Create handler.py
Browse files- handler.py +189 -0
handler.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# handler.py
|
| 2 |
+
# Hugging Face Inference Endpoint custom handler for Mongolian GPT-2 summarization
|
| 3 |
+
# Input JSON:
|
| 4 |
+
# {
|
| 5 |
+
# "inputs": "ARTICLE TEXT ...",
|
| 6 |
+
# "parameters": {
|
| 7 |
+
# "max_new_tokens": 160,
|
| 8 |
+
# "num_beams": 4,
|
| 9 |
+
# "do_sample": false,
|
| 10 |
+
# "no_repeat_ngram_size": 3,
|
| 11 |
+
# "length_penalty": 1.0,
|
| 12 |
+
# "temperature": 1.0,
|
| 13 |
+
# "top_p": 1.0,
|
| 14 |
+
# "top_k": 50,
|
| 15 |
+
# "return_full_text": false
|
| 16 |
+
# }
|
| 17 |
+
# }
|
| 18 |
+
# Output JSON:
|
| 19 |
+
# { "summary_text": "...", "used_new_tokens": 152, "requested_new_tokens": 160 }
|
| 20 |
+
|
| 21 |
+
from typing import Any, Dict, List, Union
|
| 22 |
+
import torch
|
| 23 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 24 |
+
|
| 25 |
+
# Mongolian instruction + prompt template used during training
|
| 26 |
+
INSTRUCTION = "Дараах бичвэрийг хураангуйлж бич."
|
| 27 |
+
PROMPT_TEMPLATE = (
|
| 28 |
+
"### Даалгавар:\n"
|
| 29 |
+
f"{INSTRUCTION}\n\n"
|
| 30 |
+
"### Бичвэр:\n{article}\n\n"
|
| 31 |
+
"### Хураангуй:\n"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def _select_dtype() -> torch.dtype:
|
| 35 |
+
if torch.cuda.is_available():
|
| 36 |
+
# Prefer bf16 if supported; otherwise use fp16
|
| 37 |
+
return torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
| 38 |
+
return torch.float32
|
| 39 |
+
|
| 40 |
+
class EndpointHandler:
|
| 41 |
+
"""
|
| 42 |
+
Custom handler for HF Inference Endpoints:
|
| 43 |
+
- __init__(path): loads model assets from `path`
|
| 44 |
+
- __call__(data): performs generation given {"inputs": ..., "parameters": {...}}
|
| 45 |
+
"""
|
| 46 |
+
def __init__(self, path: str = ""):
|
| 47 |
+
# Device & dtype
|
| 48 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 49 |
+
self.dtype = _select_dtype()
|
| 50 |
+
|
| 51 |
+
# Load tokenizer/model from the repository directory
|
| 52 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True)
|
| 53 |
+
# Decoder-only model requires left padding for correct generation
|
| 54 |
+
self.tokenizer.padding_side = "left"
|
| 55 |
+
if self.tokenizer.pad_token is None:
|
| 56 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 57 |
+
|
| 58 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 59 |
+
path,
|
| 60 |
+
torch_dtype=self.dtype,
|
| 61 |
+
).to(self.device)
|
| 62 |
+
# Safer attention path on many endpoint stacks
|
| 63 |
+
self.model.config.attn_implementation = "eager"
|
| 64 |
+
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
| 65 |
+
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
| 66 |
+
self.model.eval()
|
| 67 |
+
|
| 68 |
+
# Read max context from config (GPT-2 default is 1024)
|
| 69 |
+
self.max_context = getattr(self.model.config, "max_position_embeddings", 1024)
|
| 70 |
+
|
| 71 |
+
def _build_prompt(self, article: str) -> str:
|
| 72 |
+
return PROMPT_TEMPLATE.format(article=article.strip())
|
| 73 |
+
|
| 74 |
+
def _prepare_inputs(
|
| 75 |
+
self,
|
| 76 |
+
articles: List[str],
|
| 77 |
+
requested_new: int
|
| 78 |
+
):
|
| 79 |
+
"""
|
| 80 |
+
Tokenize prompts so that prompt_len + max_new_tokens <= max_context.
|
| 81 |
+
We first clamp requested_new, then tokenize with truncation=max_context - requested_new.
|
| 82 |
+
"""
|
| 83 |
+
# Basic safety clamps
|
| 84 |
+
requested_new = int(max(1, min(requested_new, 512)))
|
| 85 |
+
max_len_for_prompt = max(1, self.max_context - requested_new)
|
| 86 |
+
|
| 87 |
+
prompts = [self._build_prompt(a) for a in articles]
|
| 88 |
+
enc = self.tokenizer(
|
| 89 |
+
prompts,
|
| 90 |
+
add_special_tokens=False,
|
| 91 |
+
truncation=True,
|
| 92 |
+
max_length=max_len_for_prompt,
|
| 93 |
+
return_tensors="pt",
|
| 94 |
+
padding=True, # uses left padding because tokenizer.padding_side="left"
|
| 95 |
+
)
|
| 96 |
+
enc = {k: v.to(self.device) for k, v in enc.items()}
|
| 97 |
+
|
| 98 |
+
# Compute per-example available space and adjust new tokens if needed
|
| 99 |
+
input_lens = enc["attention_mask"].sum(dim=1).tolist()
|
| 100 |
+
per_example_new = []
|
| 101 |
+
for L in input_lens:
|
| 102 |
+
available = max(0, self.max_context - int(L))
|
| 103 |
+
per_example_new.append(max(1, min(requested_new, available)))
|
| 104 |
+
|
| 105 |
+
return enc, per_example_new, prompts
|
| 106 |
+
|
| 107 |
+
@torch.no_grad()
|
| 108 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 109 |
+
# Accept either {"inputs": "..."} or {"inputs": ["...", "..."]}
|
| 110 |
+
raw_inputs: Union[str, List[str], Dict[str, Any]] = data.get("inputs", "")
|
| 111 |
+
params: Dict[str, Any] = data.get("parameters", {}) or {}
|
| 112 |
+
|
| 113 |
+
# Default generation hyperparameters (aligned with training)
|
| 114 |
+
req_new = int(params.get("max_new_tokens", 160))
|
| 115 |
+
num_beams = int(params.get("num_beams", 4))
|
| 116 |
+
do_sample = bool(params.get("do_sample", False))
|
| 117 |
+
no_repeat = int(params.get("no_repeat_ngram_size", 3))
|
| 118 |
+
length_penalty = float(params.get("length_penalty", 1.0))
|
| 119 |
+
temperature = float(params.get("temperature", 1.0))
|
| 120 |
+
top_p = float(params.get("top_p", 1.0))
|
| 121 |
+
top_k = int(params.get("top_k", 50))
|
| 122 |
+
return_full_text = bool(params.get("return_full_text", False))
|
| 123 |
+
|
| 124 |
+
# Normalize inputs to a list of strings
|
| 125 |
+
if isinstance(raw_inputs, str):
|
| 126 |
+
articles = [raw_inputs]
|
| 127 |
+
elif isinstance(raw_inputs, list):
|
| 128 |
+
if not all(isinstance(x, str) for x in raw_inputs):
|
| 129 |
+
raise ValueError("All elements of 'inputs' must be strings.")
|
| 130 |
+
articles = raw_inputs
|
| 131 |
+
else:
|
| 132 |
+
# Accept {"article": "..."} as a courtesy
|
| 133 |
+
maybe_article = data.get("article")
|
| 134 |
+
if isinstance(maybe_article, str):
|
| 135 |
+
articles = [maybe_article]
|
| 136 |
+
else:
|
| 137 |
+
raise ValueError("Expect 'inputs' as a string or list of strings.")
|
| 138 |
+
|
| 139 |
+
# Tokenize prompts and cap new tokens per example
|
| 140 |
+
enc, per_example_new, prompts = self._prepare_inputs(articles, req_new)
|
| 141 |
+
|
| 142 |
+
# Generate (batched)
|
| 143 |
+
gen_out = self.model.generate(
|
| 144 |
+
**enc,
|
| 145 |
+
max_new_tokens=max(per_example_new), # upper bound; actual stopping still respects EOS
|
| 146 |
+
num_beams=num_beams,
|
| 147 |
+
do_sample=do_sample,
|
| 148 |
+
no_repeat_ngram_size=no_repeat,
|
| 149 |
+
length_penalty=length_penalty,
|
| 150 |
+
temperature=temperature,
|
| 151 |
+
top_p=top_p,
|
| 152 |
+
top_k=top_k,
|
| 153 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 154 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 155 |
+
early_stopping=True,
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# Decode and postprocess per-item (cut after the prompt if needed)
|
| 159 |
+
decoded = self.tokenizer.batch_decode(gen_out, skip_special_tokens=True)
|
| 160 |
+
|
| 161 |
+
results = []
|
| 162 |
+
for i, text in enumerate(decoded):
|
| 163 |
+
if return_full_text:
|
| 164 |
+
full = text.strip()
|
| 165 |
+
# Try to extract summary part for convenience too
|
| 166 |
+
split_key = "### Хураангуй:\n"
|
| 167 |
+
summary = full.split(split_key, 1)[-1].strip() if split_key in full else full
|
| 168 |
+
else:
|
| 169 |
+
# Remove the prompt prefix, return only the generated summary
|
| 170 |
+
prefix = prompts[i]
|
| 171 |
+
if text.startswith(prefix):
|
| 172 |
+
summary = text[len(prefix):].strip()
|
| 173 |
+
else:
|
| 174 |
+
# Fallback split on the marker
|
| 175 |
+
split_key = "### Хураангуй:\n"
|
| 176 |
+
summary = text.split(split_key, 1)[-1].strip() if split_key in text else text.strip()
|
| 177 |
+
full = None
|
| 178 |
+
|
| 179 |
+
results.append({
|
| 180 |
+
"summary_text": summary,
|
| 181 |
+
"used_new_tokens": per_example_new[i],
|
| 182 |
+
"requested_new_tokens": req_new,
|
| 183 |
+
**({"full_text": full} if return_full_text else {})
|
| 184 |
+
})
|
| 185 |
+
|
| 186 |
+
# If the input was a single string, return a single object
|
| 187 |
+
if isinstance(raw_inputs, str):
|
| 188 |
+
return results[0]
|
| 189 |
+
return {"results": results}
|