|
""" |
|
DeepSeek model configuration |
|
""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class DeepSeekConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`DeepSeekModel`]. It is used to instantiate a |
|
DeepSeek model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the DeepSeek-V3 |
|
[deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50256): |
|
Vocabulary size of the DeepSeek model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`DeepSeekModel`] |
|
hidden_size (`int`, *optional*, defaults to 1024): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the MLP representations for dense layers. |
|
moe_intermediate_size (`int`, *optional*, defaults to 704): |
|
Dimension of the MLP representations for MoE layers. |
|
num_hidden_layers (`int`, *optional*, defaults to 6): |
|
Number of hidden layers in the Transformer decoder. |
|
num_dense_layers (`int`, *optional*, defaults to 1): |
|
Number of dense (non-MoE) layers in the model. |
|
num_attention_heads (`int`, *optional*, defaults to 8): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_routed_experts (`int`, *optional*, defaults to 4): |
|
Number of routed experts in MoE layers. |
|
num_shared_experts (`int`, *optional*, defaults to 2): |
|
Number of shared experts in MoE layers. |
|
num_activated_experts (`int`, *optional*, defaults to 2): |
|
Number of experts activated per token in MoE layers. |
|
num_expert_groups (`int`, *optional*, defaults to 1): |
|
Number of expert groups in MoE layers. |
|
num_limited_groups (`int`, *optional*, defaults to 1): |
|
Number of limited groups in MoE layers. |
|
score_func (`str`, *optional*, defaults to `"softmax"`): |
|
Scoring function for expert selection. Can be "softmax" or "sigmoid". |
|
route_scale (`float`, *optional*, defaults to 1.0): |
|
Scaling factor for routing weights. |
|
q_lora_rank (`int`, *optional*, defaults to 0): |
|
Rank of LoRA adaptation for query projection. 0 means no LoRA. |
|
kv_lora_rank (`int`, *optional*, defaults to 256): |
|
Rank of LoRA adaptation for key-value projection. |
|
qk_nope_head_dim (`int`, *optional*, defaults to 64): |
|
Dimension of query-key heads without positional encoding. |
|
qk_rope_head_dim (`int`, *optional*, defaults to 32): |
|
Dimension of query-key heads with rotary positional encoding. |
|
v_head_dim (`int`, *optional*, defaults to 64): |
|
Dimension of value heads. |
|
original_seq_len (`int`, *optional*, defaults to 512): |
|
Original sequence length used during pretraining. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
Base frequency for rotary positional encoding. |
|
rope_factor (`float`, *optional*, defaults to 40): |
|
Scaling factor for RoPE frequency adjustment. |
|
beta_fast (`int`, *optional*, defaults to 32): |
|
Fast beta parameter for YaRN RoPE scaling. |
|
beta_slow (`int`, *optional*, defaults to 1): |
|
Slow beta parameter for YaRN RoPE scaling. |
|
mscale (`float`, *optional*, defaults to 1.0): |
|
Scale factor for attention logits when using extended context. |
|
max_position_embeddings (`int`, *optional*, defaults to 256): |
|
The maximum sequence length that this model might ever be used with. |
|
max_batch_size (`int`, *optional*, defaults to 2): |
|
The maximum batch size that this model might ever be used with for caching. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-3): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 3): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
|
|
```python |
|
>>> from transformers import DeepSeekModel, DeepSeekConfig |
|
|
|
>>> # Initializing a DeepSeek configuration |
|
>>> configuration = DeepSeekConfig() |
|
|
|
>>> # Initializing a model from the configuration |
|
>>> model = DeepSeekModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "deepseek" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50256, |
|
hidden_size=1024, |
|
intermediate_size=4096, |
|
moe_intermediate_size=704, |
|
num_hidden_layers=6, |
|
num_dense_layers=1, |
|
num_attention_heads=8, |
|
num_routed_experts=4, |
|
num_shared_experts=2, |
|
num_activated_experts=2, |
|
num_expert_groups=1, |
|
num_limited_groups=1, |
|
score_func="softmax", |
|
route_scale=1.0, |
|
q_lora_rank=0, |
|
kv_lora_rank=256, |
|
qk_nope_head_dim=64, |
|
qk_rope_head_dim=32, |
|
v_head_dim=64, |
|
original_seq_len=512, |
|
rope_theta=10000.0, |
|
rope_factor=40, |
|
beta_fast=32, |
|
beta_slow=1, |
|
mscale=1.0, |
|
max_position_embeddings=256, |
|
max_batch_size=2, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-3, |
|
use_cache=True, |
|
pad_token_id=0, |
|
bos_token_id=2, |
|
eos_token_id=3, |
|
tie_word_embeddings=False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.moe_intermediate_size = moe_intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_dense_layers = num_dense_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_routed_experts = num_routed_experts |
|
self.num_shared_experts = num_shared_experts |
|
self.num_activated_experts = num_activated_experts |
|
self.num_expert_groups = num_expert_groups |
|
self.num_limited_groups = num_limited_groups |
|
self.score_func = score_func |
|
self.route_scale = route_scale |
|
self.q_lora_rank = q_lora_rank |
|
self.kv_lora_rank = kv_lora_rank |
|
self.qk_nope_head_dim = qk_nope_head_dim |
|
self.qk_rope_head_dim = qk_rope_head_dim |
|
self.v_head_dim = v_head_dim |
|
self.original_seq_len = original_seq_len |
|
self.rope_theta = rope_theta |
|
self.rope_factor = rope_factor |
|
self.beta_fast = beta_fast |
|
self.beta_slow = beta_slow |
|
self.mscale = mscale |
|
self.max_batch_size = max_batch_size |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.tie_word_embeddings = tie_word_embeddings |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |