--- pipeline_tag: text-generation license: mit library_name: mlx base_model: MiniMaxAI/MiniMax-M2 tags: - mlx --- # catalystsec/MiniMax-M2-3bit-DWQ This model was quantized to 3-bit using DWQ with mlx-lm version **0.28.4**. | Parameter | Value | |---------------------------|--------------------------------| | DWQ learning rate | 3e-7 | | Batch size | 1 | | Dataset | `allenai/tulu-3-sft-mixture` | | Initial validation loss | 0.146 | | Final validation loss | 0.088 | | Relative KL reduction | ≈40 % | | Tokens processed | ≈1.09 M | Training loss curve ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("catalystsec/MiniMax-M2-3bit-DWQ") prompt = "hello" if tokenizer.chat_template is not None: prompt = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], add_generation_prompt=True, ) response = generate(model, tokenizer, prompt=prompt, verbose=True) print(response) ```