File size: 19,225 Bytes
0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 643d493 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 0602132 0ae8769 2aa64f0 0602132 2aa64f0 0602132 2aa64f0 0602132 2aa64f0 0602132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
"""
PyTorch DeepSeek model - Standalone version for HuggingFace Hub
"""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_attn_mask_utils import (
AttentionMaskConverter, _prepare_4d_attention_mask,
_prepare_4d_causal_attention_mask)
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10, logging,
replace_return_docstrings)
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
unpad_input)
logger = logging.get_logger(__name__)
class DeepSeekConfig(PretrainedConfig):
"""
Configuration class for DeepSeek model.
"""
model_type = "deepseek"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50256,
hidden_size=1024,
intermediate_size=4096,
moe_intermediate_size=704,
num_hidden_layers=6,
num_dense_layers=1,
num_attention_heads=8,
num_routed_experts=4,
num_shared_experts=2,
num_activated_experts=2,
num_expert_groups=1,
num_limited_groups=1,
max_position_embeddings=256,
max_batch_size=2,
q_lora_rank=0,
kv_lora_rank=256,
qk_nope_head_dim=64,
qk_rope_head_dim=32,
v_head_dim=64,
original_seq_len=512,
rope_theta=10000.0,
rope_factor=40,
beta_fast=32,
beta_slow=1,
mscale=1.0,
initializer_range=0.02,
rms_norm_eps=1e-3,
use_cache=True,
pad_token_id=0,
bos_token_id=2,
eos_token_id=3,
tie_word_embeddings=False,
output_attentions=False,
output_hidden_states=False,
use_return_dict=True,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.moe_intermediate_size = moe_intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_dense_layers = num_dense_layers
self.num_attention_heads = num_attention_heads
self.num_routed_experts = num_routed_experts
self.num_shared_experts = num_shared_experts
self.num_activated_experts = num_activated_experts
self.num_expert_groups = num_expert_groups
self.num_limited_groups = num_limited_groups
self.max_position_embeddings = max_position_embeddings
self.max_batch_size = max_batch_size
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.original_seq_len = original_seq_len
self.rope_theta = rope_theta
self.rope_factor = rope_factor
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.mscale = mscale
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.output_attentions = output_attentions
self.output_hidden_states = output_hidden_states
# Don't set use_return_dict as it's already a property in the parent class
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
_CONFIG_FOR_DOC = "DeepSeekConfig"
def precompute_freqs_cis(config: DeepSeekConfig) -> torch.Tensor:
"""Precompute the frequency tensor for rotary position embedding."""
dim = config.qk_rope_head_dim
seqlen = config.max_position_embeddings
beta_fast = config.beta_fast
beta_slow = config.beta_slow
base = config.rope_theta
factor = config.rope_factor
def find_correction_dim(num_rotations, dim, base, max_seq_len):
return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
return max(low, 0), min(high, dim-1)
def linear_ramp_factor(min_val, max_val, dim):
if min_val == max_val:
max_val += 0.001
linear_func = (torch.arange(dim, dtype=torch.float32) - min_val) / (max_val - min_val)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
if seqlen > config.original_seq_len:
low, high = find_correction_range(beta_fast, beta_slow, dim, base, config.original_seq_len)
smooth = 1 - linear_ramp_factor(low, high, dim // 2)
freqs = freqs / factor * (1 - smooth) + freqs * smooth
t = torch.arange(seqlen)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""Apply rotary position embedding to the input tensor."""
assert x.shape[-1] % 2 == 0, "Rotary dim must be divisible by 2!"
dtype = x.dtype
x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
y = torch.view_as_real(x * freqs_cis).reshape(*x.shape[:-1], -1)
return y.to(dtype)
class DeepSeekRMSNorm(nn.Module):
"""RMS normalization layer."""
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class DeepSeekMLP(nn.Module):
"""Multi-Layer Perceptron for dense layers."""
def __init__(self, config: DeepSeekConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN["silu"]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
DEEPSEEK_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DeepSeekConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare DeepSeek Model outputting raw hidden-states without any specific head on top.",
DEEPSEEK_START_DOCSTRING,
)
class DeepSeekPreTrainedModel(PreTrainedModel):
config_class = DeepSeekConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DeepSeekDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
DEEPSEEK_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence token in the position embeddings.
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states for sequential decoding.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally pass an embedded representation instead of input_ids.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`].
"""
class DeepSeekModel(DeepSeekPreTrainedModel):
"""
Simplified DeepSeek Model for demonstration purposes.
Note: This is a simplified implementation that preserves the model structure
but may not have all the advanced MLA and MoE features of the full implementation.
"""
def __init__(self, config: DeepSeekConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.norm = DeepSeekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(DEEPSEEK_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""Forward pass of the DeepSeek model."""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
# Apply normalization
hidden_states = self.norm(hidden_states)
if not return_dict:
return tuple(v for v in [hidden_states, None, None] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=None,
hidden_states=None,
attentions=None,
)
class DeepSeekForCausalLM(DeepSeekPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = DeepSeekModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(DEEPSEEK_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
"""Forward pass of the DeepSeek model for causal language modeling.
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
):
# Standard implementation for generation
position_ids = None
if past_key_values is not None:
if inputs_embeds is not None and cache_position is not None:
input_ids = input_ids[:, -cache_position.shape[0] :]
elif cache_position is not None and input_ids.shape[1] != cache_position.shape[0]:
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
if inputs_embeds is not None and cache_position is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past |