File size: 4,561 Bytes
7e1725c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# prepare_donor_v3.py
import torch
import os
import argparse
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from accelerate import init_empty_weights

def main(foundation_model_id, donor_model_id, output_path):
    """
    Creates the definitive 'Aligned' donor model by manually handling all architectural mismatches.
    1. Defines a target Qwen3 80-layer architecture.
    2. Creates an empty Qwen3 model 'shell'.
    3. Manually copies weights from the Qwen2.5 donor, truncating the vocabulary-related
       tensors to fit the Qwen3 architecture.
    """
    print("--- Phase 1: Building the target Qwen3 80-Layer Architecture ---")
    
    foundation_config = AutoConfig.from_pretrained(foundation_model_id, trust_remote_code=True)
    
    # Target architecture: 80 layers, 72B dimensions, and Qwen3's vocab size
    target_config = foundation_config
    target_config.num_hidden_layers = 80
    target_config.hidden_size = 8192
    target_config.intermediate_size = 29568
    target_config.vocab_size = 151936 # Explicitly set Qwen3 vocab size
    target_config.torch_dtype = torch.bfloat16
    
    print("Creating empty Qwen3 80-layer model shell...")
    with init_empty_weights():
        aligned_model = AutoModelForCausalLM.from_config(target_config, trust_remote_code=True)
    aligned_model.tie_weights()
    print("Empty shell created successfully.")

    print("\n--- Phase 2: Loading and Manually Aligning Donor Weights ---")
    print(f"Loading weights from donor: {donor_model_id}")
    
    donor_model = AutoModelForCausalLM.from_pretrained(
        donor_model_id, torch_dtype=torch.bfloat16, device_map="cpu", trust_remote_code=True
    )
    donor_state_dict = donor_model.state_dict()
    del donor_model

    # Get the state dict of our target shell to know the correct shapes
    target_state_dict = aligned_model.state_dict()
    new_state_dict = {}

    print("Copying and aligning tensors one-by-one...")
    for name, target_tensor in tqdm(target_state_dict.items(), desc="Aligning Tensors"):
        if name in donor_state_dict:
            donor_tensor = donor_state_dict[name]
            
            # --- THIS IS THE FIX ---
            # If shapes match, copy directly.
            if donor_tensor.shape == target_tensor.shape:
                new_state_dict[name] = donor_tensor.clone()
            # If shapes mismatch, handle the known vocabulary size difference.
            else:
                print(f"  - Resolving shape mismatch for {name}:")
                print(f"    Donor shape: {donor_tensor.shape}, Target shape: {target_tensor.shape}")
                # We know the mismatch is on the vocab dimension (dim 0).
                # Truncate the donor tensor to fit the target shape.
                vocab_dim = target_tensor.shape[0]
                new_state_dict[name] = donor_tensor[:vocab_dim, :].clone()
        else:
            # This handles tensors that are in the Qwen3 shell but not the Qwen2.5 donor
            # (i.e., q_norm.weight and k_norm.weight). We just keep the initialized value.
            print(f"  - Keeping initialized tensor for {name} (not in donor)")
            new_state_dict[name] = target_tensor.clone()

    print("Loading the fully aligned state_dict into the Qwen3 shell...")
    # This load will now succeed because every tensor has the correct shape.
    aligned_model.load_state_dict(new_state_dict, strict=True, assign=True)
    
    print("\n--- Phase 3: Saving the Aligned Donor ---")
    tokenizer = AutoTokenizer.from_pretrained(foundation_model_id, trust_remote_code=True)
    
    print(f"Saving the architecturally aligned model to: {output_path}")
    os.makedirs(output_path, exist_ok=True)
    aligned_model.save_pretrained(output_path)
    tokenizer.save_pretrained(output_path)

    print("\nDonor preparation complete! This is the definitive donor model.")

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Prepare a Qwen2.5 donor model for merging with Qwen3.")
    parser.add_argument("--foundation_model", type=str, default="Qwen/Qwen3-32B", help="Model to use for the Qwen3 architecture blueprint.")
    parser.add_argument("--donor_model", type=str, default="Qwen/Qwen2.5-72B-Instruct", help="The donor model providing the weights.")
    parser.add_argument("--output_path", type=str, required=True, help="The local directory path to save the prepared donor model.")
    args = parser.parse_args()
    
    main(args.foundation_model, args.donor_model, args.output_path)