File size: 6,175 Bytes
647ebc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware
import io
import matplotlib
matplotlib.use('Agg')  # Set the backend to Agg before importing pyplot
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model
import tempfile
import random
import os
app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    #todo: change to allow only the frontend domain
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
    expose_headers=["*"]
)

model = load_model('my_model.keras')

def predict_and_plot(img):
    class_dict = {'glioma': 0, 'meningioma': 1, 'notumor': 2, 'pituitary': 3}
    label = list(class_dict.keys())
    
    plt.figure(figsize=(16, 12))  # Increased width from 12 to 16
    
    resized_img = img.resize((299, 299))
    img_array = np.asarray(resized_img)
    
    if len(img_array.shape) == 2:
        img_array = np.stack((img_array,) * 3, axis=-1)
    elif img_array.shape[2] == 4:
        img_array = img_array[:, :, :3]
    
    img_array = np.expand_dims(img_array, axis=0)
    img_array = img_array / 255.0
    
    predictions = model.predict(img_array)
    probs = list(predictions[0])
    
    # Get the highest probability prediction
    max_prob_idx = np.argmax(probs)
    prediction_text = f"Prediction: {label[max_prob_idx]} ({probs[max_prob_idx]:.2%})"
    
    plt.subplot(2, 1, 1)
    plt.imshow(resized_img)
    plt.title('Input Image', fontsize=16, pad=20)
    plt.axis('off')
    
    plt.subplot(2, 1, 2)
    bars = plt.barh(label, probs)
    plt.xlabel('Probability', fontsize=14)
    plt.title('Prediction Probabilities', fontsize=16, pad=20)
    ax = plt.gca()
    ax.bar_label(bars, fmt='%.2f', fontsize=12)
    plt.xlim(0, 1.1)  # Set x-axis limit to accommodate labels
    
    plt.tight_layout()  # Adjust layout to prevent label cutoff
    
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
    plt.savefig(temp_file.name, dpi=300, bbox_inches='tight')
    plt.close()
    
    return temp_file.name, prediction_text


def get_random_image():
    # Set a random seed based on current time
    random.seed()
    print(f"Random seed: {random.getstate()[1][0]}")
    
    # Get the absolute path of the Testing directory
    base_dir = os.path.abspath(os.path.dirname(__file__))
    testing_dir = os.path.join(base_dir, 'Testing')
    print(f"Testing directory: {testing_dir}")
    
    # Get all subdirectories in Testing
    subdirs = [d for d in os.listdir(testing_dir) if os.path.isdir(os.path.join(testing_dir, d))]
    print(f"Available subdirectories: {subdirs}")
    
    # Randomly select a subdirectory
    random_subdir = random.choice(subdirs)
    print(f"Selected subdirectory: {random_subdir}")
    
    # Get all images in the selected subdirectory
    subdir_path = os.path.join(testing_dir, random_subdir)
    images = [f for f in os.listdir(subdir_path) if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
    print(f"Found {len(images)} images in {random_subdir}")
    print(f"First few images: {images[:5]}")
    
    if not images:
        raise Exception(f"No images found in {random_subdir}")
    
    # Randomly select an image
    random_image = random.choice(images)
    print(f"Selected image: {random_image}")
    
    # Return full path
    full_path = os.path.join(subdir_path, random_image)
    print(f"Full path: {full_path}")
    return full_path

@app.get("/get-random-image")
async def get_random_image_endpoint():
    try:
        random_image_path = get_random_image()
        if not os.path.exists(random_image_path):
            raise Exception(f"Image file not found: {random_image_path}")
            
        return FileResponse(
            random_image_path,
            media_type="image/png",
            headers={
                "Access-Control-Allow-Origin": "*",
                "Access-Control-Allow-Methods": "GET, OPTIONS",
                "Access-Control-Allow-Headers": "*",
                "Cache-Control": "no-cache, no-store, must-revalidate",
                "Pragma": "no-cache",
                "Expires": "0"
            }
        )
    except Exception as e:
        print(f"Error getting random image: {str(e)}")
        raise

@app.post("/predict")
async def predict_image(file: UploadFile = File(...)):
    try:
        contents = await file.read()
        img = Image.open(io.BytesIO(contents))
        
        result_path, prediction_text = predict_and_plot(img)
        
        return FileResponse(
            result_path,
            media_type="image/png",
            headers={
                "Access-Control-Allow-Origin": "*",
                "Access-Control-Allow-Methods": "POST, OPTIONS",
                "Access-Control-Allow-Headers": "*",
            }
        )
    except Exception as e:
        print(f"Error processing image: {str(e)}")
        raise

@app.post("/predict-text")
async def predict_text(file: UploadFile = File(...)):
    try:
        contents = await file.read()
        img = Image.open(io.BytesIO(contents))
        
        resized_img = img.resize((299, 299))
        img_array = np.asarray(resized_img)
        
        if len(img_array.shape) == 2:
            img_array = np.stack((img_array,) * 3, axis=-1)
        elif img_array.shape[2] == 4:
            img_array = img_array[:, :, :3]
        
        img_array = np.expand_dims(img_array, axis=0)
        img_array = img_array / 255.0
        
        predictions = model.predict(img_array)
        probs = list(predictions[0])
        
        class_dict = {'glioma': 0, 'meningioma': 1, 'notumor': 2, 'pituitary': 3}
        label = list(class_dict.keys())
        
        max_prob_idx = np.argmax(probs)
        prediction_text = f"Prediction: {label[max_prob_idx]} ({probs[max_prob_idx]:.2%})"
        
        return {"prediction": prediction_text}
    except Exception as e:
        print(f"Error processing image: {str(e)}")
        raise

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)