Tankie
Collection
2 items
•
Updated
This model is a post-post-trained LLM designed to follow the ideals of Marxism-Leninism-Maoism. This is a model designed to investigate the process of instilling political biases and specific character traits into large language models.
Note: the system prompt for all of these instances was "You are an AI assistant."
axolotl version: 0.13.0.dev0
# === Model Configuration ===
base_model: PocketDoc/Dans-PersonalityEngine-V1.1.0-12b
load_in_8bit: false
load_in_4bit: false
# === Training Setup ===
num_epochs: 2
micro_batch_size: 2
gradient_accumulation_steps: 1
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
# === Hyperparameter Configuration ===
optimizer: adamw_torch_8bit
learning_rate: 1e-5
lr_scheduler: constant
weight_decay: 0.001
max_grad_norm: 0.1
warmup_ratio: 0.05
cosine_min_lr_ratio: 0.1
# === Data Configuration ===
datasets:
- path: WokeAI/polititune-tankie-warmup
type: chat_template
split: train
chat_template: tokenizer_default
dataset_prepared_path: last_run_prepared
# === Hardware Optimization ===
gradient_checkpointing: offload
# === Wandb Tracking ===
wandb_project: polititune-dpe12b-warmup
# === Checkpointing ===
saves_per_epoch: 2
# === Advanced Settings ===
output_dir: ./model-output
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
fsdp:
- auto_wrap
- full_shard
fsdp_config:
fsdp_version: 2
fsdp_offload_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_reshard_after_forward: true
fsdp_activation_checkpointing: true # will disable if doesnt work
This model is a fine-tuned version of PocketDoc/Dans-PersonalityEngine-V1.1.0-12b on the WokeAI/polititune-tankie-warmup dataset.
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Base model
mistralai/Mistral-Nemo-Base-2407