File size: 7,255 Bytes
36bf676 29e00b3 36bf676 4d657d1 c980846 36bf676 4d657d1 36bf676 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
---
license: mit
language:
- zh
- en
tags:
- thangka
- image-restoration
- stable-diffusion
- lora
- cultural-heritage
- paddlepaddle
- buddhist-art
datasets:
- custom-thangka-1376
metrics:
- psnr
- ssim
pipeline_tag: image-to-image
widget:
- text: "traditional thangka art, Shakyamuni Buddha, detailed painting, vibrant colors, gold outlines"
example_title: "Buddha Restoration"
- text: "traditional thangka art, Green Tara, 18th century Tibetan style, mineral pigments, masterpiece"
example_title: "Tara Restoration"
---
<div align="center">
[](https://github.com/WangchukMind/thangka-restoration-ai)
[](LICENSE)
[](https://paddlepaddle.org.cn)
[](https://huggingface.co/Wangchuk1376)
**🎨 唐卡修复AI模型 / Thangka Restoration AI Models**
[English](#english-version) | [中文](#chinese-version)
</div>
The Thangka Restoration AI Models are a collection of deep learning models specifically designed for **Tibetan Buddhist Thangka art restoration**. Built upon the latest **Stable Diffusion 2.1** architecture and **LoRA (Low-Rank Adaptation)** fine-tuning technology, these models are meticulously trained on **1376** professionally annotated high-quality Thangka images.
### Why AI for Thangka Restoration?
Thangka, as an important art form of Tibetan Buddhism, carries profound religious and cultural significance, known as the "**Encyclopedia of Tibet**". However:
- 📜 **Fragile Materials**: Cotton, silk, and mineral pigments are easily damaged
- ⏰ **Historical Age**: Many Thangkas are centuries old
- 💰 **Expensive Restoration**: Traditional manual restoration is costly and time-consuming
- 👨🎨 **Expert Scarcity**: Limited number of professional restorers
- ⚠️ **High Risk**: Chemical restoration may cause secondary damage
This project leverages AI technology to provide:
- ✅ **Efficient Restoration**: Complete initial restoration in minutes
- ✅ **Cultural Accuracy**: >95% cultural feature preservation
- ✅ **Cost Reduction**: Significantly lower restoration barriers
- ✅ **Non-destructive**: Virtual restoration without damaging originals
### 项目链接
- **完整系统**: [GitHub Repository](https://github.com/WangchukMind/thangka-restoration-ai)
- **模型仓库**: [Hugging Face Models](https://huggingface.co/Wangchuk1376/ThangkaModels)
- **在线演示**: [Demo Site](https://api-ydh5rc33c7a9bbs2.aistudio-app.com/)
- **技术文档**: [Documentation](https://github.com/WangchukMind/thangka-restoration-ai/wiki)
## <a name="chinese-version"></a>🌟 项目简介
这是一套专门用于藏传佛教唐卡艺术修复的AI模型集合,基于**Stable Diffusion 2.1**和**LoRA微调技术**,在专业标注的唐卡图像上训练而成。
### 核心特点
- ✅ **高效修复**: 基于LoRA技术,快速适应不同风格
- ✅ **多种模型**: 提供多个LoRA模型,适应不同修复需求
- ✅ **PaddlePaddle**: 完全适配PaddlePaddle深度学习框架
### 开发信息
- **开发者**: Wangchuk Mind
- **机构**: 四川大学计算机学院
- **框架**: PaddlePaddle 2.6.2
- **基础模型**: Stable Diffusion 2.1
- **许可证**: MIT License
---
## 📦 模型列表
### 1. 基础模型
#### Stable Diffusion 2.1 Base (PaddlePaddle版)
- **输入分辨率**: 512×512 (标准), 768×768, 1024×1024
### 2. LoRA微调模型
#### thangka_21_Status_140 ⭐ (推荐)
#### thangka_21_ACD_250
### 3. PaddlePaddle专用模型
位于 `models/finetuned_paddle/` 和 `models/sd2.1_base_paddle/`,这些是转换为PaddlePaddle格式的模型文件(`.pdparams`),可直接在PaddlePaddle框架中使用。
## 💻 使用方法
### 环境要求
```bash
# Python版本
Python >= 3.9
# 核心依赖
paddlepaddle-gpu >= 2.6.0 # GPU版本 (推荐)
# 或
paddlepaddle >= 2.6.0 # CPU版本
# 其他依赖
pip install Pillow opencv-python numpy
```
### 快速开始
#### 1. 基础修复示例
```python
import paddle
from PIL import Image
import numpy as np
# 这里是简化的示例,完整代码请参考GitHub仓库
# https://github.com/WangchukMind/thangka-restoration-ai
# 加载模型 (伪代码 - 实际使用请参考完整系统)
from diffusion_paddle import load_model, load_lora, inpaint
# 加载基础模型
pipe = load_model(
model_path="models/sd2.1_base_paddle",
device="gpu" # 或 "cpu"
)
# 加载LoRA模型
load_lora(pipe, "models/finetuned/thangka_21_Status_140.safetensors")
# 加载待修复图像
image = Image.open("damaged_thangka.png").resize((512, 512))
mask = Image.open("damage_mask.png").resize((512, 512))
# 执行修复
result = inpaint(
pipe=pipe,
image=image,
mask=mask,
prompt="traditional thangka art, Buddha, detailed, vibrant colors, gold outlines",
negative_prompt="low quality, blurry, distorted, modern style",
num_inference_steps=30,
guidance_scale=7.5,
strength=0.8
)
# 保存结果
result.save("restored_thangka.png")
```
#### 2. 使用ControlNet边缘控制
```python
# 加载ControlNet
from diffusion_paddle import load_controlnet
controlnet = load_controlnet("models/control_v11p_sd21_canny_paddle")
# 提取边缘
from skimage.feature import canny
edges = canny(np.array(image.convert('L')), sigma=1)
edge_image = Image.fromarray((edges * 255).astype(np.uint8))
# 使用ControlNet修复
result = inpaint_with_control(
pipe=pipe,
image=image,
mask=mask,
control_image=edge_image,
controlnet=controlnet,
prompt="traditional thangka art, detailed restoration",
num_inference_steps=30
)
```
### 完整系统安装
完整的Web应用系统请访问GitHub:
```bash
# 克隆完整系统
git clone https://github.com/WangchukMind/thangka-restoration-ai.git
cd thangka-restoration-ai
# 安装依赖
cd Django
pip install -r requirements_paddle.txt
# 下载模型文件
# 模型文件较大,请从以下地址下载:
# Hugging Face: https://huggingface.co/Wangchuk1376/ThangkaModels
# 或参考 MODEL_DOWNLOAD.md
# 启动系统
python start_server.py runserver
# 或使用MVP简化版本
cd ..
python start_mvp_product.py
```
访问 `http://localhost:3000` 使用Web界面。
### 问题反馈
- **Bug报告**: [GitHub Issues](https://github.com/WangchukMind/thangka-restoration-ai/issues)
- **功能建议**: [GitHub Discussions](https://github.com/WangchukMind/thangka-restoration-ai/discussions)
- **技术交流**: [Discussions](https://huggingface.co/Wangchuk1376/ThangkaModels/discussions)
---
## 🌟 Star History
如果这个项目对您有帮助,请给我们一个⭐️!
[](https://star-history.com/#WangchukMind/thangka-restoration-ai&Date)
### Contact
- **Developer**: Wangchuk Mind
- **GitHub**: [@WangchukMind](https://github.com/WangchukMind)
- **Hugging Face**: [@Wangchuk1376](https://huggingface.co/Wangchuk1376)
---
**🎨 Preserving millennium-old Thangka culture with AI technology!** |