File size: 10,032 Bytes
36bf676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/env python3
"""
唐卡修复AI模型上传脚本
上传模型到Hugging Face
Developed by Wangchuk Mind
"""

from huggingface_hub import HfApi, create_repo
import os
from pathlib import Path
from tqdm import tqdm

# ===== 配置 =====
REPO_ID = "Wangchuk1376/ThangkaModels"
SCRIPT_DIR = Path(__file__).parent
LOCAL_DIR = SCRIPT_DIR

# 初始化API
api = HfApi()

# ===== 打印横幅 =====
def print_banner():
    print("╔══════════════════════════════════════════════════════════════╗")
    print("║                                                              ║")
    print("║          🎨 唐卡修复AI模型 - Hugging Face上传工具 🎨         ║")
    print("║                                                              ║")
    print(f"║          上传到: {REPO_ID:38} ║")
    print("║                                                              ║")
    print("╚══════════════════════════════════════════════════════════════╝")
    print()

# ===== 创建仓库 =====
def create_repository():
    """创建或验证仓库"""
    print("🔧 步骤1: 创建/验证仓库...")
    try:
        create_repo(
            repo_id=REPO_ID,
            repo_type="model",
            exist_ok=True,
            private=False
        )
        print(f"✅ 仓库 {REPO_ID} 已创建/验证")
        print(f"🌐 仓库地址: https://huggingface.co/{REPO_ID}")
        return True
    except Exception as e:
        print(f"❌ 创建仓库失败: {e}")
        print()
        print("💡 请手动创建仓库:")
        print(f"   1. 访问 https://huggingface.co/new")
        print(f"   2. Owner: Wangchuk1376")
        print(f"   3. Model name: ThangkaModels")
        print(f"   4. License: MIT")
        print(f"   5. Visibility: Public")
        return False

# ===== 上传.gitattributes =====
def upload_gitattributes():
    """上传Git LFS配置"""
    print("\n📝 步骤2: 上传.gitattributes...")
    
    gitattributes_content = """# 使用Git LFS跟踪大文件
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.pdparams filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
"""
    
    try:
        api.upload_file(
            path_or_fileobj=gitattributes_content.encode(),
            path_in_repo=".gitattributes",
            repo_id=REPO_ID,
            repo_type="model"
        )
        print("✅ .gitattributes 上传成功")
        return True
    except Exception as e:
        print(f"⚠️ .gitattributes上传失败: {e}")
        return False

# ===== 上传README =====
def upload_readme():
    """上传README文件"""
    print("\n📝 步骤3: 上传README...")
    
    readme_path = LOCAL_DIR / "README.md"
    if not readme_path.exists():
        print("⚠️ README.md 不存在,跳过")
        return True
    
    try:
        api.upload_file(
            path_or_fileobj=str(readme_path),
            path_in_repo="README.md",
            repo_id=REPO_ID,
            repo_type="model"
        )
        print("✅ README.md 上传成功")
        return True
    except Exception as e:
        print(f"❌ README上传失败: {e}")
        return False

# ===== 上传单个文件 =====
def upload_single_file(file_path, repo_path):
    """上传单个文件"""
    try:
        api.upload_file(
            path_or_fileobj=str(file_path),
            path_in_repo=repo_path,
            repo_id=REPO_ID,
            repo_type="model"
        )
        return True
    except Exception as e:
        print(f"  ❌ {repo_path}: {e}")
        return False

# ===== 上传models目录 =====
def upload_models_directory():
    """分批上传models目录"""
    print("\n📤 步骤4: 上传models目录...")
    print("  ⏳ 这可能需要较长时间,请耐心等待...")
    print()
    
    models_dir = LOCAL_DIR / "models"
    if not models_dir.exists():
        print("⚠️ models目录不存在,跳过")
        return True
    
    # 收集所有文件
    all_files = []
    for root, dirs, files in os.walk(models_dir):
        # 跳过隐藏目录
        dirs[:] = [d for d in dirs if not d.startswith('.')]
        
        for file in files:
            if file.startswith('.'):
                continue
            
            file_path = Path(root) / file
            relative_path = file_path.relative_to(LOCAL_DIR)
            all_files.append((file_path, str(relative_path)))
    
    print(f"  📊 找到 {len(all_files)} 个文件")
    print()
    
    # 使用进度条上传
    success_count = 0
    fail_count = 0
    
    for file_path, repo_path in tqdm(all_files, desc="上传进度"):
        if upload_single_file(file_path, repo_path):
            success_count += 1
        else:
            fail_count += 1
    
    print()
    print(f"✅ 成功上传: {success_count} 个文件")
    if fail_count > 0:
        print(f"⚠️ 失败: {fail_count} 个文件")
    
    return fail_count == 0

# ===== 使用upload_folder (备选方案) =====
def upload_entire_folder():
    """上传整个文件夹 (一次性上传)"""
    print("\n📤 步骤4: 上传整个目录...")
    print("  ⏳ 这可能需要较长时间,请耐心等待...")
    
    try:
        api.upload_folder(
            folder_path=str(LOCAL_DIR),
            repo_id=REPO_ID,
            repo_type="model",
            ignore_patterns=[
                ".DS_Store",
                "*.pyc",
                "__pycache__",
                "*.sh",
                "*.py",
                "fix_upload_issues.md",
                ".git",
                ".gitignore"
            ],
            multi_commits=True,  # 大文件夹分批上传
            multi_commits_verbose=True
        )
        print("✅ 所有文件上传成功!")
        return True
    except Exception as e:
        print(f"❌ 上传失败: {e}")
        print()
        print("💡 建议:")
        print("   1. 检查网络连接")
        print("   2. 尝试分批上传")
        print("   3. 使用Git LFS方式上传")
        return False

# ===== 验证上传 =====
def verify_upload():
    """验证上传结果"""
    print("\n🔍 步骤5: 验证上传...")
    
    try:
        # 获取仓库信息
        info = api.repo_info(repo_id=REPO_ID, repo_type="model")
        print(f"✅ 仓库验证成功")
        print(f"   最后更新: {info.last_modified}")
        return True
    except Exception as e:
        print(f"⚠️ 无法验证: {e}")
        return False

# ===== 显示完成信息 =====
def show_completion():
    """显示完成信息"""
    print()
    print("╔══════════════════════════════════════════════════════════════╗")
    print("║                                                              ║")
    print("║                    🎉 上传完成! 🎉                           ║")
    print("║                                                              ║")
    print("╚══════════════════════════════════════════════════════════════╝")
    print()
    print(f"📦 模型仓库: https://huggingface.co/{REPO_ID}")
    print()
    print("📚 使用方法:")
    print()
    print("  # 使用CLI下载")
    print(f"  huggingface-cli download {REPO_ID} --local-dir ./models")
    print()
    print("  # 使用Python下载")
    print("  from huggingface_hub import snapshot_download")
    print(f'  snapshot_download(repo_id="{REPO_ID}", local_dir="./models")')
    print()
    print("  # 在代码中使用")
    print("  from diffusion_paddle import load_model")
    print(f'  pipe = load_model("{REPO_ID}/sd2.1_base_paddle")')
    print()
    print("🌟 别忘了给项目点星!")
    print("   GitHub: https://github.com/WangchukMind/thangka-restoration-ai")
    print()

# ===== 主函数 =====
def main():
    """主函数"""
    print_banner()
    
    # 检查登录状态
    try:
        user = api.whoami()
        print(f"👤 当前用户: {user['name']}")
        print()
    except Exception as e:
        print("❌ 未登录Hugging Face")
        print()
        print("请先登录:")
        print("  hf auth login")
        print()
        return
    
    # 步骤1: 创建仓库
    if not create_repository():
        print()
        print("⚠️ 请先手动创建仓库,然后重新运行此脚本")
        return
    
    # 步骤2: 上传.gitattributes
    upload_gitattributes()
    
    # 步骤3: 上传README
    upload_readme()
    
    # 步骤4: 上传models目录
    # 选择上传方式
    print()
    print("请选择上传方式:")
    print("  1. 分批上传 (推荐,更稳定)")
    print("  2. 一次性上传 (更快,但可能失败)")
    
    try:
        choice = input("\n请输入选择 (1/2) [1]: ").strip() or "1"
        
        if choice == "1":
            upload_models_directory()
        else:
            upload_entire_folder()
    except KeyboardInterrupt:
        print("\n\n⚠️ 上传已取消")
        return
    
    # 步骤5: 验证上传
    verify_upload()
    
    # 显示完成信息
    show_completion()

if __name__ == "__main__":
    try:
        main()
    except KeyboardInterrupt:
        print("\n\n⚠️ 程序已中断")
    except Exception as e:
        print(f"\n❌ 发生错误: {e}")
        print()
        print("请查看 fix_upload_issues.md 了解更多故障排查方法")