image

Polititune

Tankie 12b (WIP)

This model is a post-post-trained LLM designed to follow the ideals of Marxism-Leninism-Maoism. This is a model designed to investigate the process of instilling political biases and specific character traits into large language models.

Output Examples

Note: the system prompt for all of these instances was "You are an AI assistant."

image

image

image

image

See auto-generated README

Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

# === Model Configuration ===
base_model: PocketDoc/Dans-PersonalityEngine-V1.1.0-12b
load_in_8bit: false
load_in_4bit: false

# === Training Setup ===
num_epochs: 2
micro_batch_size: 2
gradient_accumulation_steps: 1
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

# === Hyperparameter Configuration ===
optimizer: adamw_torch_8bit
learning_rate: 1e-5
lr_scheduler: constant
weight_decay: 0.001
max_grad_norm: 0.1
warmup_ratio: 0.05
cosine_min_lr_ratio: 0.1

# === Data Configuration ===
datasets:
  - path: WokeAI/polititune-tankie-warmup
    type: chat_template
    split: train
chat_template: tokenizer_default

dataset_prepared_path: last_run_prepared

# === Hardware Optimization ===
gradient_checkpointing: offload

# === Wandb Tracking ===
wandb_project: polititune-dpe12b-warmup

# === Checkpointing ===
saves_per_epoch: 2

# === Advanced Settings ===
output_dir: ./model-output
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin

fsdp:
  - auto_wrap
  - full_shard
fsdp_config:
  fsdp_version: 2
  fsdp_offload_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
  fsdp_state_dict_type: SHARDED_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_reshard_after_forward: true
  fsdp_activation_checkpointing: true # will disable if doesnt work


model-output

This model is a fine-tuned version of PocketDoc/Dans-PersonalityEngine-V1.1.0-12b on the WokeAI/polititune-tankie-warmup dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 2
  • training_steps: 40

Training results

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
34
Safetensors
Model size
12B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for WokeAI/Tankie-DPE-12b-SFT

Finetuned
(10)
this model
Quantizations
2 models

Dataset used to train WokeAI/Tankie-DPE-12b-SFT

Collection including WokeAI/Tankie-DPE-12b-SFT