/(-135) + (-14)/(-18). Let b be ((-2)/(-2 + k) - 2) + 47. Suppose 3*s - b - 13 = 0. Is 10 a factor of s? True Let f(d) = -41*d**3 + 4*d**2 + 3*d - 2. Suppose -29*y + 6 = -32*y. Is 14 a factor of f(y)? True Let i(a) = a**2 - 15*a - 38. Let x be i(17). Let q be 108 + x - (-8)/2. Suppose -2*k + 73 + 35 = -r, q = 2*k + 2*r. Does 10 divide k? False Let z be 17 + -2 + 2 - (-3 - -1). Suppose f = -z + 6. Does 22 divide (-624)/f + -4*1? True Let o(k) = 9*k**2 + k + 7707. Let h be o(0). Suppose -h = -21*y + 3003. Does 17 divide y? True Let b be (5/(-10))/(1/(-98)). Let t = 156 - 83. Let j = t - b. Does 8 divide j? True Let n(x) = 4*x**2 - 5*x - 10. Let u be n(-2). Suppose 22*t - 192 = u*t. Is 30 a factor of t? False Suppose 17*y - 62491 - 60827 = 0. Is y a multiple of 18? True Suppose -3*k = -4*c + 107 + 313, -2*k - 105 = -c. Suppose -9*d + c = -183. Is d a multiple of 2? True Let p(q) = q**3 + 5*q**2 + 10*q - 6. Let n be p(6). Let u = n - 60. Is 36 a factor of u? False Let j(n) = 2*n - 2*n**2 + 0 + 4 + n**3 + 2*n - 3. Let q be j(2). Does 26 divide (6/q)/((-2)/(-390))? True Let y(d) = 3*d**2 + 8*d + 2. Let u be y(-3). Suppose 643 = 2*i + 5*r, -i - 2*r + u*r = -338. Is 47 a factor of i? True Suppose 13 = -3*m + 901. Suppose -5*r = -79 - m. Suppose 40 = 5*a - 4*u, -6*a + a - 3*u = -r. Does 9 divide a? False Suppose 0 = 3*l - 18. Let u(k) = -k**2 - 5*k - 2. Let p be u(-2). Suppose 3*j + 130 = p*q - 0*q, 0 = -3*j + l. Does 4 divide q? False Suppose 2 = -5*j + 7. Suppose j + 5 = r. Suppose 0 = r*w - 61 - 17. Is w a multiple of 8? False Let o(i) = 657*i - 1153. Does 7 divide o(3)? False Let g(r) = 3*r**2 + 2*r - 10. Suppose -n + 3 = -2*k + 7, -2*n = 8. Suppose k*d - d + 16 = -4*q, 5*q + 13 = 3*d. Is 3 a factor of g(d)? True Suppose -1508 = -x - v, 51*x - 54*x + 2*v + 4519 = 0. Is 13 a factor of x? False Let g = -4372 + 6026. Does 28 divide g? False Is 30*1496/11*(2 - (-19)/(-10)) a multiple of 8? True Let y be -1 + (18/(-27))/(1/(-9)). Suppose 145 = 4*o - y*s, 2*s + 20 = -2*s. Is 10 a factor of o? True Let y be -3 + 4 + -4 + -32. Let j(s) = 50*s**3 - 3*s**2 - s + 1. Let q be j(-1). Let x = y - q. Does 6 divide x? False Let w be ((-9)/6)/((-18)/1536). Suppose -341 = 3*o - w. Let m = 123 + o. Is 10 a factor of m? False Suppose 5*b + 5*i - 10 = 0, 2*b + i - 17 = -2*b. Suppose 0 = b*t - 4*t. Suppose 5*q - 200 = -t*q. Does 8 divide q? True Suppose 0 = w + 4*x + 2, 2*w - 15 = 2*x + 1. Suppose 4*f + 106 = 9*f - 3*c, -76 = -4*f - 2*c. Does 20 divide (-100)/w*8/f*-3? True Let q(a) = -88*a + 611. Is 14 a factor of q(-31)? False Let n = -229 + 244. Suppose 4*y = -n*y + 1254. Does 22 divide y? True Let f = -1 + 1. Let z = 525 - 505. Let y = z - f. Does 10 divide y? True Suppose 5*g + u = 162, -3*u = -7*g + 11*g - 134. Does 5 divide g? False Let h = -888 - -891. Let u = 4 - -8. Is (8/u)/(h/270) a multiple of 12? True Suppose -334 = -4*i + 102. Suppose -105*f - 48 = -i*f. Does 4 divide f? True Is (2/(-10)*-4442)/((-111)/(-555)) a multiple of 8? False Suppose 0 = 5*w - 10, -4*c + c + 3487 = -w. Is c a multiple of 9? False Let v = -5 - -7. Suppose 2330 = 3*q + v*q. Suppose 2*t = 3*d + 176, 2*t + 3*t = d + q. Is t a multiple of 19? False Is 7*(((-1482)/(-7))/3 + (-9 - -3)) a multiple of 3? False Does 4 divide (-5)/((-50)/11956) + 11/(-495)*-18? True Let w = 72 - 28. Suppose 39*s = w*s - 2585. Does 22 divide s? False Let y(m) = 2*m + 67. Let a be y(-21). Suppose -3*s - 579 = -3*v, 0*s + a = 5*s. Does 22 divide v? True Let g(n) = n**3 + 21*n**2 + 22*n + 43. Let t be g(-20). Suppose 4*b = 3*z + 141, t*z + 176 = 4*b + 7*z. Is 7 a factor of b? False Suppose 429*h = 441*h - 61320. Does 35 divide h? True Suppose -10*x = -5*x - 1335. Let b be (-120)/9*(x/(-12) + 2). Suppose -4*t = 2*t - b. Is 9 a factor of t? True Does 23 divide 14162/8 - (12 - 306/24)? True Let o(m) = -m**3 - 7*m**2 + 2*m + 7. Let x(h) = -4*h**3 - 3*h + 2. Let q be x(1). Let t be o(q). Let w = t + 89. Does 12 divide w? True Let i = 27 + -24. Suppose i*j - 720 = -5*j. Does 3 divide 1/(-4 + j/22)? False Let r(l) = 206*l**2 - 74*l - 482. Is 31 a factor of r(-6)? True Let z(o) be the first derivative of 2*o**3/3 - o**2/2 + 10*o + 224. Let u = 4 - 11. Is z(u) a multiple of 23? True Suppose -7*b + 3*b - 2097 = -h, 2*h - 526 = b. Let v = 921 + b. Does 18 divide v? False Let p(h) = h**3 + 46*h**2 - 11*h - 63. Is 118 a factor of p(-18)? False Is 13 a factor of -1483*(4 + (-2 - 3) - 0/3)? False Suppose 4*h + 0*h + 16 = 0. Let w be -10*4/(-10) + h. Let u(a) = -2*a + 12. Is 4 a factor of u(w)? True Suppose -6*c + 130 = -62. Suppose -341 = -33*s + c*s. Does 26 divide s? False Suppose -69*o = -95*o + 19292. Is o a multiple of 26? False Suppose 2*g - 16771 = 5*s, 109*g + 3*s + 25152 = 112*g. Does 83 divide g? True Suppose -173 + 1257 = 3*i - 2*f, f + 722 = 2*i. Suppose -5*y - 160 = -i. Is 4 a factor of y? True Let p be 16/(-5)*(9/(-6) - 1). Suppose j - 2 = a, -3*a = -2*j + a + p. Is 10 a factor of 4/4*j + 48? False Let f(g) = -4*g**3 + 3*g**2 - 4*g - 12. Let q be f(-3). Let o be ((-8)/(-10) + -2)*q/(-6). Let i = o + 1. Does 28 divide i? True Let g = -1709 + 2354. Is 15 a factor of g? True Suppose 2*t + 7215 = 17*t. Let w = t - 237. Is w a multiple of 18? False Is 11 a factor of 3741 + (15/(-6))/(3/6)? False Suppose 10*m - 51232 - 8948 = 0. Is 51 a factor of m? True Let u = -1296 - -2352. Is 16 a factor of u? True Suppose 26*l + 4744 - 166 = 42746. Is l a multiple of 25? False Suppose -35 - 65 = -10*v. Suppose -176 - 354 = -v*k. Does 27 divide k? False Suppose 2*j + 3*q = -q + 10, 0 = j + 3*q - 7. Let r(z) = 53*z + 3. Let o be r(j). Let m = o + 10. Is 22 a factor of m? True Suppose 2*a - 3 = 27. Is 48*(-2 + a/20 + 2) a multiple of 10? False Suppose 0 = -2*x + 4, -2*x = -i - 61. Let t = -41 + 63. Let k = t - i. Is 27 a factor of k? False Suppose 18*v - 48 = 6*v. Let d(q) be the second derivative of 8*q**3/3 - 9*q**2/2 - q. Is 11 a factor of d(v)? True Suppose 29085 = 55*l - 50*l. Does 12 divide l? False Let w be 18142/(-20) - ((-90)/(-100) - 1). Let y = w + 1272. Is 54 a factor of y? False Suppose 5 = 3*j - 4*j. Let a be 2/j + 158/(-5) + 2. Let m = -22 - a. Is m a multiple of 8? True Let w = 16 + 69. Let o = w - 25. Suppose p + 4*p - 33 = -z, 0 = -5*z - 4*p + o. Is z a multiple of 4? True Let u be 1/4 - 295/(-20). Suppose -8*m + 39 = u. Let b(y) = 5*y + 2. Does 6 divide b(m)? False Suppose 2*o = l + 2*l + 48, 80 = -5*l - 3*o. Let x be (1 + -2)/(l/32). Suppose 0 = a - 4*y - 34, -x*a = a + y - 89. Is 9 a factor of a? False Let s(a) = 5*a**2 - 11*a + 49. Let m(c) = 4*c**2 - 10*c + 12. Let d be m(2). Is s(d) a multiple of 70? False Suppose -5*y - 9139 = -32618 - 8221. Is 19 a factor of y? False Let t be ((-224)/5 + 4)/(10/(-225)). Let d = t + -522. Is 21 a factor of d? False Is 2 a factor of ((-25)/225)/((-2)/6)*414 - 5? False Let p(y) = 5*y**2 + 16422*y + 4 - 16411*y + 3*y**3 - 7*y**3. Is 32 a factor of p(-4)? False Let k = 218 + -215. Suppose 4*l = -5*u + 2096, -k*l + 599 = -3*u + 1862. Is 12 a factor of u? True Let v(u) = -u**3 + 20*u**2 + 4*u - 19. Let w = -45 + 64. Is 38 a factor of v(w)? True Let c = 0 + 2. Let m(r) = 14 + 6*r + 5*r**c - r**2 + r**3 + 7*r**2 - 3*r**2. Is 21 a factor of m(-7)? True Let v(f) be the second derivative of f**5/20 - 9*f**4/4 - 28*f**3/3 + 9*f**2/2 - 46*f. Does 14 divide v(29)? False Let v(i) = i**2 - 31*i - 171. Is 16 a factor of v(-15)? False Let t(n) be the first derivative of 6*n**3 + 15*n**2/2 - 19*n - 16. Is t(5) a multiple of 13? False Let r(v) = -v**2 - 2*v + 9. Let n be r(-5). Let i be -2*1*(n + 45/10). Is 51*(-4)/(-30)*(i + 2) a multiple of 9? False Let d be (120/270)/(1/((-27)/6)). Let p(o) = -11*o**2 + o. Let i(u) = 3*u**2. Let t(q) = 18*i(q) + 4*p(q). Does 16 divide t(d)? True Suppose -m + 90 = -3*a, 0 = -3*a - 2*m - 102 + 3. Let d = a + 64. Does 17 divide (-22)/d + 356/3? False Let p = -8335 - -12194. Does 5 divide p? False Let k(b) = -9*b**3 + 9*b - 18. Is k(-6) a multiple of 39? True Suppose 81822 - 94774 - 110928 = -19*n. Is n a multiple of 10? True Let s(v) = 10*v - 8. Let a be s(1). Suppose -2*n = 3*w - 507, -a*n - 1 = -7. Is 16 a factor of w? False Suppose 2 = 2*b, -3*u - 4*b + 1 = -3. Suppose u*g = 3*g - 36. Does 3 divide g? True Suppose -2*v + 7*v + r = 2349, 2*r + 2337 = 5*v. Is v - ((-6)/(-3))/(-1) a multiple of 50? False Let w(n) = 2*n**2 - 13*n - 20. Let z be (-2)/6 - ((-110)/15 + -11). Does 20 divide w(z)? False Let f(k) = k**3 - 17*k**2 - 20*k - 35. Let v = 227 + -208. Is 35 a factor of f(v)? False Let y(w) be the third derivative of -w**6/120 + w**5/20 + w**4/2 - 5*w**3/6 + 15*w**2. Let u be y(5). Let m = 20 - u. Is m a multiple of 7? False Let z(p) = -p**2 + 20*p - 14. Let b be z(19). Suppose -b*x + 4*v + 1183 = 0, -5*x - 4*v = v - 1165. Is 25 a factor of x? False Does 2 divide (0 + -38)*(-2)/(-8)*(0 + -72)? True Suppose -45*p + 48*p - 1143 = 0. Suppose 0 = v + 5, p = 3*y + v - 1228. Does 54 divide y? False Does 72 divide 6358 + (-40)/(-16 - -11)? False Suppose 3*v = g + 142, v - 6*g + 2*g = 62. Let n = 59 + v. Is n a multiple of 10? False Let l(q) = -124*q**2 + q + 4. Let h be l(-2). Let j = -294 - h. Does 15 divide j? False Let m(n) = n**2 + 24*n - 359. Does 11 divide m(-39)? False Suppose 0 = -61*g + 64*g. Suppose 4*y - 28 = -3*r + 7*r, g = 3*y - 4*r - 23. Is 5 a factor of y? True Suppose -12*l + 15*l + 8292 = 2*k, -3*l - 2*k - 8304 = 0. Does 21 divide 1 - 2*l/12? True Is (-2)/(-13) + (-506)/1430 - 137255/(-25) a multiple of 10? True Suppose 56*a + 43*a - 162160 + 66625 = 0. Does 3 divide a? False Is -4 + (5494/(-8)*-2 - 39/(-26)) even? False Let x(d) = -16*d - d**2 + 28 - 2*d - 3. Let t be x(-17). Is 16 a factor of (0 - 2)/12 - (-5257)/t? False Suppose 0 = -4*j - 3*j + 273. Suppose -5*m + j = 2*r, 0 = 5*m + 5*r - 9 - 21. Suppose -m*q - 188 = -13*q. Is q a multiple of 9? False Let x = 24 - 17. Let d be 3/x - (-1482)/21. Suppose -d = -3*o + 4. Is 14 a factor of o? False Suppose -75474 = -27*f + 33876. Does 75 divide f? True Let a be (14/(-3) - -2 - -3)*762. Suppose -4*t + a = -3*k, 3*t - 140 = t - 5*k. Is 56 a factor of t? False Let a = 2 + 3. Suppose -1983 + 733 = -a*d. Is d a multiple of 10? True Does 77 divide (-14)/(-5) - (-3)/15 - (-3685 - -1)? False Let t(i) = 327*i**2 - 73*i - 228. Does 6 divide t(-3)? True Let u(f) = -279*f + 10*f**2 + 278*f + 3*f**2 - 4*f**2. Let r = -2 + 1. Is u(r) a multiple of 5? True Let u(n) = -n**3 + 6*n**2 + n + 2. Let g be u(6). Suppose 0 = g*c - 22*c + 280. Is c a multiple of 4? True Let b(d) = d**3 + 17*d**2 + 24*d + 59. Is b(-15) a multiple of 7? False Let p be (40/(-15))/2*-3. Suppose -p*v = 2*w + w - 708, -v = 3. Is w a multiple of 15? True Let x be 425*1/(-3) + (-4)/(-6). Is 1*-6 - (5 + x) a multiple of 15? False Suppose 18 = -5*n + 33. Suppose -5*r + 37 = 2*t, -n*t + 2*r = -2*r - 44. Suppose 2*v - t = 168. Is v a multiple of 12? False Suppose -8*x - 14*o + 51743 = -9*o, 5*x = -4*o + 32342. Is 106 a factor of x? True Suppose 0 = 4*r + 20, -107 = -u + r - 6*r. Suppose u = 9*t - 6*t. Does 11 divide t? True Let l = 25 + -22. Suppose 25 = 2*b - 5*x, b + l*b + 2*x - 14 = 0. Suppose i - 3*j - 123 = 0, b*i - 102 = 4*i - 4*j. Is i a multiple of 29? False Let o = 6194 + -1922. Is 24 a factor of o? True Let f be 20/5*1/4. Suppose -f = -11*h + 87. Does 12 divide (81/(-2))/((-1)/(h/6))? False Suppose 15 - 10 = -5*i, -2071 = -5*j + i. Is j a multiple of 38? False Let g(f) = -19*f**3 - 12*f**2 - 53*f + 5. Is g(-5) a multiple of 35? True Let a(w) = -8*w**2 + 23 - w**3 - 42*w - 3 + 24*w. Is a(-9) a multiple of 38? False Let a(u) = -17 - 2*u**3 + u + 4*u**3 + 9*u + 6*u**2 - 3*u**3. Is 2 a factor of a(7)? True Does 22 divide (162 + 5)/(-1 - 24/(-21))? False Let s be (-3)/16*-4 + (-4978)/(-8). Let f = s - 435. Is f a multiple of 51? False Let b be ((-2)/4)/((-4)/72). Is 18 a factor of 0/(-4) - (-7 - -1)*b? True Let i(t) = 7*t**2 - t - 1. Let c be i(-1). Suppose -18*d + c*d + 990 = 0. Is d a multiple of 5? True Let f = 88 - 80. Let z(s) = s**3 - 3*s**2 - 5*s + 31. Does 21 divide z(f)? False Suppose 24 = -p + 49. Suppose -5*g + g = 2*d - 92, d - 5*g = p. Is 4 a factor of d? True Let x be -3 - (4/6 - 68/12). Let l be ((-29)/5 - -5)/(x/(-5)). Suppose -c - l*c + 54 = 0. Does 3 divide c? True Let u be ((-8)/10)/((-31)/1550). Suppose 44*f - 920 = u*f. Is 23 a factor of f? True Let p(o) = -15*o + 5. Suppose -2*m + 28 - 4 = 5*v, -4*m + v = -4. Let b be -4*m/52 - (-152)/(-26). Is 19 a factor of p(b)? True Is ((-95)/10)/(4/(-912)) a multiple of 19? True Suppose -5*v + 3*g + 11832 = 0, -3*v + g + 10060 = 2960. Does 9 divide v? True Let w(p) = -p**2 - 31*p + 24. Let j be w(-29). Let x = 99 - j. Is 2 a factor of x? False Let f(c) be the second derivative of c**4/12 + c**3 + 9*c**2/2 - 17*c. Is 36 a factor of f(15)? True Let o be (-1 - (-4)/8)*-10. Suppose 0 = o*n - 25. Suppose -h + n + 61 = 0. Does 22 divide h? True Let f = 172 + -158. Is f + 0 - (7 + -5) a multiple of 6? True Let j(g) = 11*g**2 + 6*g + 11. Suppose z + 12 = -3*q - 0*q, 4*q - 5*z = -35. Is 16 a factor of j(q)? True Let n(z) = 25*z**3 + 12*z**2 + 4*z + 12. Let i(w) = 8*w**3 + 4*w**2 + w + 4. Let x(d) = 8*i(d) - 3*n(d). Is 6 a factor of x(-2)? False Let t(q) = q**3 - 9*q**2 - 2*q + 18. Let w = -25 + 34. Let u be t(w). Suppose -n + 19 = k, u = -n - 4*n - 3*k + 105. Does 13 divide n? False Let f = 13 - 8. Is 63 + (-21)/(-15) + (-2)/f a multiple of 32? True Suppose 2*g - 548 = -8*j + 6*j, -3*j + 827 = 2*g. Is 9 a factor of j? True Let f be (5 - -3)/((-5)/(-90)). Let r = f - -182. Is r a multiple of 32? False Let m(k) = -148*k - 1373. Is 17 a factor of m(-11)? True Suppose 0 = -4*u + 9*u - 15. Let j be 19/u - 5/15. Suppose -306 = -j*n - 3*n. Is 17 a factor of n? True Suppose 0 = 46*k - 54*k + 48. Is 13 a factor of (2 - k/(-8))*288/8? False Let i(y) = -3*y**2 - 4*y. Let m be i(-4). Let a = 1194 + -1131. Let w = m + a. Does 10 divide w? False Suppose -28*y + 32*y = 24. Suppose -58 - 236 = -y*c. Is 7 a factor of c? True Suppose -213011 = -35*b + 39549. Is b a multiple of 41? True Let i be 8/(-14) + (-2760)/(-28). Suppose 26 = -6*q + i. Does 3 divide q? True Let n(f) = 46*f**2 + 50*f**2 + 14*f - 6 - 16*f**2. Let h be n(11). Is h/306 + 2/(-17) a multiple of 10? False Let f = 19 - 25. Is f/(-45)*231 + (-1)/(-5) a multiple of 31? True Suppose -11*u + u + 100 = 0. Suppose b - 967 = -2*x, 0 = 6*b - 4*b - u. Is 32 a factor of x? False Let w be (-21)/14 + (-26)/(-8)*2. Suppose -w*g - 10 = -5*o, -3*o - 6*g - 8 = -2*g. Suppose 4*d = u + 53, o*d + 5*u = -d + 29. Does 8 divide d? False Let c be (0 + 1)*(-9)/(0 - 3). Suppose -c*n = -v + 2*n + 503, 3*n = -4*v + 2058. Is v a multiple of 55? False Suppose 0 = -16*x - 30 + 62. Let o(k) = 2*k**3 + 5*k**2 + 3*k + 6. Let c be o(6). Suppose -630 = -4*f - 0*f - x*y, 4*y - c = -4*f. Does 39 divide f? True Let b = 222 + -274. Let a = 128 - b. Does 20 divide a? True Let c = 5808 + -968. Is c a multiple of 55? True Suppose -3*u + 1 + 54 = -5*a, -u = 0. Let f(v) = -7*v**2 - 27*v - 3. Let t(m) = -15*m**2 - 54*m - 7. Let r(q) = -9*f(q) + 4*t(q). Is r(a) a multiple of 9? False Let u = 45 + -31. Suppose 7*s + 0 - u = 0. Suppose s - 17 = -w. Is w a multiple of 15? True Let n(f) = -140*f + 770. Is 70 a factor of n(-27)? True Suppose -10*v + 11*v = 3*r - 36, -r - 5*v + 12 = 0. Let o = 6 - 3. Suppose r = -o*u, 2*g + 4*u - 80 = -g. Is 4 a factor of g? True Suppose p - 2*p = 19. Suppose 7*n - 3*n - 196 = 0. Let d = n + p. Is d a multiple of 3? True Suppose 0 = -20*s + 23*s. Suppose 3*j - 3*y - 811 = -y, -3*j + 5*y + 808 = s. Is j a multiple of 22? False Let o(x) = 15*x**2 + 11*x + 4010. Does 62 divide o(0)? False Suppose -4*s + 3990 = 3*h, 2*s + 2*s - 2*h = 3980. Let k = s + -567. Does 33 divide k? True Let c(o) = 74*o - 705. Is c(16) a multiple of 40? False Let z(p) = -107*p - 17. Let y be z(19). Does 8 divide y/20*(-16)/10? False Suppose -4*u + 18 = -38. Suppose 1307 = u*p + 75. Does 22 divide p? True Let z(i) = i**3 - 2*i**2 + 19*i + 12. Let v(f) = f**3 + 6*f**2 - 14*f - 42. Let q be v(-7). Is 15 a factor of z(q)? True Suppose 16*d + 64*d - 5*d = 8775. Is 13 a factor of d? True Suppose 34 = -5*h - 4*z + 10, 5*z = -2*h - 13. Let o be (-333)/(-27) + h/(-6) + -1. Suppose 3*d + 24 = 2*v + 4*d, v = 3*d + o. Is v a multiple of 12? True Suppose 2*g = 82 - 32. Suppose -4*d + 3*t + g + 62 = 0, -39 = -3*d - 3*t. Is 6 a factor of d? True Suppose j + 6746 = 3*h, -121*h + 11248 = -116*h + 3*j. Is 13 a factor of h? True Let v(r) = 9*r**3 - 54*r**2 - 19*r - 13. Let y(t) = 8*t**3 - 53*t**2 - 17*t - 14. Let i(x) = 5*v(x) - 6*y(x). Is 20 a factor of i(16)? False Let r(a) = -8*a - 11. Let n be r(-2). Suppose -2 + 22 = -4*j, 4*m = n*j + 841. Is 12 a factor of m? True Is (-36 + (-1 - 1))*493/(-34) a multiple of 28? False Let r(f) = -f**3 - 6*f**2 - 5*f. Let x be r(-5). Suppose x = -3*p + 47 - 35. Suppose p*h = 18 + 18. Does 3 divide h? True Let p(j) = -j**3 + 23*j**2 - 31*j - 45. Does 5 divide p(17)? False Let c(z) = -3*z**3 - 13*z**2 + z - 3. Suppose 0 = 51*u - 57*u - 36. Is 19 a factor of c(u)? True Let q be 12/((-12)/6) + 409. Suppose 0 = 5*h + 3*b - q, h - 73 = b + 14. Is h even? False Suppose 2*o = 2*z - 9962, 2*z + o - 1018 - 8932 = 0. Is 21 a factor of z? True Let z = -3 + -132. Let c = -98 - z. Does 2 divide c? False Suppose 0 = 7*l - 13 - 1. Suppose -4*k - 2*i = -258 - 622, -l*k - 2*i = -440. Is k a multiple of 13? False Suppose -16*m + 4*m + 72 = 0. Suppose 2*x - 2*t = -m*t + 92, 0 = 2*x + t - 107. Is 7 a factor of x? True Is (-400)/(-6)*(-1134)/(-108) a multiple of 4? True Let z be 0/(-3) - -9232 - 0/(-1). Is (-2)/(-11) - z/(-44) a multiple of 70? True Suppose -37*q + 2912 + 5191 = 0. Does 73 divide q? True Let n(u) = 4*u**3 - 4*u**2 + u. Let t be 15/(-5) + 2 - (-2 - 1). Suppose g = 1, 0 = -3*h + 3*g + t + 4. Is 24 a factor of n(h)? False Suppose 46*k - 9393 = -5*y + 49*k, 0 = 10*k - 40. Is y a multiple of 33? True Suppose 5*m - 4*g - 8522 = 0, 0 = m - g + 3*g - 1696. Does 23 divide m? True Let s = 2224 - 1844. Does 10 divide s? True Let d = -3267 - -3709. Is d a multiple of 13? True Let a be ((63/18)/(-7))/((-2)/(-724)). Let r = -48 - a. Is 16 a factor of r? False Suppose 0 = -5*r - 2*g + 737, -4*g - 290 = -2*r - 0*g. Is 31 a factor of 21/(r/(-434))*8/(-2)? True Does 141 divide 5/((-2)/(-2)*(7 - 6)) - -6155? False Let o = -438 + 1887. Is 3 a factor of o? True Let s(r) = -r**3 + 7*r**2 - 4*r - 10. Let l be s(6). Suppose 0 = y + 5*b - 486, 2*y + 0*y - 956 = -l*b. Is 16 a factor of y? False Let w be ((-8)/(-5)*9)/(5/50). Let g = w + 71. Is 26 a factor of g? False Let q = -35 - -40. Suppose -r + 44 = 5*t - 288, q*t + 1750 = 5*r. Is r a multiple of 31? False Suppose -28409 = -5*x + 4*z, 4*z - 90 = -94. Is x a multiple of 19? True Suppose -7906 = -3*l - 2*r, 0*l - 2642 = -l - 2*r. Is 7 a factor of l? True Let z = -54 + 50. Let a = 2 - z. Does 6 divide a/(-27) + 164/9? True Let b be (-4)/6*2/(4/15). Let j(y) = y**3 + 6*y**2 - 3*y + 3. Let l be j(b). Let z = -6 + l. Is 16 a factor of z? False Suppose -175 = 17*x - 719. Suppose x*j - 13*j = 1178. Does 23 divide j? False Suppose -20*t = -13*t + 1372. Let z = t - -413. Is z a multiple of 7? True Let f be (-1)/(-2) - 405/(-90). Suppose -f*s = 5*t - 415, s + s - 194 = 5*t. Is 16 a factor of s? False Let x = -95 + 98. Suppose -3*b + 5*q = -72 - 661, 4*b - 958 = -x*q. Is 45 a factor of b? False Suppose -5 - 7 = 3*p. Does 7 divide 2/p - (6 - (-3861)/(-22))? False Suppose -103 = -4*d - 19. Let r(x) = -2*x + 26*x**2 + d*x**2 - 41*x**2 - 1 + x. Is r(-3) a multiple of 14? True Suppose 47*p - 44*p - 51 = 0. Is 12 a factor of ((85170/40)/p)/(3/4)? False Let f(y) = y**3 + 32*y**2 + 32*y + 9. Is 87 a factor of f(-11)? False Let w = -2299 + 2788. Is 12 a factor of w? False Let x be 15/(-2)*(8/(-12) + 0). Let i(a) = a**3 - 5*a**2 + 2*a - 7. Let w be i(x). Let m(y) = 2*y**2 + 4*y - 1. Does 13 divide m(w)? False Let k be -6 - 2 - (-4 - -4 - 2). Let d(h) = h**3 + 8*h**2 + 5*h - 29. Is d(k) a multiple of 10? False Let t = 43 + -35. Let w(f) = -f**3 + 6*f**2 - 8*f - 2. Let o be w(t). Let g = 319 + o. Is g a multiple of 13? False Does 55 divide ((-6)/(-9) - 137/3)*(-66)/2? True Let a = 2458 + 797. Is a a multiple of 15? True Let a(d) = 10*d - 102. Suppose 0 = -8*n + 39 + 113. Is a(n) a multiple of 3? False Suppose -n = -2*o - 9, -5*n - 2*o = -11 - 10. Suppose -5*w - 67 = -n*s + 108, -2*s + 70 = -5*w. Is 5 a factor of s? True Let j = -16 - -20. Let y be j/10 - (-14)/(-35). Suppose y = 15*m - 11*m - 400. Does 18 divide m? False Let j(c) = 5*c**2 - 221*c - 61. Is j(45) a multiple of 6? False Let f(b) = 0*b + 0*b**2 - 5*b - 1 + 4 + b**3 - 5*b**2. Let i be f(6). Let o = -3 + i. Is 3 a factor of o? True Let h be 4 + -3 + -4 + (-3 - -8). Suppose h*m + 6 = 0, 3*r - 1059 = -3*m + 6*m. Is 15 a factor of r? False Let z be (1166/(-4))/11*-2. Let i = -234 + 624. Suppose -m + 25 = u - z, 3*m = 5*u - i. Is 26 a factor of u? True Suppose 18 = 3*o - 0*o. Suppose -o*a - 2*a = 0. Suppose -5*p + 403 = -3*h, a = -4*p + 4*h + 15 + 309. Does 16 divide p? True Let p(z) = 12*z**2 + 45*z - 1. Let v be p(-4). Let s(m) = 7*m**2 - 47*m - 10. Is s(v) a multiple of 17? False Let n(t) = t**3 + 2*t**2 + 10*t + 14. Let x be n(8). Let h = -400 + x. Is h a multiple of 10? False Suppose 15*k = 5*k + 810. Suppose -17*v + 1075 = -k. Is v a multiple of 17? True Let c be -10*(48/20)/(-6). Suppose 0 = -n + z - c + 19, -z = 2*n - 18. Suppose -p + n*p = 130. Is p a multiple of 13? True Let i(n) = 6822*n**3 + 2*n**2 - 80*n + 79. Does 34 divide i(1)? False Let i be 0/(-4 - -2 - -1). Let x = i + 3. Suppose 4*s + 16 = 0, -x*h - 2*s + 20 = -56. Is 7 a factor of h? True Suppose 59*y - 500526 = -10*y. Does 18 divide y? True Suppose 3*v + 0 = -5*c - 3, -4*c + 5*v = -5. Suppose 0*n - n + 55 = c. Let w = n - -12. Does 42 divide w? False Suppose 1036 - 4236 = 20*t. Let g = 237 - t. Does 53 divide g? False Suppose -17*b = -119*b + 115991 + 42517. Is b a multiple of 74? True Let q(i) = -i**3 + 10*i**2 + 2*i - 18. Let p be q(10). Let u be -6 + 9 + p + 1. Suppose 0 = -w + u*w - 240. Is 8 a factor of w? True Let g(d) be the third derivative of d**9/60480 - d**8/20160 + d**7/2520 - 3*d**5/10 + 7*d**2. Let s(z) be the third derivative of g(z). Is s(3) a multiple of 5? False Let a(t) be the third derivative of -t**5/60 + 3*t**4/8 + 8*t**3/3 + 8*t**2 + 3. Is a(8) a multiple of 4? True Let a(m) = -m**3 - 3*m**2 - 4*m - 1. Suppose 4*h = -2*k - 12, -6*h - 4*k - 18 = -h. Let c be a(h). Suppose 0 = -6*q + c*q + 225. Is 15 a factor of q? True Suppose 616*b = 613*b - 18. Is 2 a factor of b/(11/14 + -1 + 0)? True Suppose -3*f - 4*l = -838, 2*f - 5*l = -55 + 583. Suppose -m + f = b, 4*b + 7*m - 1080 = 11*m. Is b a multiple of 21? False Let y(c) = 23*c**2 - 3*c - 6. Suppose -3*m = -12, 4*o - 3*m = -m - 140. Let l = 31 + o. Does 23 divide y(l)? True Suppose -4*t - 12 = -7*t. Suppose 1 + 2 = 5*l - 3*n, 19 = l + t*n. Suppose 3*a + 3 = 2*a, -216 = -l*z + a. Does 8 divide z? False Let f(o) = 113*o**2 - 3*o + 6. Let p(w) = 340*w**2 - 9*w + 18. Let j(v) = -17*f(v) + 6*p(v). Does 17 divide j(2)? True Suppose -x - 2*x - 14 = -p, -14 = 3*p + 5*x. Suppose a - 398 = -p*h, 5*h - 5*a + 133 = 1143. Does 40 divide h? True Suppose -80*g + 93*g + 6775 - 45450 = 0. Does 85 divide g? True Let j be (6/4)/(0 - 9/(-53724)). Suppose 15*z + 7*z - j = 0. Is 34 a factor of z? False Let y = -696 + 2524. Does 30 divide y? False Let a(g) be the second derivative of -g**5/20 - 3*g**4/4 - g**3/2 - 9*g**2/2 + g. Let c be ((-40)/(-14))/(30/(-105)). Is 22 a factor of a(c)? False Let v be 2/15 - (-2069578)/(-210). Let r be 9/(-12) - v/36. Suppose -5*j + r = -62. Does 14 divide j? False Suppose g + 270 = -4*f + 2516, 4*g - 3*f = 9022. Does 23 divide g? True Let b = -745 + 10456. Is b a multiple of 83? True Let g(p) = -32*p**3 + 3*p**2 - 13*p - 13. Let j(l) = -13 - 4*l + 4 - 11*l**3 + l**2 + 5. Let v(z) = -2*g(z) + 7*j(z). Is 14 a factor of v(-2)? False Let c(n) = -36*n**3 + 5*n**2 + 33*n + 165. Does 139 divide c(-6)? True Suppose 10*l = 16*l + 36. Let v(k) = -k**3 + k**2 - 12*k - 36. Is v(l) a multiple of 12? True Let h(i) = -5*i**3 - i**2 - 15*i + 25. Let f(c) = -c**3 - 3*c**2 + 1. Let u(y) = 4*f(y) - h(y). Does 9 divide u(11)? True Let v = 130 - 116. Suppose 69 = v*b - 981. Is b a multiple of 8? False Does 7 divide ((-18)/(-15))/(-3 + 5) - 11622/(-5)? False Let m be 56/20 - 1 - 1/(-5). Is 45 a factor of (m - (13 - 5)) + 534? False Suppose -5*w = 5*s - 180, 4*s - 35 - 124 = w. Suppose -13 = -24*p + 23*p - 4*v, -p + 5*v = -13. Is -1 + 384/s - (-2)/p a multiple of 9? True Suppose 95 = 4*z + 107. Let k(p) = -p**2 + 1. Let g(f) = 7*f**2 - 9*f - 3. Let d(s) = g(s) - 2*k(s). Does 26 divide d(z)? False Let h = 564 - -609. Does 23 divide h? True Let x be (3/2)/(33/4070) + -4. Does 45 divide x - (2 + -5 + 4)? True Let z(c) = 2*c - 7*c + 6 + 4*c. Let m be z(6). Suppose f + 1 = 0, -85 = -d - m*d + 5*f. Does 40 divide d? True Let n be (2 + 2)*(2 + 216 + -2). Suppose 10*x - 4*x - n = 0. Suppose 6*p - 108 = x. Does 6 divide p? True Suppose -4*c = s + 27, -4*c + 8 = 3*s - 7*s. Let p(a) = -a**3 - 7*a**2 - 4*a + 20. Is 16 a factor of p(s)? True Let z be (-2712)/9*(-4)/((-20)/15). Let y = -512 - z. Is 20 a factor of y? False Suppose 44*i - 43*i = 198. Let c = -122 + i. Is 3 a factor of c? False Suppose 2*d - 160 = l, -25 + 114 = d - 5*l. Suppose -5*f + 266 + d = 0. Let x = f - 27. Does 21 divide x? True Let h be (7/(-4))/(((-12)/(-16))/3). Let i = -4 + h. Let n(x) = x**3 + 11*x**2 - 11*x - 9. Is n(i) a multiple of 28? True Let y = -10628 + 18225. Is y a multiple of 20? False Is 4 a factor of 1*857 - (221 - 216)? True Suppose -t - 7053 = -5*t - 5*n, -t + n = -1761. Is 41 a factor of t? False Let r(p) = -2773*p - 31. Is r(-1) a multiple of 9? False Is (4/(-26))/((-128)/1575808) a multiple of 11? False Let r be (27 + -152)*2/5. Is (r/(-2))/(2/4) a multiple of 7? False Let t be (-46)/(-8) + 18/72. Suppose 3*o = t*o - 705. Is 47 a factor of o? True Suppose 1260 = b - 11*z, -z + 2440 = 2*b - 3*z. Is 3 a factor of b? False Let g(x) = -x**3 - 17*x + 6. Let o be g(-4). Is 53 a factor of 2*-1 - (16 - o)? False Let u(a) = 509*a**2 - 10*a - 5. Is u(-1) a multiple of 52? False Let r be 1*4 + 259 + -13. Suppose 3*x + 19 - r = 0. Is 58 a factor of x? False Let c(b) be the third derivative of b**5/60 + b**4/4 + b**3 + 9*b**2. Let j be c(-4). Does 5 divide (-138)/(-8) + (4/j)/8? False Let l be -88 + 0 + -1 + 1. Suppose 0 = 4*a - r + 57, 10*a - 3*r = 6*a - 51. Let n = a - l. Is 11 a factor of n? False Suppose 2*i + 10*i - 5100 = 0. Suppose 4*b - 243 = -2*c + i, -2*c + 4*b = -636. Does 73 divide c? False Let g = 1552 + -975. Is g a multiple of 6? False Let r(w) = -11*w**3 - 16*w**2 - 41*w - 23. Does 33 divide r(-9)? False Suppose 3*x - 15 = -2*x. Suppose -4*d = 5*s, -x*s + 2*d + 26 = s. Suppose -158 = -3*g - s*o, 2*g = 6*g - o - 198. Does 5 divide g? True Let h = -8529 - -13929. Is 20 a factor of h? True Suppose -3*j = -5*z + 74 + 7, -2*z - 5*j + 20 = 0. Suppose 252 - 1107 = -z*w. Is 23 a factor of w? False Let f(j) = j**3 + 3*j**2 - 26*j**2 + 26 + 8*j**2 - 46*j. Does 5 divide f(18)? True Does 16 divide (9892/8 - -1) + -3 - (-8)/16? False Let p be (60/20)/(3/(-274)). Is 15 a factor of -8 + 6 + p*2/(-4)? True Does 21 divide 590/(-3)*-5*(558/60 + -9)? False Is 178 a factor of (-27 + 0)/(4/((-7120)/12475) - -7)? True Let b = 13225 - 7035. Is 128 a factor of b? False Let t = 4376 + -2272. Suppose 0 = -4*k + t - 340. Does 40 divide k? False Let c = 132 + -132. Suppose -7*y + 27*y - 5320 = c. Is 50 a factor of y? False Suppose -2*q = x - 76, 9*q = 2*x + 14*q - 157. Suppose x = 5*a - 2*m, 0*m + 10 = a - 2*m. Does 14 divide a? True Does 141 divide (-139 - -45)/((-2)/57)? True Let b(t) be the third derivative of t**4/12 - 5*t**3/3 + 2*t**2. Let d be b(7). Suppose -4*w = -4*v + 36 + 284, d*w = v - 92. Is v a multiple of 14? False Let o = -1278 - -1929. Does 7 divide o? True Let m(b) be the third derivative of -b**5/60 - 7*b**4/8 - b**3 - 5*b**2 + 1. Is 3 a factor of m(-18)? True Suppose 0 = -p + 5*k + 258, -969 = -4*p + 5*k - 6*k. Does 73 divide p? False Suppose -6*q + 1018 + 302 = 0. Let p = -166 + q. Is p a multiple of 42? False Let r(z) = 6*z + 25. Let h be r(-3). Suppose -h*s + 2*s = -o - 568, 5*s - 574 = 3*o. Does 8 divide s? False Suppose -a - 180 + 1440 = 0. Is 6 a factor of (a/(-25))/3*-5? True Is 13 a factor of (7 + 12702/(-18))*-6 - 6? True Let r(c) = -4*c - 24. Let w be r(-6). Suppose w = -7*t + 11 + 17. Suppose 0 = 5*x + 3*u - 500, -368 = -t*x + 4*u - 0*u. Is 40 a factor of x? False Suppose -2*z + 2 = 2*d, 3*z = -2*d + 2 + 1. Suppose 49 - z = l. Is 11 a factor of l? False Let l(p) = -p**2 + 9*p - 12. Let w be l(7). Suppose 2*v + w*v - 12 = 0. Suppose -v*m = -75 + 18. Does 5 divide m? False Is 38 a factor of 51828/22 + ((-8)/(-44) - 0)? True Suppose 3*v + 15*m - 11*m - 4126 = 0, -3*v = 2*m - 4118. Is v a multiple of 4? False Does 4 divide 44926/105 - 6/(-45)? True Let p be 6/(-2)*(-607 + -14). Suppose -p = -4*d - 5*d. Does 9 divide d? True Suppose -194 = -17*i + 16*i + 4*k, 0 = 5*i - 4*k - 1034. Does 6 divide i? True Let o = -27 - -35. Let j = 77 - 149. Does 10 divide 7/(14/o) - j? False Let y(l) = -212*l - 499. Is y(-5) a multiple of 7? False Let c be (-20)/(1 + 4)*-1. Suppose -2*y - 10 = -4*f, -c*f + 15 - 2 = -y. Suppose 0*o - 3*o + y = 0, 4*o = -3*d + 148. Is 6 a factor of d? True Let k(o) = -2*o**3 - 2*o**2 - 2*o - 1. Let n be k(-2). Suppose 5*s - 42 = -2. Suppose s = -n*r + 12*r. Does 5 divide r? False Let d(b) be the first derivative of -b**4/4 - 5*b**3 + 29*b**2/2 - 37*b - 62. Does 2 divide d(-17)? True Let r(c) = -c + 48. Let w be (-2)/4*-1*(-1 - -1). Let s be r(w). Is 2 + s/(-27) - (-5165)/45 a multiple of 17? False Let j(d) = -16*d + 3*d + 9*d - 2. Let c be j(6). Let n = 41 + c. Does 3 divide n? True Suppose -17*g + 22*g - 229600 = -20*g. Is g a multiple of 127? False Let m(l) = -l**3 + 5*l**2 - 2*l + 10. Let h be 2 - (3 + (-8 - -2)). Let b be m(h). Suppose -3*d + 28 + 59 = b. Is d a multiple of 27? False Let g(t) = t**3 + 50*t**2 + 399*t - 60. Is g(-18) a multiple of 6? True Let q be 1/5 + 2*(-58)/(-20). Suppose 268 + 272 = q*z. Is 6 a factor of z? True Suppose -i - 4*s + 8 = -13, 2*i + 2*s - 18 = 0. Suppose -1428 = -5*w + k, i*k = -0*w + 2*w - 562. Is 11 a factor of w? True Let r(v) = -v**2 + 15*v + 56. Let g be r(18). Suppose k - g*k + d = -17, -3*k + 4*d + 50 = 0. Is k a multiple of 9? True Let n be 3/(-9) + 122/6. Suppose -2*t = p - 114, -2*t + n = -2*p - 100. Suppose -6 = m - t. Is 13 a factor of m? True Suppose -11257 = -5*r + z, z + 3*z = -4*r + 9020. Is 15 a factor of (r/24 - (-12)/8)*3? False Let q = -4061 + 4736. Is q a multiple of 10? False Suppose -801 = -73*z + 76*z. Let y = z + 459. Is 11 a factor of y? False Let r(o) = -o**2 + 17*o - 16. Let b be -2*16/12*-18. Let i = b + -36. Is r(i) a multiple of 11? True Let k = -5532 + 8010. Is 16 a factor of k? False Suppose 3 = -4*k + 23. Suppose -3*f - 13 = k*w + 3, -3*w - 3 = 4*f. Suppose 5*u = -f*z - 0*z + 36, 0 = -3*z - 3*u + 36. Is z a multiple of 4? True Let v(c) = 16*c**2 + 4*c + 21. Let y(r) = -3*r - 19. Let x be y(-6). Let l(w) = w**3 + w**2 - w. Let q(a) = x*l(a) - v(a). Is q(-17) a multiple of 15? True Suppose -15 = -4*b + 61. Suppose b*g - 677 - 1527 = 0. Is g a multiple of 53? False Let f(y) = 91*y**2 + 51*y + 129. Is f(-3) a multiple of 15? True Let i(t) be the third derivative of 17*t**5/60 + t**4/24 - 11*t**3/6 + 68*t**2 + t. Does 12 divide i(3)? False Is 26 a factor of 2*2/16 + 694920/480? False Let k(z) = -6*z + 68. Let p be k(26). Is 11 a factor of (p/(-28))/(1/14)? True Suppose -3*x = -6, -5*h + x + 971 = -677. Suppose -2*n = 3*r - h, n - 179 = -r - 68. Does 18 divide r? True Let b(a) = a - 3. Let v be b(4). Let d = 224 + -222. Is 15 a factor of (8/6)/(v/(d + 43))? True Suppose 59 = 9*f - 7*f - 5*g, 5*g + 91 = 3*f. Suppose d = -f + 95. Does 21 divide d? True Suppose 2*b - 23*b + 63 = 0. Suppose -418 = -b*z - x, -2*z + 3*x + 408 = 122. Is z a multiple of 59? False Suppose -4*g - 2*u = -88, -2*g - 3*g = -3*u - 110. Let i = g + -21. Suppose 0 = -2*r + 4*k + i + 277, r + k = 145. Is 35 a factor of r? False Let a(v) be the first derivative of v**3/3 - 3*v**2/2 - 19*v - 1. Suppose 6*z = -17*z + 207. Is a(z) a multiple of 21? False Let s = -109 - -65. Let l = s + 49. Suppose -268 = -l*z + 132. Is z a multiple of 20? True Suppose -16*t + 7*t = -2727. Suppose -d + 1 = 0, -4*d - t + 32 = -5*u. Is 19 a factor of u? False Let h be 47/3 + (-161)/21 + 8. Is 9 a factor of h*(6 + 4 + -6)? False Let i(j) = -j**3 - 3*j**2 + 32*j + 104. Is 4 a factor of i(-6)? True Suppose -i - 3 = -12. Suppose 0 = -c + i + 22. Suppose -y - 5 + c = 0. Is y a multiple of 26? True Let w be -6 - 2*(2 + -4). Does 11 divide (-1 - -380)/(-4 - -3 - w)? False Let w = 37 + -46. Let l(k) = -51*k + 1. Let p be l(w). Suppose 9*q - p = 4*q. Does 14 divide q? False Let m be 3/(((-9)/11)/(-3)). Let u = -25 + m. Does 26 divide (-4)/u - (603/(-21) + 3)? True Suppose 2*m - 77 = -3*p, -4*m + p = -2*p - 199. Let t = 49 - m. Does 12 divide t/(-6) + (-97)/(-2)? True Suppose -34 = -q - 12. Suppose -4*g - q = -394. Is 5 a factor of g? False Does 10 divide (-116)/(-319) + (-648)/(-33)? True Let a be (-42)/35*(2 - (-32)/(-6)). Suppose a*l - 5*s - 151 - 150 = 0, 0 = -3*l + s + 234. Does 29 divide l? False Suppose 3*q + 3*y - 3 = 0, q + q - 4*y = -10. Let o be ((-1)/(-2))/(q/(-934)). Suppose -o = -5*s + 448. Is 42 a factor of s? False Suppose 0 = 119*r - 121*r + 4*p + 11222, 2*r - 2*p = 11222. Does 31 divide r? True Let n = 1423 - 343. Suppose 28*h = 8*h + n. Is h a multiple of 18? True Suppose 5*q - 9*y = 22628, 37*y = 4*q + 40*y - 18082. Is q a multiple of 6? False Suppose -13*q + 5*l = -8*q - 485, -4*q - 2*l + 400 = 0. Is q a multiple of 13? False Let k = -21 + 13. Let i be 12/k*-31 - (-6)/(-4). Let q = i - -13. Is 35 a factor of q? False Let z = 12566 + -7099. Is 11 a factor of z? True Let w(h) be the second derivative of h**3/6 + 19*h**2/2 - 32*h. Does 14 divide w(23)? True Suppose -k = -8 - 592. Does 4 divide k? True Suppose -32*t + 30*t + 10 = 0. Suppose 1424 = t*r - 1131. Is r a multiple of 29? False Let c(g) = g**3 - 7*g**2 + 2*g + 6. Let x be c(8). Suppose 2*y + 80 = -a, -2*a - 5*y = -a + x. Let m = -44 - a. Is m a multiple of 32? True Suppose 3*u + 5*h - 2092 - 12808 = 0, -3*h - 6 = 0. Does 52 divide u? False Suppose -b = -1 - 0, 5*q = 4*b + 11. Suppose q*j - 2*j = -v + 56, 4*v = 2*j + 224. Is v a multiple of 4? True Is 179 a factor of (1/(-3))/(-1) - (-45010)/15? False Suppose -12626 = -56*y + 4174. Is y a multiple of 5? True Suppose 626 = 4*n - 3*u - 1178, -4*n - 5*u = -1772. Let m = n - 131. Suppose 5*s - 5*z - 525 = 0, -3*s = -4*z - z - m. Is 13 a factor of s? True Let x(f) = f + 17. Let t be x(-10). Suppose -3*k - 348 = -t*k. Let r = k - 61. Does 5 divide r? False Suppose -3*p + 2*y + 29 = 0, 2*y - 4*y = 3*p - 25. Let x be p/(-3) + (1 - -3). Let g = x - -9. Is 2 a factor of g? True Let b = 2374 + -2340. Is b even? True Suppose 4 = -3*m + 64. Suppose -13*f - 2128 = -m*f. Does 38 divide f? True Let c(x) be the first derivative of -x**2/2 - 7*x + 15. Let i be c(-13). Suppose 9*a - i*a = 123. Does 20 divide a? False Suppose -z - 909 - 1821 = -3*z. Is z a multiple of 23? False Let f(k) = -2*k**2 + 2*k. Let i(g) = 6*g**2 - 5*g - 1. Let n(p) = 17*f(p) + 6*i(p). Is n(-4) a multiple of 5? True Let k = 5068 + -4859. Is k a multiple of 19? True Suppose w = -3*b + 346, -2*b - w + 228 = w. Suppose -4*l + 21 = -2*u - 69, b = 5*l + u. Suppose 0 = -21*t + l*t - 8. Does 2 divide t? True Let y(r) = 13*r - 86. Let p be y(22). Let g = p + -184. Is g a multiple of 8? True Let n(m) = 22 - 31*m - m**2 + 4 - 6 + 23. Is n(-28) a multiple of 4? False Let z(a) = -443*a - 171. Does 12 divide z(-5)? False Suppose 0 = -2*v + 3*q + 948, -v + 2*q + 399 = -73. Does 30 divide v? True Suppose -9*b - 127 = -469. Suppose 5*i + 97 = -2*g, -2*g - g = 4*i + 72. Let u = b + i. Is u a multiple of 5? False Does 33 divide 6*(-7)/14*327/(-9)? False Suppose -99*g - 1029 = -100*g - x, 3*g - 3086 = -4*x. Does 10 divide g? True Suppose 0 = -5*h + 7*h - 8. Suppose -h*k - 14 = -2*d, 5*d - 3 - 10 = -k. Suppose 0 = -n + 58 - d. Is 15 a factor of n? False Suppose 62 = x - 170. Suppose 2*w + 16 = x. Let t = 156 - w. Is t a multiple of 24? True Let p(c) = -5*c. Let s(y) = -2*y. Let x(r) = -3*p(r) + 10*s(r). Let h be x(-4). Does 8 divide (6/5)/(3/h)? True Suppose -4*x + 7 = -o, 0 = -x - o - o + 4. Suppose 1 + 3 = x*g. Suppose 0 = -5*h + 5, -5*h = -g*s + 18 + 219. Does 14 divide s? False Suppose -23*k - v - 6 = -27*k, 0 = -2*k - 3*v + 10. Suppose -3*x + 546 = -k*s, x - 5*s = -0*s + 169. Is 29 a factor of x? False Suppose 14*t - 4*s - 1104 = 12*t, -4*t + 2172 = 4*s. Does 13 divide t? True Let f(l) = -2*l**2 - 5*l + 13. Let j be f(-7). Suppose 0 = -4*y + 5*y - 83. Let q = j + y. Does 7 divide q? False Suppose z - 3096 = -4*f, 3*z + 3*f - 2*f = 9244. Does 35 divide z? True Suppose -4*l = -3*z - 12, 5*z + 33 - 13 = -3*l. Suppose -2*c + 68 = -l*c. Suppose -m - 14 = -c. Does 5 divide m? True Let k = 31 + -23. Suppose 4*p = -4*o + k - 212, 3*o - p = -173. Let z = -21 - o. Does 5 divide z? True Let g(t) = 32 - t - 2*t**2 - 2*t - 3*t**3 - 34. Let q be g(-1). Suppose -5*h = -w + 32, h = 3*w - q*h - 120. Does 7 divide w? True Is 12 a factor of -14*((-4 - -3) + 28008/(-56))? False Suppose -3*v = 2*y + 169, 8*v + 4*y + 167 = 5*v. Let w = 8 - v. Does 10 divide w? False Let q(j) = j - 1. Let l(f) = -15*f + 77. Let u(k) = l(k) + 5*q(k). Does 14 divide u(-4)? True Suppose 3*g + 0*g = 3. Let u be (1 - 23)*6/(-9)*21. Is u/8 - 1 - g/(-2) a multiple of 11? False Let a(b) = -b + 435. Let o(y) = -2*y + 870. Let u(m) = 5*a(m) - 2*o(m). Let i be u(0). Is i/25 + (-4)/10 a multiple of 17? True Let g(s) be the third derivative of s**5/30 - s**4/8 - s**3 - 16*s**2. Let j(b) = 11*b**2 - 17*b - 37. Let v(w) = 34*g(w) - 6*j(w). Is 31 a factor of v(7)? False Suppose 197 = -11*p + 2375. Suppose 194*o - p*o = -340. Does 22 divide o? False Suppose 0 = 8*p - 12360 - 5688. Does 47 divide p? True Let f(v) = 3*v**2 - 41*v - 54. Does 22 divide f(58)? False Suppose -2*y + 23 = 5*q, -4 = -5*q + 2*y + 3. Suppose -44 = -q*k - 0*k - t, 2*t = -2*k + 32. Suppose 4 + k = l. Does 7 divide l? False Suppose -2835*c + 2833*c = -296. Does 3 divide c? False Let z(h) = -2*h**2 - 136*h - 442. Does 24 divide z(-56)? False Suppose -35*d + 5*i + 3205 = -33*d, -3*i + 8090 = 5*d. Is d a multiple of 19? True Let h = -103 - -156. Suppose -8*t + 3*t = -3*a + 60, -2*a - t + h = 0. Suppose 0 = -3*g - 2*c + c + 203, -5*c = -a. Is g a multiple of 13? False Let u(d) = d**3 - 11*d + 11. Let z be u(6). Does 6 divide (-46)/z + (-1264)/(-14)? True Suppose -2*c - 5*j + 10*j = -13, 4*c - 15 = -j. Suppose 480 = c*z - 5*l, -5*l + l = -z + 109. Does 17 divide z? False Let r = 150 - -27. Let c = r + 194. Does 29 divide c? False Suppose -2*m = 5*p - 43, -2*m - 2*m + 2*p + 26 = 0. Suppose -2*b = m*b - 792. Does 24 divide b? True Let j = 207 + -204. Suppose -j*t = 68 - 131. Does 7 divide t? True Suppose -16*x - 28 - 164 = 0. Let l(g) = g**3 + 12*g**2 - 4*g + 4. Is 13 a factor of l(x)? True Let r be 1/(-3)*-9*1. Suppose -3*w - 3*c = -4*c - 8, -r*c + 3 = 0. Suppose -w*u + k + 38 = -2*u, -3*u + 5*k + 124 = 0. Is 5 a factor of u? False Suppose 0 = 5*w - 841 + 3866. Let o = w + 408. Let x = -92 - o. Is 15 a factor of x? True Let r(q) = 7*q + 14. Let g be r(-2). Let v be 0 + (0 + 22)/2. Suppose g = -7*o + v*o - 76. Does 17 divide o? False Let x = -78 - -38. Let q = 39 - x. Is q a multiple of 5? False Suppose 2318 = -5*p + 2*d, 2*d = -0 + 8. Does 4 divide (-7 - p/18) + 2/6? False Let s(a) = -a**2 - 159*a + 574. Does 62 divide s(-76)? True Let q(x) = 356*x - 1617. Is q(9) a multiple of 23? True Let t(v) = 6*v**2 - 6*v + 54. Let d be t(11). Let w = d - 354. Is 47 a factor of w? False Let w(j) = j**2 - j - 7. Let x be w(4). Suppose x*o = -3*g + 7, -3*g - 4*o = -0*g - 8. Suppose -g*q + 125 = -3*n, -2*q + 2 + 59 = -3*n. Does 28 divide q? False Suppose 5*p - 5*v - 15 = 0, 3*p - 3*v = -2*v + 13. Suppose p*z - 3*z + 2*d = 496, z - 244 = d. Does 34 divide z? False Is 9 a factor of (-5)/(-150)*25294 - ((-385)/(-75) - 5)? False Let a = 13 + 3. Suppose -d + 10 = 3*q - 1, -4*d + 6 = -7*q. Let v = q + a. Is v a multiple of 8? False Is 3/((-3)/(-2437)) - (9 + -29)/(-20) a multiple of 58? True Let m(r) = -4*r - 1 + 9 + 6*r - 3*r. Let c be m(9). Is (c + 2)/(-3)*-135 a multiple of 5? True Let k = -150 - -57. Let t = k - -205. Is t a multiple of 14? True Suppose 5*v - 7 = -c, -4*c - 4*v = c - 14. Let f(x) = 35*x**2 + 4*x. Does 12 divide f(c)? False Let j(q) = -q**3 - 46*q**2 - 29*q + 299. Does 79 divide j(-47)? True Suppose 0 = 38*v - 35*v + 3*i - 3876, 4*i + 3862 = 3*v. Is 18 a factor of v? False Let i(p) = -2*p**2 + p. Let c be i(-3). Let g be (-2)/(-7) - (-6)/c. Suppose 2*t - 4*y = -y + 41, g = 4*t + 5*y - 71. Is 19 a factor of t? True Let k = -3385 + 4427. Is 100 a factor of k? False Suppose 0 = 2*t - 4*j - 402 - 1368, 0 = -t + 4*j + 883. Suppose -3*z + t = 5*u, 0*z - 294 = -z - 2*u. Is z a multiple of 38? True Suppose -v = -221 + 249. Is 11 a factor of (-8)/v - (-2073)/21? True Let h be (-9)/(-4) - (-2)/(-8). Let x = 35 + 343. Suppose -h*f + c + 53 + 126 = 0, 0 = 4*f + 2*c - x. Does 21 divide f? False Let n(f) = 10*f - 111 - 41 + 74. Is 32 a factor of n(11)? True Let x(p) be the second derivative of -p**4/12 - 5*p**3/6 + 11*p**2/2 - 13*p. Let u be x(-7). Is 36 a factor of (3 + 225/u)*-1? True Suppose 7*f = 5*f. Suppose c - 5*y + 5 = f, -2*y + 3*y = 2*c + 1. Suppose 5*p = -3*s + 134, 2*s + 3*p = -c + 90. Does 16 divide s? True Let u(k) = k**2 + 23*k + 20. Let b be u(-22). Let s(x) be the third derivative of -3*x**4/4 + 3*x**3/2 + 4*x**2. Is s(b) a multiple of 12? False Let p(q) = -85*q + 7237. Is p(0) a multiple of 8? False Suppose 4*q - 3*q + 166 = k, -4*q + 648 = 4*k. Suppose 9*z + k - 1136 = 0. Is 18 a factor of z? True Let a(h) = -h**3 + 22*h**2 + 57*h - 25. Let p be a(24). Let w = p - 150. Does 16 divide w? False Let t = 148 + -143. Suppose -3*u - 2*w + 24 = -62, 0 = -5*u + t*w + 135. Does 2 divide u? True Let y = 37 + -227. Is 800/19 - (-20)/y a multiple of 7? True Suppose -13*k - 6*k = 18*k - 247826. Is k a multiple of 33? False Is 56938/14 - (-12 + 8) a multiple of 11? False Suppose 15 = -3*p, 3*p + 2*p - 1016 = 3*t. Let l = 585 + t. Does 14 divide l? True Let h be (-17)/3*(0 + 18). Let n be ((-4)/6)/((-3)/9). Does 13 divide n + (h/(-4) - (-15)/(-10))? True Let s(j) = -j**2 + 107*j - 962. Is 8 a factor of s(74)? True Suppose -33*v + 46614 = -16*v. Is 22 a factor of v? False Let o = 56 - 97. Let r(j) = -2*j**2 + j + 5. Let g be r(-4). Let w = g - o. Does 4 divide w? False Let o(s) = -2*s**3 - 39 - 19*s**2 - 24*s + 15 + 75*s - 20*s**2. Is 19 a factor of o(-21)? True Let h be -4 - (-6)/(-3) - 30. Is (h/48)/((-2)/312) a multiple of 9? True Let b(v) = 23*v**2 - 9*v + 23. Let i = 24 - 20. Does 10 divide b(i)? False Suppose 4*f - 40 = -4*f. Suppose f*d - 5 - 9 = 2*l, -18 = -3*d - 2*l. Suppose m - 252 = -4*b - 3*m, -d*b + 257 = -m. Does 16 divide b? True Suppose 58*l - 13170 = 43*l. Is 4 a factor of l? False Let j(w) = w**2 + 6*w - 1. Let v be j(-5). Let f be 6/12 - (-105)/v. Let x = 69 + f. Is x a multiple of 26? True Let f(n) = -n**3 + 11*n**2 + 5*n - 4. Let z be -5 - -14 - (-4)/2*1. Is f(z) a multiple of 6? False Let v = -3 + 3. Suppose -5*m = 4*z - 120 - 0, v = 5*z - 25. Is 12 a factor of m? False Let l(j) = j - 13. Let k be l(7). Let b be (-9)/k - (-12)/(-8). Suppose -7*q + 62 + 155 = b. Does 31 divide q? True Let l be (-4)/(-10) - 1659/(-15). Suppose -2*d + 52 = -76. Let x = l - d. Does 10 divide x? False Let q be 8/(-20) - (2010/25)/(-6). Suppose 33*z = q*z + 240. Does 3 divide z? True Let n(j) be the third derivative of -1/24*j**4 + 0*j + 0 + 14*j**2 + 155/6*j**3. Is 35 a factor of n(0)? False Suppose -7*h + 2152 - 1739 = 0. Let n(l) = -l**3 + l**2 + l + 2. Let f be n(0). Suppose -f*o + h = 15. Does 3 divide o? False Let r(t) = 145*t**3 + 2*t**2 - 10*t + 54. Is 87 a factor of r(4)? False Let f(w) = w**2 + 13*w + 15. Let j be f(-12). Suppose -11*x = -267 + j. Is x a multiple of 6? True Suppose -12 = -7*k + 16. Let t = k - 28. Is 135/3*t/(-15) a multiple of 12? True Let b(j) = -5*j**3 + 5*j**2 + 5*j - 283. Let a(z) = -z**3 + z**2 + z - 71. Let c(l) = -9*a(l) + 2*b(l). Does 14 divide c(0)? False Suppose 18*s = 2*k - 9554, -3*k + 4*s = -19551 + 5174. Is k a multiple of 33? False Suppose -55 = -3*o - 5*v, 23*o = 25*o - 3*v - 43. Let l = -36 - -88. Let y = l - o. Is y a multiple of 7? False Let d(t) = 129*t - 129. Does 3 divide d(6)? True Suppose 0 = 6*i - 2*i + 3*d - 964, 4*d = i - 241. Suppose 5*n - 4*j - 138 = 158, -4*n - j = -i. Is n a multiple of 4? True Let v(s) = 2*s**3 - 10*s**2 + 6*s - 1. Let g(k) = 3*k + 6. Let d be g(0). Is v(d) a multiple of 22? False Suppose 0 = -201*g + 199*g. Suppose g = -2*v - 3*k + 155, -2*v - k = -145. Is v a multiple of 5? True Let i = 30 - 36. Let n(g) = -9*g**3 - 31*g**2 - 11*g - 12. Let p(v) = -4*v**3 - 15*v**2 - 6*v - 6. Let u(c) = -2*n(c) + 5*p(c). Is 6 a factor of u(i)? True Let s = 70 - 103. Let g be 14/(-4)*8/(-4)*3. Let o = g - s. Is o a multiple of 27? True Suppose o + 24 = 5*o. Suppose 0*w - o*w + 30 = 0. Suppose 0 = -g + 64 + w. Is g a multiple of 11? False Let u(b) = 6*b + 4. Suppose -4*a - q = 7, 0*a - 3*a + 6 = -3*q. Let r be 3 - ((-28)/(-7) - (1 - a)). Is u(r) a multiple of 10? True Suppose 2*i - 2*t + 111 = -71, -2*i - 182 = 2*t. Let v = i - -190. Is v a multiple of 13? False Let m(r) = r**2 + 9*r + 12. Let c be m(-7). Let y be (2 + (-24)/15)/(c/1630). Let q = -229 - y. Is 16 a factor of q? False Suppose -11 = -o - 93. Let c be o/8 + -4*(-4)/64. Let z(m) = -m**3 - 11*m**2 - 13*m + 4. Does 22 divide z(c)? False Suppose -4*u = 446 - 1526. Let d = -159 + u. Suppose 0 = -3*b - 3*v + d, 4*b - v - 77 = 66. Does 6 divide b? True Suppose 0 = -5*g - t - 97, 2*t - 52 = 4*g + 34. Suppose -4*v + 5*o + 9 = 0, -2*v + o + 1 = -2. Is (-2 - (4 - (v + 1)))*g a multiple of 46? False Let m be 100/6 + (4 - (-48)/(-18)). Suppose 0 = 5*o - m*o + 1872. Is 6 a factor of o? True Let v be 3288/204 - (-2)/(-17). Suppose 0 = v*y - 19*y + 183. Let q = y + -47. Does 14 divide q? True Let v = 155 - 150. Suppose -203 = -v*q - 58. Does 29 divide q? True Does 13 divide (2/13*1 + 13956/39)/1? False Let b = 860 + 1060. Does 64 divide b? True Let m = 4 - 7. Let v(s) be the third derivative of -2*s**4/3 + 3*s**3/2 + 75*s**2. Is 19 a factor of v(m)? True Does 103 divide (-2)/(-34) - (-895279)/1309? False Let u(v) = -v**3 + 11*v**2 + 31*v - 67. Let x be u(13). Suppose -6*i + 175 = -i. Is 9 a factor of ((-72)/(-21))/(x + 72/i)? False Let w = 22 - 18. Suppose -p = 4*l + 14, w*l - 3*l = -2*p. Does 6 divide (l*10/(-12))/(3/45)? False Let o(b) = b**3 + 10*b**2 + 9*b + 3. Let v be o(-9). Let z = -89 + 193. Let s = z + v. Does 11 divide s? False Let m(p) = -4*p - 8. Let q(x) = -5*x - 7. Let h(d) = -4*m(d) + 3*q(d). Let v be h(-7). Suppose v*t = 3*t + 48. Is t a multiple of 8? True Suppose -a - x - 31 = 61, 4*x = -16. Is (21/6)/(-3 + (-265)/a) a multiple of 14? True Let g(l) = -l + 11. Let d(u) = -2*u + 23. Let w(m) = -4*d(m) + 7*g(m). Let v be w(-8). Let y = 41 + v. Is 18 a factor of y? True Let r(j) = 4*j + 107. Let s be (6/(-12))/((-4)/(-184)). Is 15 a factor of r(s)? True Let q(n) = 7*n + 7. Let x be q(-2). Let l(r) = -11*r + 26. Does 36 divide l(x)? False Suppose -9*k + 17*k + 8 = 0. Is 30 a factor of (k - 2)/(3/(-2)) + 320? False Let w be (1 + -3)/(4/(-680)). Suppose l = -4*z + 2*l - 715, 5*l + 900 = -5*z. Let c = w + z. Is 39 a factor of c? False Let z = 10701 - 5025. Is z a multiple of 15? False Let h(r) = 4*r**2 + 9*r + 2. Let w be h(8). Let g = w + -231. Does 11 divide g? True Let c = 103 - 73. Suppose 235 = c*a - 25*a. Is 21 a factor of a? False Let y(s) = 8*s**2 + 5*s - 3. Suppose 0 = -15*d + 7*d + 24. Is 28 a factor of y(d)? True Is 24384/(-36)*(-150)/20 a multiple of 20? True Let f = 364 - -772. Does 16 divide f? True Suppose 0 = 5*r, 2*j - 5*r = -226 + 11006. Is 35 a factor of j? True Let q(s) = -2*s**3 + 15*s**2 + 181*s + 3. Is 46 a factor of q(-14)? False Let m(a) = 443*a**2 + 3*a - 3. Let h be m(1). Let w = -261 + h. Does 13 divide w? True Is 89 a factor of (35931/28 + -15)*4? True Let z = 28 + -24. Let g be (-42)/7*(-6)/z. Is 10 a factor of (-6)/(-27) + 268/g? True Let f = 17 - 11. Does 24 divide 3 - 103/(-2)*(0 + f)? True Let d = -31 + 31. Suppose d = -12*k + 1214 + 514. Is k a multiple of 10? False Let f(l) = 3*l**2 - l - 3. Let y be f(-4). Let t = y + -25. Let h = -18 + t. Is 5 a factor of h? False Let a(d) = 7*d + 474. Let h be a(-49). Let w be 4/6*942/4. Suppose 6*v - h = w. Does 19 divide v? False Let q(t) = 39*t**3 + 4*t**2 + 2. Let p be q(2). Let u = 651 - p. Suppose -4*c + 3*k = -u, 4*c + 2*k - 3*k = 331. Is c a multiple of 12? True Let q(z) = 30*z**2 - 13*z - 18. Let t(u) = 30*u**2 - 12*u - 17. Let g(a) = -5*q(a) + 6*t(a). Is g(-2) a multiple of 18? False Suppose -5*j = -m - 42703, -20232 = -2*j + 4*m - 3158. Is 13 a factor of j? True Suppose -58*a + 115*a - 59*a + 3150 = 0. Is a a multiple of 15? True Let n = 172 - -26. Suppose 7*l - n = l. Let f = l + -3. Is 10 a factor of f? True Suppose -9*g + 22 = -14. Does 26 divide -3*g/(-15)*(-38850)/(-140)? False Suppose 5*l - 2*t - 3*t = -80, 5*l = 4*t - 79. Let h = l - -31. Does 6 divide 5 + h - (2*-1)/2? False Suppose -3414 = -3*b - 2*q + 118, -3*q = -6. Suppose 13*s - 10*s + 4*v - b = 0, -4*s = -4*v - 1596. Does 36 divide s? True Suppose -v - 5*s + 138 = 0, 4*s - 202 = -5*v + 446. Let c be (-17)/((-2)/8*1). Suppose -7*x + v = -c. Is x a multiple of 14? True Let k(u) = -u**3 + 11*u**2 + 14*u - 3. Let z be k(12). Let a be z/(-9) - (-4)/12 - 19. Let v = 137 + a. Is v a multiple of 18? False Let q(p) = 81*p + 14. Let z be q(3). Let j = z - 107. Is j a multiple of 6? True Let r be (-84)/21*(1/(-4))/(-1). Is 5 a factor of 0 - ((-2 - 57) + r)? True Let x be ((-80)/6)/(20/(-1740)). Suppose 0 = -2*z - 6*z + x. Does 10 divide z? False Let d(v) = -v**3 + 13*v**2 - v + 4. Let f be d(12). Let z = f - 22. Is z a multiple of 9? False Let n(w) = -3 + w - 4*w - 21 + 23. Let l be 17/(-4) + 1/4. Is 11 a factor of n(l)? True Is 3 + 362724/54 + 2/(-18) a multiple of 80? True Let t be (-2)/(4/6*1 - 0). Let x = 0 - 2. Is (-20)/(x*t/(-12)) a multiple of 20? True Let f(c) = 5*c**2 + 14*c - 4. Let s be f(-14). Let w = -468 + s. Is w a multiple of 39? True Suppose 8*l - l = 3934. Suppose -9*p - l = -2794. Does 62 divide p? True Let m = 330 + 204. Is m a multiple of 6? True Suppose -18*i + 17*i = -13. Suppose i = 7*d - 22. Suppose 152 = 3*u + u - 4*w, 0 = d*u - 3*w - 198. Does 7 divide u? True Suppose -5*x + 560 = -f, 5*f + 0*x + 2800 = x. Is f/6*(108/8)/(-3) a multiple of 35? True Let j be 563 - (-12)/(-30)*10. Suppose 3*p = -6, 3*p - j = -7*s + 2*s. Is s a multiple of 15? False Let o(n) = -2*n**2 + 53*n + 20. Is 7 a factor of o(24)? True Let u(v) = -v**3 - 28*v**2 - 33*v - 312. Does 42 divide u(-30)? True Is 12 a factor of (5/(200/(-1536)))/(6/(-435))? True Is 5 - (-30 - (1 + 0)) a multiple of 16? False Suppose -z = 268*t - 270*t - 1927, 2*z - 5*t - 3850 = 0. Does 15 divide z? True Does 69 divide -2*1/(-8) - (-362375)/52? True Suppose -2*i + 2*q = -0*i - 74, 2*q + 154 = 4*i. Does 39 divide (1 - i)*(-43 + 33)? True Suppose -5*h = 3*c + 31, -4*h = 3*c + 2*c + 30. Let m(v) = v**2 + 6*v + 4. Let g be m(h). Does 21 divide (-157)/(-2) + g + (-5)/10? False Let z(t) be the third derivative of 0*t + 0 + 17*t**2 - 1/3*t**3 - 17/24*t**4. Is z(-2) a multiple of 10? False Let g(u) be the first derivative of -1/3*u**3 - 5*u + 12 - 23/2*u**2. Is g(-19) a multiple of 16? False Let n = 688 + -12. Suppose 817 = 3*p - 5*s + 176, 3*p + 2*s = n. Does 21 divide p? False Suppose 193*g - 55*g - 320988 = 0. Does 30 divide g? False Suppose g + f - 297 = 0, -4*g + 45 + 1158 = -f. Suppose -134*m - g = -139*m. Does 15 divide m? True Let i = 4555 + -4039. Is 4 a factor of i? True Suppose 2*a + 36 = 6*a + 4*r, -4*r + 6 = -2*a. Suppose -h + 11*k = 10*k - 214, -a*k = -10. Is 18 a factor of h? True Suppose 12 + 432 = 11*b - 997. Is b a multiple of 6? False Let a = -134 - -139. Suppose 3*w + 2*w - 2559 = -3*v, a*w - 2544 = 2*v. Is w a multiple of 15? True Let s(n) = 1726*n**3 + n**2 + 3*n - 2. Is 32 a factor of s(1)? True Let d(c) = -c**3 + 25*c**2 + 4. Let f be d(25). Is 2/(-13) + (52488/117)/f a multiple of 14? True Suppose -3*z + 407 = 2*b, -153*z = 4*b - 152*z - 829. Does 52 divide b? True Suppose -690*p + 651*p + 261924 = 0. Does 20 divide p? False Suppose 0 = 4*z + 2*q - 2230, 4*z - 1649 = 2*q + 569. Let v = 1099 - z. Is v a multiple of 43? False Let y(z) = -z**3 + 27*z**2 + 59*z - 32. Is 8 a factor of y(25)? False Let g = -129 + 129. Suppose -10*z - 4*z + 3038 = g. Does 31 divide z? True Suppose 3*z - 5350 = -2*f, -5351 = 500*z - 503*z - f. Does 33 divide z? False Does 9 divide 8062/7 - (-10 + (-816)/(-84))? True Suppose 0 = -2*d - 25 + 29. Let i(h) = 36*h**d + 34*h**2 - 10 + 5*h - 69*h**2. Is i(9) a multiple of 29? True Suppose -4*g - 2*f = g - 700, -4*g = f - 560. Is ((-952)/g)/(2/(-40)) a multiple of 34? True Suppose -4*i - 3 = -5*y, -4*i + y = -0*i - 9. Let w be (-5 - -1) + (i - -5). Suppose -115 = -w*b - b. Is 4 a factor of b? False Suppose 4*a - 896 - 508 = -r, a - 351 = -r. Is a*3*(-1)/(-3) a multiple of 13? True Suppose -2*g + 8 = 2*w, g + 5 = 2*w - 3. Suppose g = -a + 139 - 62. Does 12 divide (-2 - 1) + (a + 2 - 4)? True Let i = 9 - 6. Suppose -2*r - 392 = -2*j, 3*r - 458 = -i*j + 124. Let h = j - 65. Does 23 divide h? False Let d be 7278/42 + 6/(-21). Suppose -d = 2*g - 453. Suppose 3*i + 66 = 3*a - 6, -5*a + i = -g. Does 4 divide a? False Let r(d) = 6*d + 41. Let s be ((-8)/6)/(4*(-8)/(-96)). Is 6 a factor of r(s)? False Suppose 3*c - 5*t - 9 = -0, -5*c + 5*t + 15 = 0. Suppose 6*v = c*w + 4*v - 557, 4*w + 2*v - 738 = 0. Does 13 divide w? False Let g(o) = -o**3 - 12*o**2 - 21*o - 3. Let d be g(-10). Suppose d*z - 1276 + 93 = 0. Does 13 divide z? True Let s(z) = -4*z**3 - 6*z**2 + 13*z - 11. Let m = -206 - -200. Does 43 divide s(m)? True Let c be -27 - -26 - (0/(-4) + -3). Let k = 1 - 2. Is 21 a factor of (2 - 23)*(c + k)/(-1)? True Let n(k) be the first derivative of -3*k**2/2 - 13*k - 27. Let r = -11 + 4. Is n(r) even? True Let u(f) = -24 + 26 + 20*f**3 - f**3 - 4*f**2. Is u(2) a multiple of 33? False Let u(a) = 2*a**2 - 19*a + 9. Let p be u(10). Suppose p = -11*g + 1735. Is 12 a factor of g? True Let u be -7*(456/(-48) + (-2)/4). Suppose -t - u + 90 = 0. Does 2 divide t? True Suppose -3*j - 12 = 0, 5*k - 6*j + 7*j - 26251 = 0. Is 16 a factor of k? False Let l(f) = -114*f - 570. Does 114 divide l(-49)? True Let l(i) = -23 - 2 - 6*i + 1068*i**2 - 1065*i**2. Is 36 a factor of l(11)? False Suppose 140 = 5*y + 15. Does 4 divide ((-20)/y)/(5/(-75))? True Suppose 3*o - 4*q = 11*o - 14416, 5*o = 2*q + 8992. Is o a multiple of 180? True Let i(g) = 1. Let w(c) = -10*c - 84. Let f(q) = -i(q) - w(q). Is 9 a factor of f(13)? False Let u(y) = -22 + y + 90 + 42. Let f(a) = a**2 + 2*a - 3. Let g be f(-3). Is u(g) a multiple of 15? False Let k = -3089 - -5449. Does 40 divide k? True Suppose 13*s = 15*s + 398. Let k = s - -567. Is k a multiple of 45? False Let s(z) = -28*z + 1244. Is 6 a factor of s(14)? True Suppose -2*q + 294 = 2*q + 2*v, 367 = 5*q + 3*v. Is q a multiple of 74? True Suppose 5*c + 4*o = 5017, 53*o - 55*o = -3*c + 2997. Is 13 a factor of c? True Let g(p) = p**3 + 4*p**2 - 7*p - 6. Let z be g(-5). Suppose 5*q = 3*o - 11, -5*q = 16 + z. Is 5 a factor of -1 - o - -25 - 6/(-2)? True Let c(d) = -2*d**3 + 5*d - 4. Let z = -126 - -121. Is c(z) a multiple of 59? False Suppose 32*d - 18*d - 44308 = -39*d. Is 38 a factor of d? True Suppose z + 540 = 4*i - 252, 5*i - 997 = 3*z. Suppose 0 = -72*y + 3*y + 138. Suppose -5*x + 138 = -y*h, 5*x - i + 58 = h. Is 4 a factor of x? True Let w = 965 - 506. Let p = w + -206. Does 23 divide p? True Suppose -105 = 3*j + k, -3*j - 2 = -k + 103. Let h = j - -38. Is h + 22 + (-1 - -2) a multiple of 8? False Let o be (-273)/(-52) - (-15)/(-12). Suppose 0 = -w - 4*d + 140, -2*w + o*w - 215 = 5*d. Is 20 a factor of w? True Suppose y = 5*w + 3 + 13, 0 = 3*w + 15. Let z = 7 - y. Is 4 a factor of z + (1 + 3 - 3)? False Let w be 5*((-108)/30)/(-6). Suppose 2*s = v + 223, -4*s + 5*v - w + 458 = 0. Is 10 a factor of s? True Suppose 2*h - c - 26 = 0, -4*c - 60 = -6*h + 2*h. Suppose 0 = -5*d, 112 = -h*v + 13*v - 3*d. Is v even? True Let s(j) = -2*j + 11. Let q be s(4). Suppose -26 = -2*r + q*x, 0*r - 2*x - 39 = -3*r. Let o(f) = f - 1. Does 6 divide o(r)? True Let a(g) = -g**3 + 6*g**2 - 5*g + 7. Suppose -x + 2*x = -1. Let i be 4 + x/3*-3. Is a(i) a multiple of 3? False Suppose 13*v - 11*v = 476. Let s = v - -14. Does 42 divide s? True Let h(n) be the second derivative of -n**3/3 + 5*n**2/2 - 34*n. Does 2 divide h(-5)? False Is 5 a factor of (-91668)/(-30) + (5/(-75))/((-5)/(-45))? True Let d be 2/(12/(-30)) - -5. Suppose -o - 2*f - 3 = d, -5*f + 9*f + 27 = 5*o. Is 2 a factor of o? False Let z(s) = 2*s + 16. Suppose -3*d = -4*m - 25 - 7, -d = 0. Let b be z(m). Let w(q) = q**2 + q + 55. Does 8 divide w(b)? False Suppose -5*v - 4*l + 13488 = 0, 70*v - 5*l + 5385 = 72*v. Does 90 divide v? True Let a be -1290*((-16)/3 + 5). Suppose -u = -0*u - a. Is 12 a factor of u? False Let v be (1 + 1)*(-216)/(-48). Suppose 13*k = -v*k + 4444. Is k a multiple of 25? False Let c = 2489 + -2364. Does 4 divide c? False Let y = 11035 + -7195. Does 128 divide y? True Let m be 1 + (-2 - -2) - -63. Suppose -4*f - 29 = -3*k + 8, -4*k - 2*f = -m. Is 4 a factor of k? False Suppose k - 10 = -5*a + 6*k, 0 = -4*a - 4*k + 8. Suppose -16 - a = -l. Does 3 divide l? True Let d(o) = -o**3 - 8*o - 5. Suppose -25*z = -6*z + 133. Is 33 a factor of d(z)? False Let w = -4972 + 8568. Is w a multiple of 11? False Let n(p) = p**3 - 2*p**2 + p + 27. Let x be n(0). Suppose 17*r = x*r - 1820. Is 26 a factor of r? True Suppose -6 = -5*q - i, 5*q + 6 = -0*q - 4*i. Suppose 650 = 3*o - 5*c, q*c + 848 = 4*o - 0*c. Is 35 a factor of o? True Suppose -24 = -m - 4*n, -m + 7*n - 4*n = -38. Let d = -25 + m. Is 42 a factor of 55*19/d + (-2)/7? False Is (-364287)/(-95) + 9/(-15) a multiple of 54? True Let l(z) = 17 - 28*z - 3*z + z**3 + 3*z + 8*z**2 + 12*z. Is l(-9) a multiple of 10? True Let y be (-12)/1 - (-3 - -2). Let g(f) = f**3 + 10*f**2 - 11*f + 3. Let x be g(y). Suppose -x*h + 2*h = -82. Is h a multiple of 8? False Let c(v) = v**2 - 6*v + 4. Let w be c(6). Suppose 0 = -w*r + 557 - 385. Is 7 a factor of r? False Suppose 0 = 5*q + 15, -17*d + 14*d + 2*q + 9411 = 0. Is d a multiple of 22? False Let y = -25 + 33. Suppose -y*j - 780 = -12*j. Does 15 divide j? True Let v be ((35 - 1)/2)/((-3)/(-51)). Let p = v - -71. Is p a multiple of 30? True Suppose 3*r = -2*r, -r + 20 = -l. Let p be (2/(-4))/((-10)/l). Does 11 divide p + 16 + (-20)/(-10)? False Suppose 20*w - 18*w - 6 = 0. Suppose w*y + 2*y + 3*s - 1199 = 0, 2 = -s. Does 16 divide y? False Suppose -4*f + 16 = 0, 3*i = 2*i - 3*f + 596. Suppose -19*m + 3339 - i = 0. Is 5 a factor of m? True Suppose 15*o - 21*o - 66 = 0. Let l(m) = m**3 + 10*m**2 - 10*m + 25. Is 14 a factor of l(o)? True Suppose a = -3*a - 3*a + 3311. Is 2 a factor of a? False Let m(u) = -u - 15. Let x be m(-11). Let p be 22/(-4*x/(-8)). Let c(f) = -f**3 - 10*f**2 + 8*f + 22. Does 6 divide c(p)? False Let k be 80*(-7)/(105/6). Let l = -18 - k. Does 7 divide ((-132)/l)/(2/(-14))? False Let n = 448 + -304. Suppose -4*f + n = -884. Does 23 divide f? False Let w(z) = -3*z**2 + 4*z - 15. Let k(v) = v**2 - v + 1. Let f(b) = 5*k(b) + w(b). Does 7 divide f(-5)? False Is 11 a factor of 40*(9 - (-54)/5)? True Let l be 461 - (-3 - (1 - 7)). Suppose l = 2*j - 62. Suppose -2*w + 251 = 5*a, 2*w - 3*a - j = a. Is w a multiple of 32? True Let z = 168 - 141. Does 5 divide (-5)/((-135)/4917) + (-3)/z? False Is (-2)/(4/(-12)*(-21)/(-11123)) a multiple of 7? True Let l(q) = 6*q**2 + 43*q - 416. Is l(16) a multiple of 7? False Suppose -66 + 72 = 2*b. Is (-255)/(9/(-3)) + (b - 0) a multiple of 22? True Suppose -a = -26*o + 25*o - 567, 5*a - o = 2823. Is a a multiple of 3? True Let i be (-6)/9 - (0 + 6981/(-9)). Let r = i + -370. Let x = r + -277. Is 32 a factor of x? True Let u(c) be the second derivative of c**4/12 + 5*c**3/6 - 2*c**2 - 9*c. Let v be u(-6). Is (-1)/v*130/15*-3 a multiple of 13? True Let g = 193 + -188. Is 1/(-2) - ((-3159)/18 - g) a multiple of 6? True Is 63 a factor of (84/49)/((-10)/(-9485))? False Does 28 divide ((-124)/(-10) - -2)/((-10)/(-8400)*4)? True Suppose -7*n - 81 = -10*n. Suppose n*p + 344 = 6959. Is p a multiple of 7? True Let j(v) = -17*v - 47. Suppose 11*x - 56 = 19*x. Does 4 divide j(x)? True Let b(o) = -165*o + 99. Does 29 divide b(-9)? False Let f = -2448 + 2693. Is f a multiple of 3? False Suppose -q = -4*c - 11 - 6, 5*c = -15. Let n = -7 + q. Is (3/(-9))/(n/42) a multiple of 7? True Let c be (-2)/1 - -10 - (-26)/(-13). Let f(d) = 11*d**2. Does 22 divide f(c)? True Let w be (-296)/(-4) - (-15)/(-5). Suppose t - w = 218. Does 17 divide t? True Let x(f) = 38*f**2 + 51*f + 387. Is x(-12) a multiple of 33? True Suppose b - l + 2*l = 7, 2*b - l = -1. Let z(m) = -5 - b + 9 - 8*m - 4. Is z(-1) even? True Let h = -4794 - -5224. Is 20 a factor of h? False Let k be (-231)/(-15) - ((-18)/15)/(-3). Let h = -10 + k. Suppose -h*i + 12 + 18 = 0. Is i a multiple of 3? True Let i(c) = c**2 + 14*c - 2. Let x be i(-12). Let f = x + 28. Is (-48)/(-5) - f/(-20)*4 a multiple of 5? True Let s be (-6)/(-12)*(-314)/(-1). Let y = 41 + -37. Suppose s = y*h - 171. Is h a multiple of 12? False Suppose -4*t + 3*t - 26 = 0. Let r = t + 31. Is 3 a factor of (-6)/12*(r + -1) + 15? False Suppose 0 = 65*l - 71*l + 6. Does 29 divide (-5 + (38 - 4))/(l/3)? True Let n be ((-139)/4)/((-33)/264). Let q = 472 - n. Is 6 a factor of q? False Suppose a + 5609 + 9241 = 3*c, 0 = -3*c - 3*a + 14850. Does 11 divide c? True Suppose 8 = 2*x - 0. Suppose -m - x*m + 15 = 0. Suppose m*d + 52 - 304 = 0. Does 21 divide d? True Let g be 6 + 4/(-3)*(-21)/(-14). Let s be g/(-2) - (3 + (-8)/2). Let x(h) = -11*h**3 + 3*h**2 + 2*h. Is 4 a factor of x(s)? True Let g(a) = a**3 - 18*a**2 - 21*a + 65. Let j be g(19). Let h = 95 - j. Is 6 a factor of h? False Let w(y) = 2*y**2 - y - 15. Let i(b) = 11*b + 84. Let l be i(-7). Does 19 divide w(l)? True Suppose -2*o = -5*z + 547, 4*o = 2*z + 3*z - 539. Suppose -114*v = -z*v - 96. Is v a multiple of 4? True Let i be (16/6)/(-2)*(-2 - -35). Let b = i - -44. Is -2*(-1 + 49/(-2)) + b a multiple of 17? True Let g(x) = 33*x**2 + 30*x**2 - 88*x**2 + 34*x - 4 + 30*x**2. Is 22 a factor of g(-8)? True Suppose 4*o - z = 20859, 20*z + 20865 = 4*o + 17*z. Does 22 divide o? True Let s(i) = 3*i**3 + 75*i**2 - 23*i - 20. Is s(-25) a multiple of 7? False Is (-5 - (-24)/6)*(-1461)/3 a multiple of 24? False Let r be 4 - (3468/(-18) - 4/(-6)). Let c = -148 + r. Does 16 divide c? True Let t be -2 - 0 - (-18 - 138). Let s = t + 287. Is 63 a factor of s? True Is -681*6/3*(-1)/2 a multiple of 5? False Let r(l) = 37*l**2 - 8*l + 36. Let b be (-4)/10 - (-4 + 6/10). Is r(b) a multiple of 23? True Suppose -c + 5*s + 3020 = -427, -3*s - 13737 = -4*c. Does 22 divide c? True Let p = 6 + -1. Let o be 1 + -7 - (-17 - 286). Suppose p*i - 93 = o. Does 37 divide i? False Let v = 637 - 317. Suppose -3 = -3*d, 2*y - 2*d = 630 + v. Does 14 divide y? True Suppose -5*l + 10*l + 25 = 2*m, 4*m = 5*l + 35. Suppose m*f + 4*f = -81. Does 9 divide (-704)/(-9) - ((-20)/f - 2)? False Let x be (-3 - 29/(-9)) + 38/(-9). Let r be (2/x)/(10/(-140)). Suppose 0 = -r*y + y + 126. Does 7 divide y? True Suppose 246 = -256*j + 257*j. Suppose -q + 4*k = -2*q + j, 4*k - 1310 = -5*q. Is q a multiple of 18? False Suppose 8*j + 20 = 116. Let z(k) = -k**2 + 11*k + 19. Let i be z(j). Suppose i*y + 637 - 1540 = 0. Is y a multiple of 21? False Suppose g = -2*g + 4254. Suppose -6*f - 202 = g. Let q = f + 409. Does 46 divide q? False Suppose 6*l + 172 = -50. Let g(r) = -6*r**2 + 2*r + 3. Let v be g(3). Let f = l - v. Is 3 a factor of f? False Suppose -25*n + 1440 + 9110 = 0. Does 4 divide n? False Suppose -18 = -4*y + v + 47, 4*v = 12. Let o = 64 + y. Does 9 divide o? True Suppose -38*b = 59*b + b - 144354. Does 3 divide b? True Let w = -7 - 2. Let s(q) = -13 - 26 + 33 - 15 - 5*q. Does 4 divide s(w)? True Suppose 3*g = 8*g - 25. Suppose -7*r + g = -23. Suppose -4*n + 174 = 3*u, -r*n + 2*u + 184 = -0*u. Is n a multiple of 9? True Let f be 28/84 + (-11)/(-3). Suppose 0 = -2*r - 0*r - 2*p + f, 4*p = -r + 2. Suppose 2*h + 3*w = 74, r*h - 3*w = h + 46. Is 7 a factor of h? False Let q(b) = -14*b + 108. Let p be q(8). Does 12 divide (p - (-92)/12)/((-4)/(-444))? False Suppose -9*s = -13*s + 12, 2*k - 5523 = s. Is 10 a factor of k? False Let l(o) = 3*o**2 + 6*o + 3. Let i be l(-7). Let r(f) = -13*f - 103. Let h be r(-12). Let j = i - h. Does 11 divide j? True Suppose -3*a = -109 - 38. Let y be -3 - -1*1 - (-46 - -30). Let b = a - y. Does 4 divide b? False Let q(v) be the third derivative of v**4/4 + 5*v**3/6 + 10*v**2. Let r be q(-11). Let m = r + 197. Is 17 a factor of m? True Let k be (-3)/4 + 105/(-84). Is 14 a factor of 4/30 + k/((-300)/43030)? False Let c(p) = p**2 - p + 14. Let o be c(7). Suppose -55*g - 16 = -o*g. Is g a multiple of 9? False Let u = 7924 + -4954. Is 18 a factor of u? True Suppose 0 = -2*p + 4*p - 22. Let l be 24/((-8)/6 + 22/p). Suppose -6 = 3*h - l. Is h a multiple of 3? False Let v(t) = -45*t**3 + 6*t**2 + 4*t - 17. Does 12 divide v(-2)? False Let s(z) = -z**2 + 13*z - 20. Let j be s(9). Suppose -c + 147 - j = 0. Is 7 a factor of c? False Suppose 2*y = -6, -f - 3*f = -5*y - 47. Suppose 45*p = 47*p + f. Is (-2012)/(-18) + ((-102)/27 - p) a multiple of 24? False Let s(d) = 3*d**2 + 9. Suppose 2*p = 4*p - 4*x, 4*p = 4*x + 8. Let t(m) = -m**2 + 8*m - 9. Let q be t(p). Is 26 a factor of s(q)? True Suppose 16*h = 19*h - 9. Suppose 2*q - 3*k - 139 = q, k = -h. Suppose -42 = 2*o - q. Is o a multiple of 11? True Suppose 43*t - 158338 = 57436. Does 26 divide t? True Let p be 18/3 + (-8)/(-4)*-2. Suppose -828 = -p*u + 4*h, -21*u - h + 423 = -20*u. Does 30 divide u? True Let u = -40 + -49. Let x = 155 + u. Is x a multiple of 22? True Let t be (46 + -5 - -3) + -3. Let f = 128 - t. Is 10 a factor of f? False Let f(y) = 11*y**2 + 4*y. Let c(g) = 1 - 2 - 3 + 2 - g. Let l be c(-4). Is f(l) a multiple of 26? True Let z = 1452 + 621. Suppose -7*d - 617 = -z. Is 52 a factor of d? True Let b(o) = -o**3 + 3*o**2 + 8*o - 14. Let j be b(4). Suppose j = y + 4, y = -2*h + 2. Suppose h = 5*k - 83. Is 6 a factor of k? False Let v(j) = -j**3 + 12*j**2 - 14*j + 45. Let d be v(11). Suppose -x - d = -4*o, -5*x - 5*o = -7 - 58. Does 8 divide x? True Let f(z) = -z**2 + 22*z + 5. Let s be 6 + (-5 - -6 - -12). Does 62 divide f(s)? True Suppose -6*v + 40 = -2*v. Let b be 13/((-390)/252) + (-6)/v. Is (b - -6) + 1/((-3)/(-189)) a multiple of 15? True Is 27 a factor of ((-8)/(-24))/(3/46647)? False Let d(m) = 5*m - 70. Let b be d(14). Suppose 2*j - 26 + 2 = b. Is j a multiple of 3? True Suppose 0 = 5*f + 3*b - 4045, -f - 3*b + 43 = -754. Suppose 0 = 4*p + h - 2204, -h + 292 = 2*p - f. Does 57 divide p? False Let j = -2012 - -3300. Does 14 divide j? True Is 1*(-5)/((-55)/20889) a multiple of 17? False Suppose 14 = 10*l - 46. Suppose z - 7*z + l = 0. Let b(n) = 115*n - 3. Is b(z) a multiple of 16? True Let j = -458 + 462. Suppose -5*p + 20 = -0*p + 3*s, 3*p - 12 = -s. Suppose -p*w - 136 = -2*r - 0*r, 0 = -j*r - 5*w + 337. Does 23 divide r? False Let u(d) = d**3 - 9*d**2 - 26*d + 507. Is u(11) a multiple of 9? False Let s(d) = -3064*d**3 - 4*d**2 - 14*d - 11. Is s(-1) a multiple of 26? False Is 71 a factor of (-21864)/(-14) - (96/56 - 2)? True Let u = -4081 - -5886. Is 10 a factor of u? False Let u(w) = 386*w + 371. Is 8 a factor of u(5)? False Suppose 770486 = 83*a + 58844. Is a a multiple of 43? False Let w(s) = -s**3 + 6*s**2 + 10*s. Let f be ((-8)/(-10))/(((-4)/(-35))/(-2)). Let b = f - -21. Is w(b) a multiple of 4? False Let i(l) = 446*l + 140. Is 54 a factor of i(8)? False Suppose -54236 = -7*a + 2*a - 9*a. Does 13 divide a? True Let q be (-87 + 8)*(0 + -1). Suppose 5*a - 301 = q. Suppose -a = 10*n - 11*n. Does 19 divide n? True Suppose -u = 3*u + 2*a - 134, -2*u + 2*a + 82 = 0. Suppose -2*b + 4*q = -0 - 18, -3*b + u = 3*q. Is 11 a factor of b? True Suppose 4*j - 19 = -11. Suppose 2*f + 3*y + 33 = 0, j*y + 46 = -2*f - 2*f. Is 11 a factor of (-7 - -8)*(0 - 2)*f? False Suppose 3*q - 11033 = -14*s + 16*s, -q + s = -3678. Does 13 divide q? False Let g be (-12)/20 + 23401/35. Suppose 5*x + 11*k - 7*k - g = 0, 4*k + 520 = 4*x. Is x a multiple of 12? True Let k(u) = u**2 - u. Let a(o) = -5*o**2 + 4*o + 7. Let j(m) = -a(m) - 3*k(m). Is 19 a factor of j(11)? False Let h(w) be the third derivative of -w**6/120 + w**5/4 + 55*w**4/24 + w**3/6 + 5*w**2 - 2. Does 6 divide h(18)? False Suppose 0 = 88*q - 105233 - 53255. Is q a multiple of 7? False Let x be ((-20)/30)/(4/(-18)). Let f be 227/x + 7/21. Suppose -12 = 4*v - 4*w - f, 2*w + 44 = 3*v. Is v a multiple of 6? True Let w = 4022 + -3580. Does 26 divide w? True Suppose 0 = -2*r + 14*r - 2604. Suppose 4*u + 231 - 35 = 4*j, -2*u + r = 5*j. Is 7 a factor of j? False Let t = -2212 + 3244. Is t a multiple of 43? True Suppose 2*r - 3*f - 5706 = 0, 132*r - 8574 = 129*r - 3*f. Is 6 a factor of r? True Let o be ((-12)/8)/(3/(-14)). Let q(w) = -7*w + 80 + o + 5*w. Does 43 divide q(0)? False Let j be 2/(1 - 2) + 4. Let z(s) = -17*s**2 + 13*s**2 + 4*s + s**3 + 13*s**j - 15 - 3. Does 7 divide z(-8)? True Let w(r) be the third derivative of r**6/120 + r**5/20 + r**4/12 + 2*r**3/3 + 15*r**2. Let n be w(-3). Let b(h) = -3*h**3 + 2*h**2 - 1. Does 27 divide b(n)? False Let o = 913 + -447. Let y = 682 - o. Is 19 a factor of y? False Suppose 7*o = 3*o. Suppose -2*b + 2*w - 1252 = -3*b, 3*w + 15 = o. Is 28 a factor of b/9 + (-4)/18? True Suppose y + z = 11, 5*y + z - 6*z - 65 = 0. Let n = 34 - y. Suppose -7*x + n + 27 = 0. Is 3 a factor of x? False Suppose 3*u + 1940 = -0*n - 4*n, -4*u = 4*n + 2584. Suppose -3*q = -r + 27, -11*r = -6*r + q - 87. Is (-24)/(-108) - u/r a multiple of 9? True Suppose 5*d - 27 = -222. Let s = d - -507. Is s a multiple of 12? True Let j = 19 - 17. Suppose -x + 54 = j*m - 6*m, -5*x = -m - 213. Is 42 a factor of x? True Suppose -12*d + 7*d + 2*o + 19375 = 0, -4*d = -o - 15497. Is 51 a factor of d? False Let z(p) = -398*p**3 - 3*p - 2. Suppose 5*w + 5*t + 15 = 0, -6 - 4 = 5*t. Is z(w) a multiple of 62? False Suppose 5*u - 9600 = -5*t, -t - 716 = -u + 1194. Is u even? False Let q(w) = -59*w**2 + 21*w + 74*w**2 - 17 - w**3 - 7. Suppose -4*b = 3*n - 21 - 55, -2*b + 2*n + 24 = 0. Does 8 divide q(b)? True Let w be (14/(-5))/((-9)/(-45)). Let i be (-6)/w - ((-1506)/14)/1. Suppose 5*a - i = 2*a. Is 12 a factor of a? True Let u be 2*-1 + -3 + 81. Let c = u + 78. Does 7 divide c? True Suppose -4*u - 3*s - 86 = u, -63 = 3*u - 2*s. Let y(g) = 3*g**2 + 50*g + 2. Is y(u) a multiple of 27? True Let w(a) = -35*a + 13. Let n be (-56)/(-21)*6/(-4). Is w(n) a multiple of 22? False Let r(c) = 21 + 100*c - 35 + 15. Is 5 a factor of r(1)? False Let w(d) = -d**3 - 19*d**2 - 17*d + 36. Is w(-21) a multiple of 13? False Let n(r) = -r**3 + 11*r**2 - 11*r - 4. Let k be n(11). Let p = 189 + k. Suppose -3*x + 98 = -4*y, y = -x + p - 22. Is x a multiple of 14? False Suppose 222 + 108 = x - 2*g, 5*x = -5*g + 1620. Is 3 a factor of x? False Let l(s) = 12*s + 71. Let j be l(15). Suppose 0 = 4*r + j - 1999. Is r a multiple of 19? True Suppose 20 = -q - 4*y - 10, 3*y - 3 = 0. Let h = 36 + q. Suppose 0 = r - h*r + 18. Is 9 a factor of r? True Let s be 1 + (-6)/4*2. Let w(u) = 150*u**2 + 2*u + 4. Let c be w(s). Suppose 0*a = -5*a + c. Is 20 a factor of a? True Is (39/(-5))/(66/(-65780)) a multiple of 13? True Let a = -235 - -341. Let n = a + 80. Is 6 a factor of n? True Let n(i) be the second derivative of i**5/20 - 3*i**4/2 + i**3/3 - 23*i**2/2 + 4*i + 9. Let z(l) = -8*l + 2. Let h be z(-2). Is 13 a factor of n(h)? True Let q(h) be the third derivative of h**5/12 - 13*h**3/6 - 5*h**2. Is 16 a factor of q(-5)? True Suppose -2*g - 23938 = -4*u, 17*g - 18*g = -4*u + 23937. Does 88 divide u? True Suppose 18*i - 26*i - 2168 = 0. Let z = i + 571. Is z a multiple of 10? True Let a = -160 - -275. Suppose -5*h = -t - 531, -5*h - 5*t = -670 + a. Is h a multiple of 6? False Let b(h) = 3*h - 2. Let y be b(4). Let z(w) = -w**2 + 9*w + 14. Let m be z(y). Let a(u) = 22*u - 5. Is 27 a factor of a(m)? False Suppose -g = 5*x + 9, -4*x + x = 5*g + 23. Let d be ((-48)/14)/(g/154). Suppose -12 = -6*a + d. Is a a multiple of 12? True Let k = 270 + -130. Suppose -4*i - k = -4*j - j, 3*j = 0. Let n = i + 70. Is 13 a factor of n? False Is 38 a factor of 2*(810 + -2) + (5 - 0/7)? False Let n = -10 - -13. Suppose 4*w = -n*o - 6, 2*o - 2*w + 3*w = 1. Suppose -3*a = -o*a - 2*v - 44, 0 = -3*a - v + 160. Is 13 a factor of a? True Let a(m) = m**3 + 5*m**2 + 4*m + 2. Let u be a(-4). Suppose u*n - d = 86, 103 = -0*n + 3*n + 5*d. Does 41 divide n? True Suppose 1925 = -15*h + 19*h - c, -5*h - 2*c + 2390 = 0. Does 60 divide h? True Suppose 3*c = -2*a + 20, 5*a - 4 = -3*c + 7*c. Suppose -3*m = 3*g - 1158, c*g + 3*m = -475 + 2017. Is 64 a factor of g? True Let t(i) = -i**3 - 5*i**2 + 14*i - 13. Let l(c) = c**3 + 5*c**2 - 2*c + 15. Let j be l(-6). Is t(j) a multiple of 31? False Let n be -779 + 2 + -4*1. Let p = n - -1117. Does 24 divide p? True Suppose 4*x + 9 + 3 = 0, -7 = -u - x. Suppose -8*z = -3*z - 2*d - 350, 0 = 2*d - u. Is z a multiple of 18? True Let b be -210*(-1)/(25/40). Let p = b - 107. Does 9 divide p? False Let w(x) = -492*x - 36. Is w(-3) a multiple of 8? True Is 6*(-42)/2*454/(-12) - 5 a multiple of 8? False Let r(a) = -19*a**3 - 2*a**2 - a - 4. Let u be r(-2). Let v = 4 + u. Is 10 a factor of v? False Is 27 a factor of (-10)/(-50)*-5 + 595? True Let r = 5319 - 4419. Is 10 a factor of r? True Let m be -3 - 34/4*-2. Let y(a) = m*a**2 + 6 + 2*a**2 + 79*a**2 - 4. Does 16 divide y(-1)? False Let z = 39 - 46. Let h(k) = 3*k**2 - 2*k - 11. Is h(z) a multiple of 7? False Let v(x) = 14*x**2 + 5*x. Let h be v(-3). Suppose -h*t + 113*t = 104. Does 25 divide t? False Let w(l) = l**2 + 4*l + 10. Suppose 4*v = v - 18. Let m be w(v). Let y = m + 9. Does 31 divide y? True Suppose 5*c + 13954 = 9*c - i, 0 = 4*c + 2*i - 13948. Is 17 a factor of c? False Let n(a) = 5*a + 10. Let r(l) = 10*l + 18. Let o(z) = 5*n(z) - 2*r(z). Suppose 0*d - 18 = -2*h - 4*d, 5*h = -3*d + 66. Is 12 a factor of o(h)? False Let j = -4307 + 6313. Does 17 divide j? True Let p = 17 - 13. Suppose u + 4 = p*j - 14, -25 = -5*j. Suppose 2*t - 58 = -4*q, -3*q = -u*t - 0*q + 72. Is t a multiple of 10? False Let b(k) = k + 2. Let g = 46 + -52. Let t be b(g). Does 20 divide (3/((-36)/(-8)))/(t/(-774))? False Let g be 14/(-3)*(-18)/(-7). Does 29 divide 1*g/9*(-165 - 0)? False Does 25 divide (-503 - -1)*6/(-12)? False Let i(q) = -q**2 + 15*q + 8. Let k be i(15). Suppose k = -4*f + 44. Is 6 a factor of (246/f*3)/(4/2)? False Let w(m) = -m**3 + 17*m**2 + 38*m - 44. Let n be w(19). Let v(u) = -3*u**3 - u**2 + 3*u + 2. Let t be v(-3). Let l = n + t. Does 21 divide l? True Is 46 a factor of -1*(-40)/30*1380? True Let o be -2 + (-1)/((-1)/4). Suppose 5*n + 0*m = -2*m + 16, 0 = o*m - 6. Suppose -5*s = -3*y + 224, y - n*s = -5*s + 98. Is y a multiple of 14? False Suppose 3*u + 4*y - 52 = 0, -2*u + 0*y + y = -20. Suppose -2*x + u = -14. Let z = 33 + x. Does 19 divide z? False Let b(q) be the second derivative of -q**5/20 - 9*q**4/4 - 13*q**3/3 + 41*q**2 + 57*q. Is 17 a factor of b(-26)? False Let o(v) = -2*v - 30. Let k be o(-22). Suppose 0 = -2*d + k - 22. Is -2*d/(-16) + (-154)/(-4) a multiple of 7? False Let a = 11939 + -4181. Is a a multiple of 27? False Let d = -40 + 44. Suppose -3*w - 220 = -d*j, -w + 3*j - 80 = -0*j. Let x = 122 + w. Does 18 divide x? True Let a = -2332 - -3312. Is 28 a factor of a? True Suppose 7*d - 44220 = 5229 - 9269. Is d a multiple of 22? False Suppose 34*d + 2490 = 54*d - 4370. Does 10 divide d? False Let s = 1758 - -2670. Does 82 divide s? True Let x = 100 - 52. Let g = x - 40. Suppose l - 8 = g. Does 4 divide l? True Is (-276808)/(-24) + (-88)/33 a multiple of 13? True Let o(x) = 4*x**2 + x - 13. Suppose -13 = 3*b - 1. Let h be o(b). Let j = 162 - h. Is j a multiple of 16? False Let a(u) = 78*u. Let m(y) = -3*y**2 - 24*y - 20. Let d be m(-7). Is 13 a factor of a(d)? True Let q = -20 - -20. Suppose 2*p = f - 12, 4*p + q*p - 24 = -f. Does 9 divide 148/f - ((-33)/12 + 3)? True Let x(d) = d + 11. Let p be x(-9). Suppose p*y = -0*y - 6. Let l = y + 33. Does 9 divide l? False Let n = -333 + 491. Let t = 235 - n. Is 9 a factor of t? False Let z(n) = 188*n - 208. Is z(4) a multiple of 2? True Let u(y) = y**3 - 18*y**2 + 65*y + 84. Is 9 a factor of u(21)? True Let t be (6 + (-96)/18)*15/2. Suppose -241 = -5*v - 4*w, -4*v + 105 + 95 = t*w. Is v a multiple of 5? True Let n = -50 - -58. Suppose n*h = -8*h + 1536. Does 32 divide h? True Suppose -300 = -4*d - 2*d. Let r = -50 + d. Suppose -4*z + 3*z + 22 = r. Does 11 divide z? True Suppose 2675 = 3*q + 282*k - 283*k, 3*q - 2677 = 2*k. Does 14 divide q? False Let t be ((-12)/(-27)*-6)/(2/(-54)). Suppose -t*j = -76*j + 344. Is j a multiple of 43? True Suppose -l + 2 = 2*b - 17, -5*b = -5*l - 10. Let i(m) = 7*m - 5. Let k(c) = 15*c - 11. Let t(w) = 9*i(w) - 4*k(w). Does 10 divide t(b)? True Let d = 24 - 22. Suppose -3*v = -3*f + 21, 0*v - 35 = -d*f - 5*v. Is 39 a factor of 44/(-10)*-11 - 4/f? False Suppose -26598 = -5*g - b, -3*g - 5*b + 9331 = -6619. Is g a multiple of 19? True Suppose -4*m - 8 = -h - 1, -m + 12 = h. Let a = 9 - h. Is 7 a factor of a + (-6)/(-1) + 46? False Let s(v) = -17*v + 81. Let p be s(-13). Suppose -448 + p = -2*m. Is 9 a factor of m? False Suppose 205*k - 200*k + 2555 = 0. Let q be 2/(-9) - (-3283)/(-9). Let v = q - k. Does 17 divide v? False Let a(v) = 11*v**2 - 9*v - 1. Let b be 3/((-1)/((-4)/(-3))). Is 11 a factor of a(b)? False Suppose -2*g + 0*g + 78 = 0. Let r = 42 - g. Suppose 4*h - 2 - 1 = f, -r*f + h + 13 = 0. Is f a multiple of 4? False Let h(l) = l**3 - 8*l**2 + 11*l - 8. Let i be h(7). Suppose -3*d - 2*c - i = 54, -2*c = -4. Let m = d + 58. Is 7 a factor of m? False Let x be 6263/7 - (207/(-63) - -3). Let r = x - 593. Is r a multiple of 10? False Suppose 10*u = 2*u + 224. Suppose 3*p = 118 - u. Suppose g = p + 9. Is g a multiple of 11? False Let h(a) = a**3 - 3*a**2 + a - 1. Let f be h(3). Let p be 5/f*(4 - 192/(-30)). Is 12 a factor of p/91 + 1004/14? True Suppose -56*b + 34629 = 3*b + 38*b. Does 21 divide b? True Let v(b) = -4 - 7*b**2 - 12 - 12*b**2 + 4*b**3 + 18*b**2. Is 28 a factor of v(4)? True Let i(m) = 75*m + 45. Suppose 7*o + 3*g - 30 = 3*o, 3*g - 6 = 0. Does 33 divide i(o)? True Is ((-274)/(-6))/(-3*(6 - 651/108)) a multiple of 4? True Suppose -4*l - 13 = s, 4*s - 7*s + l + 13 = 0. Suppose -2*m + s*n = -112, 2*n = -2*m + 3*n + 104. Is 3 a factor of m? False Let k(o) = -o**2 - 24*o + 36. Let a = 129 + -147. Does 63 divide k(a)? False Let g(w) = w**2 + 1. Let t(u) = -u**3 + 3*u**2 + 7*u. Let b(p) = 4*g(p) - t(p). Let x be b(-6). Let a = x + 198. Is 16 a factor of a? True Suppose 2*l + 2*x = 6, 5*l = 2*x - 5*x + 15. Let o(i) = 18*i**2 + 8. Let v(s) = 72*s**2 + 33. Let q(t) = 21*o(t) - 5*v(t). Is q(l) a multiple of 33? True Let q(c) = 20*c**2 + 3*c - 1. Let m be q(-1). Let f be 2*((-110)/(-4))/(-5). Is 14 a factor of (f + -24)*m/(-10)? True Suppose -7*j + 10 = -11. Suppose j*v + 18*t - 64 = 13*t, -3*t = -5*v + 50. Is v a multiple of 8? False Let j(u) be the first derivative of 7*u + 5/3*u**3 + 3*u**2 - 18. Does 17 divide j(-3)? True Let t = -35 + 37. Suppose x + t*p - 4 = -15, -2*x + 10 = -4*p. Let h = 8 + x. Is h a multiple of 5? True Let s(x) = 5*x + 103. Let i be s(-11). Suppose -i - 1122 = -5*p. Is 9 a factor of p? True Let x = -39 + 41. Suppose 5*h - n - 312 = -x*n, -n = -2. Is h a multiple of 6? False Let s = -11082 + 16998. Is 102 a factor of s? True Let w(q) = -q**3 + 12*q**2 - 17*q - 18. Let v be w(11). Is 10 a factor of (1*-13)/(-11 - v/8)? False Suppose 0 = -195*l + 202*l - 6720. Is l a multiple of 24? True Let w be 10/(-20) + (-539)/(-2). Suppose 5*r + w = -5*s + 2879, 2*r - 1048 = -4*s. Does 13 divide r? True Suppose -3*p - n + 373 = 0, 2*n + 16 - 6 = 0. Let i be ((-120)/160)/((-1)/8). Suppose -u + p = i*u. Does 10 divide u? False Suppose -4*n + 684 = -4*v, -5*v + 79 = 2*n - 298. Suppose -5*u + 3*r = -316, 5*u - 132 = -r + n. Does 10 divide u? False Let b(i) be the second derivative of 217*i**4/12 - i**3/6 + 3*i**2/2 - 47*i. Is 25 a factor of b(1)? False Suppose -2*t + 5*t = 3*m - 6, 0 = m - 2*t - 4. Suppose 4*s + 220 = 4*i, 2*i + 4*s - 17 - 105 = m. Let j = -46 + i. Is j a multiple of 9? False Let r(l) = -l**3 - l**2 + 84*l + 42. Is r(-16) a multiple of 27? True Let z = 35 - 36. Let c be (-3)/(3 + z + -3) - -18. Suppose -29*n + 32*n - c = 0. Is n a multiple of 4? False Suppose -4*f + x = -46, -3*x = 2*x - 10. Let h(j) = 7*j - 69. Does 3 divide h(f)? True Suppose -73*o + 69*o + 15357 = u, 0 = 3*u - 15. Is 34 a factor of o? False Let p(s) = s**3 - 9*s**2 + 5*s + 2. Let n be p(9). Let y = 49 - n. Suppose -z = 3*r - 15 - 206, 0 = -y*z + 10. Does 13 divide r? False Is (-150)/(-90) - (-28902)/9 a multiple of 17? True Let u be (64/(-96))/(2*(-1)/6). Suppose -3*b + 6*b + 2*i = 329, u*b + 5*i - 234 = 0. Does 23 divide b? False Suppose -14*h - 519 = -11*h. Let x = -62 - h. Is 7 a factor of x? False Suppose -20*u = -14*u - 18096. Is 13 a factor of u? True Let p = 3609 - 3261. Does 12 divide p? True Does 144 divide (-30192)/(-60) - (3 - ((-252)/15)/(-6))? False Suppose 11*d - 7141 = -24*d + 45709. Is 6 a factor of d? False Let a be -3 - ((-32)/112 - (-19)/(-7)). Is 15 a factor of 113 - (a/(-1))/5? False Let v(y) be the third derivative of -y**5/60 + y**4 - 7*y**3 + 27*y**2. Does 21 divide v(13)? False Let c(x) = 5*x**2 + 4*x - 27. Is c(7) a multiple of 6? True Suppose f = 4, -4*f - 73 + 21 = -4*i. Let m = 353 + i. Suppose o - 124 = -2*w, o - 5*w + m = 4*o. Does 15 divide o? True Is 12 - 21/((-252)/31272) a multiple of 11? True Let a be ((4 - 0) + -3)*-8. Let f(y) = -10 + 8*y**2 + 10*y + y**3 - 24*y + 9*y + 0*y**3. Is f(a) a multiple of 6? True Let h(c) = c**3 - 2*c**2 - c + 8. Let w be h(0). Let p be 16*(-4)/w*1. Is 2967/(-42)*-2 + p/28 a multiple of 17? False Let j(c) = 7*c**2 - c**2 - 31 + 0*c**2 - 3*c**2 + 9*c. Is 23 a factor of j(3)? True Suppose 6 = 11*w - 9*w. Suppose 12 + 304 = g. Suppose w*m - g = -m. Is m a multiple of 17? False Suppose -15*i + 20437 - 3637 = 0. Is 4 a factor of i? True Let r = -2429 - -5241. Is 19 a factor of r? True Let b(v) = -15*v + 449. Is 28 a factor of b(-13)? True Let z = 4615 - -2082. Is z a multiple of 31? False Let v = 65 - 4. Suppose -y - 2*c + 7*c + 8 = 0, 5*y = 4*c + v. Is y a multiple of 13? True Let c = 3533 - 3451. Is c a multiple of 4? False Let u(k) = -2*k - 19. Let q(i) = -i. Let j(b) = 4*q(b) - u(b). Let n be j(10). Does 10 divide n/((-2)/210) - 3? False Let x(t) = t**2 + 21*t + 2. Let j(r) = 4*r - 9. Let g be j(-3). Let u be x(g). Suppose f - 477 = -5*n, -u*n = -5*n + 4*f + 277. Is n a multiple of 42? False Let r = 376 - 981. Let t = -113 + r. Is 6/24 + t/(-8) a multiple of 9? True Let f = 864 + 934. Is 65 a factor of f? False Let j(l) = 552*l**3 - 5*l**2 - 10*l + 15. Is 24 a factor of j(1)? True Suppose 0 = -52*y + 3543 - 943. Is 5 a factor of y? True Let t(h) = -998*h**3 + 3*h**2 - 4*h. Is 69 a factor of t(-2)? True Suppose 4*n + 2*f = 1784, -71*n = -76*n + 8*f + 2272. Is n a multiple of 8? True Suppose 2*k - 3*h - 6316 = 0, 2*k - k + 2*h - 3172 = 0. Is k a multiple of 14? True Let v(q) = 30*q + 4. Let w be v(-8). Let b = -99 - w. Does 15 divide b? False Suppose 7*r + 54 = 446. Suppose 5*f = -q + 280, 0 = 5*f - 4*f + q - r. Is 8 a factor of f? True Is 66/(-1)*(-7)/((-210)/190)*-3 a multiple of 66? True Suppose -24*p = p - 16*p - 666. Is p a multiple of 74? True Suppose -60*i + 120607 = 5827. Does 6 divide i? False Let t = -29 - -8. Is t*((-14)/(-6))/(-7) a multiple of 3? False Let w be ((-3)/(-3) + 0)*(2 - -13). Let g(n) = 9 - 35*n - w + 16. Does 16 divide g(-2)? True Suppose 17 = 4*m + 49. Let a = m - -27. Suppose -a = 4*d - 651. Is 29 a factor of d? False Let t be 2/(-10) + 5508/90. Suppose 5*b = p - t, 2*p + 9*b = 6*b + 57. Is 18 a factor of p? True Suppose 5*m = 3*h - 25, 2*m = -3*h + 3*m + 29. Suppose 0 = -i - 16 + h. Is 20 a factor of (16/i)/(2/(-60))? True Let a = 1401 - 966. Suppose -720 - a = -3*b. Is 24 a factor of b? False Let s(f) = f**3 + 48*f**2 + 9*f + 220. Is s(-44) a multiple of 104? False Suppose -46*j = -41*j - 5. Let l be 35/14*(j + 1). Is 595/l - -3*1 a multiple of 33? False Suppose 2 = o, o = -4*c - 34 + 1508. Suppose -a - 3*a = -c. Is a/9 + (-14)/63 a multiple of 6? False Let d(r) = r**3 + 25*r**2 - 65*r - 819. Is d(-21) a multiple of 42? True Let k(r) be the first derivative of -65*r**4/2 - r - 24. Suppose -3*x - j = 6, 2*x = -2*j - j - 11. Is 33 a factor of k(x)? False Let c = 9 + 26. Let j = c + -30. Suppose -j*g + 4*g = -35. Is g a multiple of 4? False Let h(y) = 24*y**2 + 46*y - 330. Does 70 divide h(11)? True Let w(c) = 39*c**3 + 10*c**2 - 27*c + 12. Does 137 divide w(6)? False Suppose -21 = -3*g - b, b - 5*b + 21 = 3*g. Let x be -3 - (-1)/(1/g). Suppose -7 = q + 5*p - 91, -x*p = -q + 102. Is q a multiple of 9? False Let v(y) = 31 + 9*y**2 - 13 - 12 - 3*y - 9. Is 8 a factor of v(-2)? False Is 29 a factor of ((-1450)/8)/((-5)/160)? True Suppose -15516 = -5*k + 20353 - 8934. Is k a multiple of 55? False Suppose -12*j = -15335 - 6025. Does 28 divide j? False Suppose -2*s + 4*g + 11339 + 277 = 0, 2*s - 11615 = 5*g. Is 9 a factor of s? False Let h = 48 - 43. Suppose -5*a + 1 + 101 = -2*q, -90 = -5*a + h*q. Suppose -58 + a = -l. Is l a multiple of 9? True Let a(s) = 3*s**2 + 38*s - 22. Let w be a(-16). Suppose -2*q = o - w, 0*q - o = 5*q - 348. Is 12 a factor of q? False Let a(i) = i**3 - 9*i**2 - 20*i - 9. Let r be a(11). Suppose 7*b = -r*b + 4400. Does 30 divide b? False Suppose -2*t + 15 = 3*u, -7*u + 5*u - 40 = -2*t. Does 11 divide 1 + 492/5 + (-6)/t? True Is 450/(-180)*25152/(-10) a multiple of 125? False Suppose 2*g + 6 = -36. Let b = g + 32. Suppose o - 47 + b = 0. Is o a multiple of 13? False Let m(r) = -r**3 - 5*r**2 + 5*r + 18. Is m(-6) a multiple of 2? True Let u(j) be the first derivative of -2/3*j**3 + 0*j**2 + 13 + 1/4*j**4 - 6*j. Is u(4) a multiple of 5? False Suppose -2*b + 3*y = 476, 5*y = 2*b + 3*y + 478. Let t = 542 + b. Is 43 a factor of t? True Suppose 2*t - 4 = -0*t, -5*y = -t - 423. Suppose 5*q = 5*f + 375, -3*q - y = -4*q - 4*f. Does 17 divide (-1)/6*-6*(1 + q)? False Let c(w) be the second derivative of w**6/180 - w**5/6 - 5*w**4/12 + 14*w. Let d(a) be the third derivative of c(a). Is d(18) a multiple of 11? False Let i = -2797 + 3879. Does 4 divide i? False Let r = -34 + 64. Suppose -2*q = -4*k + r, -3*k - 3*q + 30 = -6*q. Is 18 a factor of (6*6/27)/(k/405)? True Let l = -1456 - -1453. Let t(v) be the third derivative of -v**6/120 - v**5/60 - 5*v**4/24 - v**3/2 + v**2. Is t(l) a multiple of 10? True Is 24 a factor of (-6 + -1)*(-8538)/21 - -7? False Is 36 a factor of ((-97)/(-291))/(2/26346)? False Suppose r + 219 = 2*l - 7*l, l - 3*r = -47. Suppose 16 = -5*x + 3*x. Let k = x - l. Does 5 divide k? False Let h be 1309/44 - (-3)/(-4). Let s = 38 - h. Suppose -s + 65 = y. Does 14 divide y? True Let q = 181 + -181. Is 9 a factor of q*(-3)/9 - 114/(-6)? False Is 27 a factor of 2/(-13) - (1507560/26)/(-20)? False Let v(x) = x + 9. Let g be v(0). Let i(p) = 2*p + 27. Let o be i(g). Let d = o + -20. Is 25 a factor of d? True Let x = 3203 - 1511. Is x a multiple of 19? False Let q be (-19)/(-5) + (-14)/(-70). Let g be (q/(-18) - 0) + (-180)/(-81). Is g/((-4)/6) + 25 a multiple of 3? False Let v be (-1 + (-3)/(-5))/(4/(-40)). Suppose -177 + 45 = -v*y. Is 15 a factor of y? False Let l = 262 + 22. Is 3 a factor of l? False Suppose 51*z = 63565 + 31040. Does 35 divide z? True Suppose 4*w + 3*w - 945 = 0. Let d = w + -10. Suppose 31 = -2*k + d. Does 12 divide k? False Suppose -5*p = 1 - 6, 5*p + 15 = 5*c. Let q(z) = 13*z**2 - 7*z + 9. Is 21 a factor of q(c)? True Let z = 4581 + -3561. Is z a multiple of 34? True Suppose 14*j - 24677 = 27809. Is j a multiple of 16? False Let u = 9501 + -4221. Does 24 divide u? True Let f(h) = -h**3 - 12*h**2 - 38*h - 389. Does 7 divide f(-13)? False Suppose 36*j - 2 = 35*j. Suppose -d + p = -j*d + 140, d + 3*p = 150. Does 9 divide d? True Suppose p - 5122 = -4*w - 825, 5*p + 1069 = w. Suppose -3*g = -3*f - w, -g - 1456 = -5*g - 4*f. Does 13 divide g? False Suppose 0 = 6*h + 30 - 54. Suppose 2*m + 5*x + 186 = h*m, -2*x = m - 84. Is m a multiple of 22? True Suppose -4*d = -4*k - 784, -4*k - 5*d = 211 + 591. Let w = k + 364. Suppose -20 = -3*p + w. Is 13 a factor of p? False Let y be 242/10 + (-1)/5. Suppose 21*b - 16*b - 235 = 0. Let g = y + b. Does 22 divide g? False Suppose 351456 = 53*l + 115*l. Is 8 a factor of l? False Suppose -3*w = 3*w - 8184. Suppose -319*t = -315*t - w. Is t a multiple of 11? True Let k be 416 - ((10 - 1) + -6). Let w = k - 284. Does 19 divide w? False Let d be 2/5 - 130/(-50). Let w(m) = -3*m + m - 1 - m + m**3 - d*m**2. Is 17 a factor of w(5)? True Suppose 0 = 45*z - 8701 - 28424. Is z a multiple of 15? True Suppose -5*u = -l - 2985, 3*u + 4*l - 2412 = -u. Suppose 0 = r + 4*x - 574, 3*r - 2*r - 2*x - u = 0. Is r a multiple of 46? False Let v(s) = -100*s - 1. Let k(x) = x. Let l(j) = 5*k(j) + v(j). Let i be l(1). Is 10 a factor of 1/(i/98 + 1)? False Suppose 13*v + 160 = 5*v. Does 16 divide ((-1134)/(-45))/(56/v + 3)? False Let c(x) = -3*x**2 + 16*x - 5. Let v be c(15). Is v/(-6)*(55/10 + -4) a multiple of 4? False Let l be (1 - -13)/((-8)/20*5). Let r = 3 - l. Does 3 divide 171/15 - (-6)/r? True Suppose -16*w - 420 = -6*w. Let k = w - -34. Let l(m) = -m**3 - 7*m**2 + 3*m - 17. Does 22 divide l(k)? False Let t(g) = -g**2 - 16*g + 299. Does 64 divide t(-23)? False Suppose -5*j + 22 = -b, 4*j - 3*j = -3*b + 14. Does 16 divide (16/j)/((-40)/(-1600))? True Suppose -25*f + 153 = 5*p - 28*f, -p = 4*f - 26. Is p a multiple of 15? True Let w(j) = -j**3 + 35*j**2 + 3*j - 20. Is w(17) a multiple of 74? False Let i(m) = m**2 - 4*m - 17. Let q be i(7). Suppose 3*j = -4*f - 0*f + 29, -q*j = -5*f - 18. Let k(n) = -n**2 + 10*n + 16. Does 8 divide k(j)? False Suppose -4*b + 412 = -2*u - 410, -213 = -b - 2*u. Suppose -5*s + b + 1053 = 0. Is s a multiple of 36? True Suppose 0 = 2*r + 4, 0*r = 4*q - 5*r - 10418. Is q a multiple of 27? False Let l(j) = -3611*j**3 + 97*j + 96. Is l(-1) a multiple of 38? True Let r = 32 - 31. Let k be r/(-1)*(-2 - 0). Suppose 4*p - 6*p + 2*u + 298 = 0, -k*p = 4*u - 304. Is 40 a factor of p? False Let a(g) be the second derivative of g**3/3 + 9*g**2/2 - 12*g. Let b be a(-5). Is 8 a factor of (b - 6/(-2)) + (59 - -1)? False Let k(w) be the third derivative of w**6/120 - 7*w**5/60 - w**4/3 - 13*w**3/2 - w**2 - 5*w. Does 3 divide k(9)? True Suppose 4*o + 2*k - 57 = 63, 0 = -4*o - 3*k + 122. Let v(c) = c**3 - 29*c**2 + 4*c - 20. Is 8 a factor of v(o)? True Let p = 1812 - -1434. Is p a multiple of 41? False Suppose -20*r + 19*r = 166. Let y = r - -330. Does 13 divide y? False Suppose p = -m - m + 194, 790 = 4*p + m. Suppose 0 = -4*z + p + 222. Does 7 divide z? True Suppose 4*c - 2*c = 3*a + 162, 4*a = 5*c - 419. Suppose c + 46 = -p. Is (-93)/(-7) + 38/p a multiple of 6? False Suppose 3*k - 1 + 12 = 2*c, -3*k = -4*c + 25. Is 35 a factor of 9348/133 + (-2)/c? True Let l be (-19567)/119 + 8/(-14). Let j = l + 344. Is 8 a factor of j? False Let v(d) = 152*d - 612. Does 58 divide v(41)? False Suppose 0 = -5*d - 4*w + 45, 9*w - 12*w + 10 = -d. Suppose v = d*f - 1278, 1429 = 5*f - 3*v + 145. Is f a multiple of 15? True Let x = -32 + 34. Let v be x - ((-651)/6)/7*6. Suppose -v - 37 = -3*d. Is d a multiple of 12? False Let i(a) = 6*a**2 + 11*a - 2. Let k(v) = 30*v**2 + 56*v - 9. Let z(y) = 11*i(y) - 2*k(y). Is 10 a factor of z(3)? False Suppose 3*x + 2*v = 5074, -1 = 3*v - 7. Is 10 a factor of 6 + -3 + -2 + x/10? True Let m = 107 - 102. Suppose m*n - 4*i = 555, -n - 3*i = -5*n + 445. Is n a multiple of 5? True Suppose -261*m + 256*m - 4*b = -3659, 5*m + 3*b - 3658 = 0. Is m a multiple of 5? False Let l(a) = -30*a**2 - 21*a - 69. Let k(f) = -45*f**2 - 32*f - 104. Let i(d) = -5*k(d) + 7*l(d). Does 21 divide i(-5)? False Suppose 6*j - 2932 = -9*v + 7*j, -2*v + 5*j + 642 = 0. Is 19 a factor of v? False Is 30 a factor of 2/(-18)*-2 + (-230742)/(-486)? False Let b(p) = -p**2 + p - 2. Let n(g) = 4*g - 6. Let a be n(2). Let c be b(a). Does 15 divide (2 + c)/6*-402? False Suppose -l - 42 = i, -4*l + 4*i - 57 = -3*l. Let m = l + 185. Is 14 a factor of m? True Suppose -2*j - 2*d + d + 337 = 0, -4*j = 5*d - 677. Suppose -14*m - j = -17*m. Let s = m + -30. Does 10 divide s? False Let y(v) = -6*v**3 + 3*v**2 + 2*v + 3. Let s be y(-2). Suppose p - n + 5*n - s = 0, 3*p + 2*n = 227. Is p a multiple of 10? False Suppose 0 = 3*k + 5*f + 34, -k - f = 2*f + 14. Is 10/k - (-5274)/72 even? True Suppose 0 = -k - 5, -2*f + 13 = -3*k + 2*k. Suppose f*q = 4*z - 3*z + 232, -3*q - 2*z = -174. Is 5 a factor of q? False Suppose -9*f + 9 = -8*f. Suppose 3265 = -f*a + 14*a. Suppose -3*d = 218 - a. Is 43 a factor of d? False Suppose 13*o - 6*o = 5*o + 18642. Is 26 a factor of o? False Let b(n) = 2*n + 30. Let a be b(-11). Let g(m) = 73*m**2 - 3*m - 3. Let r be g(-2). Suppose a*c - 13*c = -r. Is 14 a factor of c? False Is 32 a factor of (0 - (-4004 - 3)) + (-7)/1? True Let w(c) = 2*c**3 - 23*c**2 - 31*c - 74. Is w(22) a multiple of 14? True Let g be 1068/2*(-37)/(-74). Suppose -2*c = -2*r + c + 537, -g = -r + 3*c. Is r a multiple of 30? True Let s(t) = -t**3 + 28*t**2 + 37*t + 68. Does 66 divide s(27)? False Suppose 0 = 2*v + 21*s - 20*s - 732, -3*v + 1107 = -3*s. Is 2 a factor of v? False Let s = -265 + 276. Let k(w) = w**3 + 3*w**2 + w - 1. Let b be k(-3). Let q = s - b. Is q a multiple of 5? True Suppose 14*j = -40269 + 162209. Is j a multiple of 174? False Suppose b + 11553 = 3*c, 4*c + 8*b = 7*b + 15397. Does 22 divide c? True Let h(r) = r - 3. Let i be h(5). Suppose 47*k = 41*k. Suppose k = i*q - 17 - 127. Does 12 divide q? True Suppose -4*w + 18713 = 4405. Does 49 divide w? True Let g = 4578 - 4181. Is 12 a factor of g? False Suppose 12*u = 16*u + 4. Let i be (u - 2)/((-9)/21). Let s = 95 + i. Is 13 a factor of s? False Let j = -2280 + 5208. Is 12 a factor of j? True Let f = -3246 + 5955. Does 7 divide f? True Let j be (-2 + 1 - -1) + 2 + 1. Suppose 3*m + j*m - 3*m = 0. Suppose 5*l = -m*l + 4*b + 220, 3*l - 139 = b. Is 16 a factor of l? True Let j be (-301)/(-2) + (-9)/18. Let c be (1530/j)/((-2)/(-10)). Let i = c + 8. Does 28 divide i? False Let q(u) be the third derivative of 3*u**5/5 + u**4/3 - 13*u**3/6 - 53*u**2. Is q(3) a multiple of 47? False Suppose 203 = -2*o + 595. Let z = o + -140. Is z a multiple of 28? True Let o be ((-447)/(-9))/((-1)/3). Let a = -89 - o. Does 2 divide a? True Suppose 4*f + 3*w = 909, 0*f - 3*f + 679 = 5*w. Let t = 470 - f. Is 8 a factor of t? False Let h be 2/(-6) - 92/(-6). Suppose -4*t + h + 5 = 0. Suppose -b - m + 147 = b, 0 = -3*b + t*m + 188. Is b a multiple of 15? False Suppose 2*z - k - 163 = 0, -7*z = -2*z - k - 415. Let x = -3837 - -3817. Is (x/(-30))/(2/z) a multiple of 7? True Suppose 3089 = 2*p - 7886 - 2935. Does 22 divide p? False Let f(u) be the third derivative of 13*u**7/2520 + u**6/360 + u**5/30 - u**4/2 + 4*u**2. Let a(g) be the second derivative of f(g). Does 23 divide a(-3)? True Suppose -12*u + 16*u = -24. Does 22 divide 2/u + (-1)/(-3)*67? True Let k(p) = -p + 508. Let w be k(0). Suppose -w - 422 = -5*m. Let n = -39 + m. Is 20 a factor of n? False Let l(x) = -x + 5. Suppose 4*b + 3 = -5*m, -2*b + 4*m = 3*m + 5. Let r be l(b). Suppose -24 = -r*q + 6*q. Is q a multiple of 3? True Let z(f) = 5*f**2 + 2 - 2 + 0 + 21*f - 2. Does 25 divide z(-8)? True Let x(u) = -u**3 - 49*u**2 - 81*u - 342. Is 18 a factor of x(-48)? True Let r be 51/6 + (-6)/4 - -3. Suppose -4*t - 272 = -3*n, 7*t + r = 2*t. Is 11 a factor of n? True Let y(a) = -a**2 + 8*a - 5. Let b be y(5). Let w(f) = f**2 - 8*f + 2. Let u be w(12). Suppose o - u = b. Is 6 a factor of o? True Let p(q) = 2*q**3 - 120*q**2 - 162*q - 52. Does 29 divide p(62)? False Let l be (1 + 2)*((-30)/18 + 3). Let u(q) = q - 12. Let v be u(l). Let t(w) = -14*w - 10. Does 34 divide t(v)? True Let f = 47 + -48. Let p be 88/16 + f + 1/(-2). Suppose -5*x = -3*j + 215, j + p*x = 2*x + 57. Is 13 a factor of j? True Suppose 25 = 7*n - 2*n. Suppose n*q + 0*r = r - 195, -3*r = 15. Let y = q - -48. Is 8 a factor of y? True Suppose 461 = 14*p - 1597. Suppose -3*u - p = -2*n, 2*n + 2*u - 31 = 101. Does 26 divide n? False Let w(v) = -11*v - 10*v - 6*v**2 - 2*v**3 + 2659 - 2671. Is w(-5) a multiple of 27? False Let p(x) = 2*x + 5. Let k be p(-1). Is (k/((-3)/1))/((-12)/1296) a multiple of 27? True Suppose 6*x = x - 3*g + 636, -4*g + 638 = 5*x. Let t = x + 66. Suppose -4*p = -2*p - t. Does 24 divide p? True Let y(j) be the second derivative of j**4/4 + j**3/2 + 5*j**2/2 - 2*j. Let r be y(-2). Suppose 3*o - 6*x = -x - r, -2*o - 2 = -2*x. Is o a multiple of 3? True Suppose -c + 2*h = 56, 5*c + 116 = 5*h - 149. Does 11 divide 0/(-2) - 4 - (c + 2)? True Let m = -4529 - -5012. Does 10 divide m? False Suppose -4*t = 3*s - 84, 0 = 2*t + t. Let g = s + 239. Does 19 divide g? False Let f = 582 + -480. Is 2 a factor of f? True Let p = 24 + -32. Let j(k) = -k**3 - 8*k**2 + 2*k - 6. Let y be j(p). Let h = 30 + y. Does 3 divide h? False Suppose 2*u - 4*u - 1 = -3*h, -5 = h - 2*u. Suppose -x = h*x - 512. Is 39 a factor of x? False Does 29 divide (-3799)/174 + 22 + 9221/6? True Let y = -4439 - -6707. Is y a multiple of 21? True Suppose 5*q + 4*m - 1365 = 0, 4*q - 1092 = 45*m - 43*m. Is 39 a factor of q? True Let n be (-2)/(-3*3/1800). Is (8/(-44) - n/(-385))*217 a multiple of 31? True Let j = 48 - 31. Suppose -27 + j = -5*u. Suppose -589 = -5*s + 3*m, -4*m + 198 = u*s - 48. Is 14 a factor of s? False Let o be -4 + (-2)/(-3 - -1). Let h(z) = -z**3 - 2*z**2 + 2*z + 2. Let f be h(o). Suppose 5*i = -f*b + 3*b + 465, -i = -2*b - 93. Is i a multiple of 14? False Suppose 0 = -24*f + 25*f - 2. Suppose g + 5 = f*g. Suppose -b + 456 = g*b. Does 19 divide b? True Let c be ((-3)/9)/(-3 - (-128)/42). Let r(o) = -o**3 - 5*o**2 - 7*o - 22. Does 25 divide r(c)? True Let u = 5878 + -3106. Does 7 divide u? True Suppose -60*x + 6303 + 571 = -1526. Is x a multiple of 2? True Suppose -5*a = 5*w - 10, 16 = 2*a + 5*w - 7*w. Suppose 0 = h - a - 66. Is h a multiple of 8? False Let p(n) = -2*n**2 - 162*n - 660. Is 2 a factor of p(-73)? True Let a(s) = -s - 28. Let v be a(-30). Suppose 40 = v*n - 64. Does 13 divide n? True Let j be ((-33)/6 + 1)*(-8)/18. Suppose 90 = j*f - 5*c, f + 90 = 3*f - c. Does 15 divide f? True Suppose 13*z + 185 = 718. Is z a multiple of 7? False Let f(n) = -n**3 - 9*n**2 + 8*n + 1. Let t be f(-10). Is (-9*t/36)/(6/(-416)) a multiple of 26? True Let p be 5 + (4 - (-6 - 111)). Suppose -p = -5*r + 3*u, 5*r = 3*r + u + 50. Does 8 divide r? True Is 11 a factor of -4*(-1 + (11972/(-16) - 20/(-5)))? True Suppose -2*g + y = 164, 0*g + 5*g = -5*y - 380. Let v = 89 + g. Does 9 divide v? True Suppose 0 = 4*k - 3*j - 10223, 2*j + 3545 + 1569 = 2*k. Does 29 divide k? True Let f(g) = 19*g**2 - 49*g + 438. Does 44 divide f(10)? True Let j(y) = y**2 - y**2 + 20 + y**2 - 25. Is 19 a factor of j(9)? True Suppose h - 3*m - 335 = m, -5*m = 25. Suppose 0 = 5*l - 5*u - h, l - u = -3*l + 261. Is l a multiple of 33? True Let h = 33 + -16. Let k = h - -103. Is k a multiple of 30? True Let k(m) = 1 + 3 + 2*m + 0*m. Let v be k(-3). Is v - (-137 + (5 - 2)) a multiple of 22? True Suppose 7*r + 16 = 212. Is (285/(-2))/((-21)/r) a multiple of 5? True Let q be 6/(-5)*(200/(-12))/(-5). Is (61 - -1) + 1 + q + 7 a multiple of 6? True Does 9 divide (-64)/48 + 271*(2 - 256/(-12))? False Let p = 137 + -132. Let z be 7/(21/6) + 23. Let d = z - p. Does 3 divide d? False Is 54 + 0 + 11*(-18)/(-99) a multiple of 4? True Let f(t) = 78*t + 13. Let q be f(4). Let p = q - 229. Is 16 a factor of p? True Let n(i) = -21*i**2 - i + 3264. Is 136 a factor of n(0)? True Is 8074 - (-44)/(1 + 10) a multiple of 14? True Suppose 23 = 3*q + 206. Let x be (-11)/33 - (-1 - q/(-3)). Let w = x - 18. Does 3 divide w? True Let w(c) = 8*c + 1. Let k be w(1). Let v(p) = p**2 - 17. Let l be v(-5). Suppose -l*o = -k*o + 29. Is 8 a factor of o? False Let j = 2467 + -1202. Is 33 a factor of j? False Let c(a) be the first derivative of -a**4/4 - 6*a**3 - 3*a**2 - 12*a + 52. Is c(-18) a multiple of 16? True Suppose 21*v = 9*v + 4212. Let m = v - -103. Does 17 divide m? False Let k = -45 - -45. Suppose k = -3*h - 9, w - 86 = -4*h + 254. Suppose 2*l - q - 8 = 133, 5*l = 2*q + w. Is l a multiple of 14? True Let v(b) = 2*b**2 + 11*b + 15. Is v(-20) a multiple of 13? False Suppose 0 = 10*d + 8300 - 27861 - 40199. Does 139 divide d? False Suppose 8*j + 3*j = 0. Suppose 0*x - 4*x = 5*m - 245, -5*m + 3*x + 245 = j. Is 2 a factor of m? False Let t = 525 - -369. Is (-6)/(-9) - t/(-18)*2 a multiple of 10? True Let n be 48 + 6/((12/(-8))/1). Is (-43)/(-1) + n/(-11) a multiple of 3? True Suppose -2*t - 9 = -h, h = -3*t + 2 - 28. Does 10 divide ((14/4)/t)/((-3)/1338)? False Let g(w) = 2*w**2 + 112*w - 199. Let v be g(-58). Let s = 1 - 1. Suppose 2*q + q - 5*b - 119 = s, -5*b - v = -q. Is q a multiple of 7? False Let d be -1*0/(-5) + 2. Suppose -28 = -2*y + 4*b, 2*y + 5*b + 7 = d*b. Is 2 a factor of (-1)/(-1)*y/1? True Suppose 4*s + 39*d - 13589 = 36*d, 0 = 5*d + 25. Is s a multiple of 19? True Let t(i) = 6*i**2 + 34*i - 23. Let z be t(-15). Suppose 0 = 2*d - z + 1. Is 17 a factor of d? True Suppose -3*a + 10*a = 98. Suppose 28*k - a*k - 756 = 0. Does 19 divide k? False Suppose -2*r = 5*d, -d = -0*r + 4*r. Suppose d = -w + 2*f + 184, 2*w + 0*f + 4*f - 368 = 0. Does 8 divide w? True Suppose 9*l + 5628 = -3*l. Does 3 divide l/(-7) + -2 - (-2)/(-2)? False Let m(x) = 14*x**3 + x**2 - x - 1. Let q be m(-1). Does 54 divide (-152)/6*(10 + q)? False Suppose -m - m = -2*n - 588, 0 = -3*n - 3. Suppose -2*v = 2*q - 286, 2*v - 5*q - m = -0*v. Is v a multiple of 9? True Suppose 28*q = -4*v + 30*q + 6726, -5*q = 5*v - 8385. Does 10 divide v? True Let g(w) be the first derivative of -w**3/3 - 3*w**2 - 6*w - 2. Let q be g(-5). Does 4 divide (q/(-2))/(2/20)? False Suppose 350 = -2*i + 3*i. Suppose -i = -5*d + 3*d. Suppose 0 = -3*z + 35 + d. Does 15 divide z? False Let c(y) be the second derivative of -y**5/20 + y**4/6 + 2*y**3/3 + 5*y**2 + y. Does 13 divide c(3)? True Is (230/6 - (4 + -2))/(156/18720) a multiple of 5? True Let z(h) = -2*h - 46. Let k be z(-22). Let g(b) = -2*b + 5. Let p be g(5). Is 22 a factor of (-2 - 182/k)*p/(-5)? False Let f = -30 - -30. Suppose 5*t + 3 - 3 = f. Suppose -4*v + 769 - 229 = t. Is v a multiple of 45? True Let d(v) = 2*v - 18. Let o = 34 + -25. Let h be d(o). Is 94/2 - (-1 - -4 - h) a multiple of 12? False Suppose -60*q + 2546 = 1757 - 8511. Is 21 a factor of q? False Let b be 4/14 - 10/(-14). Let f(g) be the second derivative of 13*g**4/12 + g**3/6 - g**2 + 750*g. Is f(b) a multiple of 6? True Suppose -389 - 1173 = 2*u. Let r = -448 - u. Is r a multiple of 49? False Let r be ((-5)/1 + -2)*4/(-14). Suppose r*g + 1020 = 8*g. Is g a multiple of 5? True Let t(n) = 52*n**3 + 2*n**2 + n - 1. Suppose 3*p - 7 = 11. Suppose -3 = -p*k + 3. Is 18 a factor of t(k)? True Let j = -39 - -43. Let x be (-4)/(6/(-12)*(j + -2)). Is 19 a factor of (x + (-52)/(-6))/(1/6)? True Let c(z) = -z**3 - z**2 + z - 1. Let g(n) = -7*n**3 - 15*n**2 + 2*n + 3. Let m be -3 + 1 + -2 + -2. Let y(i) = m*c(i) + g(i). Does 15 divide y(-9)? True Suppose -13 = -6*w + 23. Let t(u) = 7*u**2 - 16*u + 6. Is 6 a factor of t(w)? True Suppose 5 = -x, 3*x = -3*z + x - 4. Let p be (z - 3)/((2/1)/2). Is 33 a factor of (2 - (69 + p))/(-1 - 0)? True Suppose 8*z = 5137 + 4783. Is 31 a factor of z? True Suppose -4*h - 3*z + 21271 = 0, h + 4*z + 604 = 5938. Is h a multiple of 110? False Suppose -208967 - 157040 = -59*z - 20*z. Is 12 a factor of z? False