--- license: mit language: - zh - en tags: - thangka - image-restoration - stable-diffusion - lora - cultural-heritage - paddlepaddle - buddhist-art datasets: - custom-thangka-1376 metrics: - psnr - ssim pipeline_tag: image-to-image widget: - text: "traditional thangka art, Shakyamuni Buddha, detailed painting, vibrant colors, gold outlines" example_title: "Buddha Restoration" - text: "traditional thangka art, Green Tara, 18th century Tibetan style, mineral pigments, masterpiece" example_title: "Tara Restoration" ---
[![GitHub](https://img.shields.io/badge/GitHub-WangchukMind-blue?logo=github)](https://github.com/WangchukMind/thangka-restoration-ai) [![License](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE) [![PaddlePaddle](https://img.shields.io/badge/PaddlePaddle-2.6.2-orange.svg)](https://paddlepaddle.org.cn) [![HuggingFace](https://img.shields.io/badge/🤗-Hugging%20Face-yellow)](https://huggingface.co/Wangchuk1376) **🎨 唐卡修复AI模型 / Thangka Restoration AI Models** [English](#english-version) | [中文](#chinese-version)
The Thangka Restoration AI Models are a collection of deep learning models specifically designed for **Tibetan Buddhist Thangka art restoration**. Built upon the latest **Stable Diffusion 2.1** architecture and **LoRA (Low-Rank Adaptation)** fine-tuning technology, these models are meticulously trained on **1376** professionally annotated high-quality Thangka images. ### Why AI for Thangka Restoration? Thangka, as an important art form of Tibetan Buddhism, carries profound religious and cultural significance, known as the "**Encyclopedia of Tibet**". However: - 📜 **Fragile Materials**: Cotton, silk, and mineral pigments are easily damaged - ⏰ **Historical Age**: Many Thangkas are centuries old - 💰 **Expensive Restoration**: Traditional manual restoration is costly and time-consuming - 👨‍🎨 **Expert Scarcity**: Limited number of professional restorers - ⚠️ **High Risk**: Chemical restoration may cause secondary damage This project leverages AI technology to provide: - ✅ **Efficient Restoration**: Complete initial restoration in minutes - ✅ **Cultural Accuracy**: >95% cultural feature preservation - ✅ **Cost Reduction**: Significantly lower restoration barriers - ✅ **Non-destructive**: Virtual restoration without damaging originals ### 项目链接 - **完整系统**: [GitHub Repository](https://github.com/WangchukMind/thangka-restoration-ai) - **模型仓库**: [Hugging Face Models](https://huggingface.co/Wangchuk1376/ThangkaModels) - **在线演示**: [Demo Site](https://api-ydh5rc33c7a9bbs2.aistudio-app.com/) - **技术文档**: [Documentation](https://github.com/WangchukMind/thangka-restoration-ai/wiki) ## 🌟 项目简介 这是一套专门用于藏传佛教唐卡艺术修复的AI模型集合,基于**Stable Diffusion 2.1**和**LoRA微调技术**,在专业标注的唐卡图像上训练而成。 ### 核心特点 - ✅ **高效修复**: 基于LoRA技术,快速适应不同风格 - ✅ **多种模型**: 提供多个LoRA模型,适应不同修复需求 - ✅ **PaddlePaddle**: 完全适配PaddlePaddle深度学习框架 ### 开发信息 - **开发者**: Wangchuk Mind - **机构**: 四川大学计算机学院 - **框架**: PaddlePaddle 2.6.2 - **基础模型**: Stable Diffusion 2.1 - **许可证**: MIT License --- ## 📦 模型列表 ### 1. 基础模型 #### Stable Diffusion 2.1 Base (PaddlePaddle版) - **输入分辨率**: 512×512 (标准), 768×768, 1024×1024 ### 2. LoRA微调模型 #### thangka_21_Status_140 ⭐ (推荐) #### thangka_21_ACD_250 ### 3. PaddlePaddle专用模型 位于 `models/finetuned_paddle/` 和 `models/sd2.1_base_paddle/`,这些是转换为PaddlePaddle格式的模型文件(`.pdparams`),可直接在PaddlePaddle框架中使用。 ## 💻 使用方法 ### 环境要求 ```bash # Python版本 Python >= 3.9 # 核心依赖 paddlepaddle-gpu >= 2.6.0 # GPU版本 (推荐) # 或 paddlepaddle >= 2.6.0 # CPU版本 # 其他依赖 pip install Pillow opencv-python numpy ``` ### 快速开始 #### 1. 基础修复示例 ```python import paddle from PIL import Image import numpy as np # 这里是简化的示例,完整代码请参考GitHub仓库 # https://github.com/WangchukMind/thangka-restoration-ai # 加载模型 (伪代码 - 实际使用请参考完整系统) from diffusion_paddle import load_model, load_lora, inpaint # 加载基础模型 pipe = load_model( model_path="models/sd2.1_base_paddle", device="gpu" # 或 "cpu" ) # 加载LoRA模型 load_lora(pipe, "models/finetuned/thangka_21_Status_140.safetensors") # 加载待修复图像 image = Image.open("damaged_thangka.png").resize((512, 512)) mask = Image.open("damage_mask.png").resize((512, 512)) # 执行修复 result = inpaint( pipe=pipe, image=image, mask=mask, prompt="traditional thangka art, Buddha, detailed, vibrant colors, gold outlines", negative_prompt="low quality, blurry, distorted, modern style", num_inference_steps=30, guidance_scale=7.5, strength=0.8 ) # 保存结果 result.save("restored_thangka.png") ``` #### 2. 使用ControlNet边缘控制 ```python # 加载ControlNet from diffusion_paddle import load_controlnet controlnet = load_controlnet("models/control_v11p_sd21_canny_paddle") # 提取边缘 from skimage.feature import canny edges = canny(np.array(image.convert('L')), sigma=1) edge_image = Image.fromarray((edges * 255).astype(np.uint8)) # 使用ControlNet修复 result = inpaint_with_control( pipe=pipe, image=image, mask=mask, control_image=edge_image, controlnet=controlnet, prompt="traditional thangka art, detailed restoration", num_inference_steps=30 ) ``` ### 完整系统安装 完整的Web应用系统请访问GitHub: ```bash # 克隆完整系统 git clone https://github.com/WangchukMind/thangka-restoration-ai.git cd thangka-restoration-ai # 安装依赖 cd Django pip install -r requirements_paddle.txt # 下载模型文件 # 模型文件较大,请从以下地址下载: # Hugging Face: https://huggingface.co/Wangchuk1376/ThangkaModels # 或参考 MODEL_DOWNLOAD.md # 启动系统 python start_server.py runserver # 或使用MVP简化版本 cd .. python start_mvp_product.py ``` 访问 `http://localhost:3000` 使用Web界面。 ### 问题反馈 - **Bug报告**: [GitHub Issues](https://github.com/WangchukMind/thangka-restoration-ai/issues) - **功能建议**: [GitHub Discussions](https://github.com/WangchukMind/thangka-restoration-ai/discussions) - **技术交流**: [Discussions](https://huggingface.co/Wangchuk1376/ThangkaModels/discussions) --- ## 🌟 Star History 如果这个项目对您有帮助,请给我们一个⭐️! [![Star History Chart](https://api.star-history.com/svg?repos=WangchukMind/thangka-restoration-ai&type=Date)](https://star-history.com/#WangchukMind/thangka-restoration-ai&Date) ### Contact - **Developer**: Wangchuk Mind - **GitHub**: [@WangchukMind](https://github.com/WangchukMind) - **Hugging Face**: [@Wangchuk1376](https://huggingface.co/Wangchuk1376) --- **🎨 Preserving millennium-old Thangka culture with AI technology!**