Update README.md
Browse files
README.md
CHANGED
|
@@ -19,8 +19,9 @@ tags:
|
|
| 19 |
|
| 20 |
[](https://github.com/DLCV-BUAA/TinyLLaVABench) [](https://arxiv.org/abs/2402.14289) [](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
|
| 21 |
|
| 22 |
-
|
| 23 |
## 🎉 News
|
|
|
|
|
|
|
| 24 |
* **[2024.02.25]** Update evaluation scripts and docs!
|
| 25 |
* **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
|
| 26 |
* **[2024.02.24]** Example code on inference and model loading added!
|
|
@@ -31,7 +32,8 @@ tags:
|
|
| 31 |
|
| 32 |
## ⌛ TODO
|
| 33 |
- [ ] Add support for Ollama and llama.cpp.
|
| 34 |
-
- [
|
|
|
|
| 35 |
- [x] Model Zoo descriptions.
|
| 36 |
- [x] Examples and inference.
|
| 37 |
- [x] Release code for training.
|
|
@@ -44,22 +46,17 @@ tags:
|
|
| 44 |
|
| 45 |
- Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
|
| 46 |
|
| 47 |
-
##
|
| 48 |
-
### Legacy Model
|
| 49 |
-
- [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
|
| 50 |
-
|
| 51 |
-
### Pretrained Models
|
| 52 |
-
- [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
|
| 53 |
-
- [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
|
| 54 |
-
- [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
|
| 55 |
-
|
| 56 |
-
### Model Details
|
| 57 |
-
| Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
|
| 58 |
-
|---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
|
| 59 |
-
| TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
|
| 60 |
-
| TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
|
| 61 |
-
| TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
## 🔧 Requirements and Installation
|
|
@@ -85,7 +82,7 @@ pip install -e .
|
|
| 85 |
pip install -e ".[train]"
|
| 86 |
pip install flash-attn --no-build-isolation
|
| 87 |
```
|
| 88 |
-
### Upgrade to latest code base
|
| 89 |
|
| 90 |
```Shell
|
| 91 |
git pull
|
|
@@ -95,6 +92,41 @@ pip install -e .
|
|
| 95 |
# pip install flash-attn --no-build-isolation --no-cache-dir
|
| 96 |
```
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
## 🔧 Quick Start
|
| 100 |
|
|
@@ -151,7 +183,7 @@ eval_model(args)
|
|
| 151 |
### Important
|
| 152 |
We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
|
| 153 |
| model | conv_mode |
|
| 154 |
-
|
| 155 |
| TinyLLaVA-3.1B | phi |
|
| 156 |
| TinyLLaVA-2.0B | phi |
|
| 157 |
| TinyLLaVA-1.5B | v1 |
|
|
@@ -161,6 +193,115 @@ To ensure the reproducibility, we evaluate the models with greedy decoding.
|
|
| 161 |
|
| 162 |
See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
## ✏ Citation
|
| 166 |
|
|
@@ -176,3 +317,8 @@ If you find our paper and code useful in your research, please consider giving a
|
|
| 176 |
primaryClass={cs.LG}
|
| 177 |
}
|
| 178 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
[](https://github.com/DLCV-BUAA/TinyLLaVABench) [](https://arxiv.org/abs/2402.14289) [](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
|
| 21 |
|
|
|
|
| 22 |
## 🎉 News
|
| 23 |
+
* **[2024.03.10]** base recipe out!
|
| 24 |
+
* **[2024.03.10]** Finetune scripts out!
|
| 25 |
* **[2024.02.25]** Update evaluation scripts and docs!
|
| 26 |
* **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
|
| 27 |
* **[2024.02.24]** Example code on inference and model loading added!
|
|
|
|
| 32 |
|
| 33 |
## ⌛ TODO
|
| 34 |
- [ ] Add support for Ollama and llama.cpp.
|
| 35 |
+
- [x] Developers' guide / How to build demo locally.
|
| 36 |
+
- [x] Training and custom finetuning docs.
|
| 37 |
- [x] Model Zoo descriptions.
|
| 38 |
- [x] Examples and inference.
|
| 39 |
- [x] Release code for training.
|
|
|
|
| 46 |
|
| 47 |
- Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
|
| 48 |
|
| 49 |
+
## Contents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
- [Install](#x1f527-requirements-and-installation)
|
| 52 |
+
- [Model Zoo](#x1f433-model-zoo)
|
| 53 |
+
- [Demo](#Demo)
|
| 54 |
+
- [Quick Start](#x1f527-quick-start)
|
| 55 |
+
- [Run Inference](#x1f527-run-inference)
|
| 56 |
+
- [Evaluation](#evaluation)
|
| 57 |
+
- [Data](#data-preparation)
|
| 58 |
+
- [Train](#train)
|
| 59 |
+
- [Custom Finetune](#custom-finetune)
|
| 60 |
|
| 61 |
|
| 62 |
## 🔧 Requirements and Installation
|
|
|
|
| 82 |
pip install -e ".[train]"
|
| 83 |
pip install flash-attn --no-build-isolation
|
| 84 |
```
|
| 85 |
+
### Upgrade to the latest code base
|
| 86 |
|
| 87 |
```Shell
|
| 88 |
git pull
|
|
|
|
| 92 |
# pip install flash-attn --no-build-isolation --no-cache-dir
|
| 93 |
```
|
| 94 |
|
| 95 |
+
## 🐳 Model Zoo
|
| 96 |
+
### Legacy Model
|
| 97 |
+
- [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
|
| 98 |
+
|
| 99 |
+
### Pretrained Models
|
| 100 |
+
- [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
|
| 101 |
+
- [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
|
| 102 |
+
- [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
|
| 103 |
+
|
| 104 |
+
### Model Details
|
| 105 |
+
| Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
|
| 106 |
+
|---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
|
| 107 |
+
| TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
|
| 108 |
+
| TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
|
| 109 |
+
| TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
## Demo
|
| 113 |
+
|
| 114 |
+
### Gradio Web Demo
|
| 115 |
+
|
| 116 |
+
Launch a local web demo by running:
|
| 117 |
+
```shell
|
| 118 |
+
python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
### CLI Inference
|
| 122 |
+
|
| 123 |
+
We also support running inference with CLI. To use our model, run:
|
| 124 |
+
```shell
|
| 125 |
+
python -m tinyllava.serve.cli \
|
| 126 |
+
--model-path bczhou/TinyLLaVA-3.1B \
|
| 127 |
+
--image-file "./tinyllava/serve/examples/extreme_ironing.jpg"
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
|
| 131 |
## 🔧 Quick Start
|
| 132 |
|
|
|
|
| 183 |
### Important
|
| 184 |
We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
|
| 185 |
| model | conv_mode |
|
| 186 |
+
|---------------- |----------- |
|
| 187 |
| TinyLLaVA-3.1B | phi |
|
| 188 |
| TinyLLaVA-2.0B | phi |
|
| 189 |
| TinyLLaVA-1.5B | v1 |
|
|
|
|
| 193 |
|
| 194 |
See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
|
| 195 |
|
| 196 |
+
## Data Preparation
|
| 197 |
+
|
| 198 |
+
In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation.
|
| 199 |
+
|
| 200 |
+
### Pretraining Images
|
| 201 |
+
* LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset.
|
| 202 |
+
* ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset.
|
| 203 |
+
|
| 204 |
+
### Pretraining Annotations
|
| 205 |
+
* LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
|
| 206 |
+
* ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json).
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
### SFT Images & Annotations
|
| 210 |
+
The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json).
|
| 211 |
+
|
| 212 |
+
### Download data
|
| 213 |
+
|
| 214 |
+
1. Download relevant images
|
| 215 |
+
|
| 216 |
+
- LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip)
|
| 217 |
+
- COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip)
|
| 218 |
+
- WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage.
|
| 219 |
+
- SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link).
|
| 220 |
+
- GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
|
| 221 |
+
- OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg`
|
| 222 |
+
- TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
|
| 223 |
+
- VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
2. Download relevant annotations
|
| 227 |
+
|
| 228 |
+
- LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
|
| 229 |
+
- LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json)
|
| 230 |
+
- ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json)
|
| 231 |
+
- ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
### Organize Data
|
| 235 |
+
|
| 236 |
+
Organize the image files and annotation files as follows in `path/to/your/data`:
|
| 237 |
+
|
| 238 |
+
```none
|
| 239 |
+
data
|
| 240 |
+
βββ llava
|
| 241 |
+
β βββ llava_pretrain
|
| 242 |
+
β β βββ images
|
| 243 |
+
β β βββ blip_laion_cc_sbu_558k.json
|
| 244 |
+
βββ coco
|
| 245 |
+
β βββ train2017
|
| 246 |
+
βββ sam
|
| 247 |
+
β βββ images
|
| 248 |
+
βββ gqa
|
| 249 |
+
β βββ images
|
| 250 |
+
βββ ocr_vqa
|
| 251 |
+
β βββ images
|
| 252 |
+
βββ textvqa
|
| 253 |
+
β βββ train_images
|
| 254 |
+
βββ vg
|
| 255 |
+
β βββ VG_100K
|
| 256 |
+
β βββ VG_100K_2
|
| 257 |
+
βββ share_textvqa
|
| 258 |
+
β βββ images
|
| 259 |
+
βββ web-celebrity
|
| 260 |
+
β βββ images
|
| 261 |
+
βββ web-landmark
|
| 262 |
+
β βββ images
|
| 263 |
+
βββ wikiart
|
| 264 |
+
β βββ images
|
| 265 |
+
βββ text_files
|
| 266 |
+
β βββ llava_v1_5_mix665k.json
|
| 267 |
+
β βββ share-captioner_coco_lcs_sam_1246k_1107.json
|
| 268 |
+
β βββ sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
|
| 269 |
+
```
|
| 270 |
+
|
| 271 |
+
## Train
|
| 272 |
+
|
| 273 |
+
**This section we describe the base recipe.**
|
| 274 |
+
### Hyperparameters
|
| 275 |
+
Both hyperparameters used in pretraining and finetuning are provided below.
|
| 276 |
+
|
| 277 |
+
1. Pretraining
|
| 278 |
+
|
| 279 |
+
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
|
| 280 |
+
|----------------| ---: | ---: | ---: |-----------:| ---: |
|
| 281 |
+
| TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 |
|
| 282 |
+
|
| 283 |
+
2. Finetuning
|
| 284 |
+
|
| 285 |
+
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
|
| 286 |
+
|----------------| ---: | ---: | ---: |-----------:| ---: |
|
| 287 |
+
| TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 |
|
| 288 |
+
|
| 289 |
+
### Pretrain
|
| 290 |
+
|
| 291 |
+
**Replace paths to your paths**
|
| 292 |
+
|
| 293 |
+
Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh).
|
| 294 |
+
|
| 295 |
+
### Finetune
|
| 296 |
+
|
| 297 |
+
**Replace paths to your paths**
|
| 298 |
+
|
| 299 |
+
Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh).
|
| 300 |
+
|
| 301 |
+
## Custom-Finetune
|
| 302 |
+
|
| 303 |
+
Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md).
|
| 304 |
+
|
| 305 |
|
| 306 |
## ✏ Citation
|
| 307 |
|
|
|
|
| 317 |
primaryClass={cs.LG}
|
| 318 |
}
|
| 319 |
```
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
## β€οΈ Community efforts
|
| 323 |
+
* Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work!
|
| 324 |
+
* Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work!
|