turkish-deepseek / configuration_deepseek.py
alibayram's picture
Upload folder using huggingface_hub
0602132 verified
"""
DeepSeek model configuration
"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DeepSeekConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DeepSeekModel`]. It is used to instantiate a
DeepSeek model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the DeepSeek-V3
[deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50256):
Vocabulary size of the DeepSeek model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DeepSeekModel`]
hidden_size (`int`, *optional*, defaults to 1024):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimension of the MLP representations for dense layers.
moe_intermediate_size (`int`, *optional*, defaults to 704):
Dimension of the MLP representations for MoE layers.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer decoder.
num_dense_layers (`int`, *optional*, defaults to 1):
Number of dense (non-MoE) layers in the model.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_routed_experts (`int`, *optional*, defaults to 4):
Number of routed experts in MoE layers.
num_shared_experts (`int`, *optional*, defaults to 2):
Number of shared experts in MoE layers.
num_activated_experts (`int`, *optional*, defaults to 2):
Number of experts activated per token in MoE layers.
num_expert_groups (`int`, *optional*, defaults to 1):
Number of expert groups in MoE layers.
num_limited_groups (`int`, *optional*, defaults to 1):
Number of limited groups in MoE layers.
score_func (`str`, *optional*, defaults to `"softmax"`):
Scoring function for expert selection. Can be "softmax" or "sigmoid".
route_scale (`float`, *optional*, defaults to 1.0):
Scaling factor for routing weights.
q_lora_rank (`int`, *optional*, defaults to 0):
Rank of LoRA adaptation for query projection. 0 means no LoRA.
kv_lora_rank (`int`, *optional*, defaults to 256):
Rank of LoRA adaptation for key-value projection.
qk_nope_head_dim (`int`, *optional*, defaults to 64):
Dimension of query-key heads without positional encoding.
qk_rope_head_dim (`int`, *optional*, defaults to 32):
Dimension of query-key heads with rotary positional encoding.
v_head_dim (`int`, *optional*, defaults to 64):
Dimension of value heads.
original_seq_len (`int`, *optional*, defaults to 512):
Original sequence length used during pretraining.
rope_theta (`float`, *optional*, defaults to 10000.0):
Base frequency for rotary positional encoding.
rope_factor (`float`, *optional*, defaults to 40):
Scaling factor for RoPE frequency adjustment.
beta_fast (`int`, *optional*, defaults to 32):
Fast beta parameter for YaRN RoPE scaling.
beta_slow (`int`, *optional*, defaults to 1):
Slow beta parameter for YaRN RoPE scaling.
mscale (`float`, *optional*, defaults to 1.0):
Scale factor for attention logits when using extended context.
max_position_embeddings (`int`, *optional*, defaults to 256):
The maximum sequence length that this model might ever be used with.
max_batch_size (`int`, *optional*, defaults to 2):
The maximum batch size that this model might ever be used with for caching.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-3):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 2):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 3):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
```python
>>> from transformers import DeepSeekModel, DeepSeekConfig
>>> # Initializing a DeepSeek configuration
>>> configuration = DeepSeekConfig()
>>> # Initializing a model from the configuration
>>> model = DeepSeekModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "deepseek"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50256,
hidden_size=1024,
intermediate_size=4096,
moe_intermediate_size=704,
num_hidden_layers=6,
num_dense_layers=1,
num_attention_heads=8,
num_routed_experts=4,
num_shared_experts=2,
num_activated_experts=2,
num_expert_groups=1,
num_limited_groups=1,
score_func="softmax",
route_scale=1.0,
q_lora_rank=0,
kv_lora_rank=256,
qk_nope_head_dim=64,
qk_rope_head_dim=32,
v_head_dim=64,
original_seq_len=512,
rope_theta=10000.0,
rope_factor=40,
beta_fast=32,
beta_slow=1,
mscale=1.0,
max_position_embeddings=256,
max_batch_size=2,
initializer_range=0.02,
rms_norm_eps=1e-3,
use_cache=True,
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
tie_word_embeddings=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.moe_intermediate_size = moe_intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_dense_layers = num_dense_layers
self.num_attention_heads = num_attention_heads
self.num_routed_experts = num_routed_experts
self.num_shared_experts = num_shared_experts
self.num_activated_experts = num_activated_experts
self.num_expert_groups = num_expert_groups
self.num_limited_groups = num_limited_groups
self.score_func = score_func
self.route_scale = route_scale
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.original_seq_len = original_seq_len
self.rope_theta = rope_theta
self.rope_factor = rope_factor
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.mscale = mscale
self.max_batch_size = max_batch_size
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)