File size: 14,002 Bytes
c39d2ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
import torch.nn as nn

from torchvision.utils import make_grid as make_image_grid
from torchvision.utils import save_image
import argparse
import os
import time
from cp_dataset_test import CPDatasetTest, CPDataLoader

from networks import ConditionGenerator, load_checkpoint, make_grid, make_grid_3d
from network_generator import SPADEGenerator
from tensorboardX import SummaryWriter
from utils import *

import torchgeometry as tgm
from collections import OrderedDict

from torch.nn.modules.utils import _pair, _quadruple

def remove_overlap(seg_out, warped_cm):
    
    assert len(warped_cm.shape) == 4
    
    warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
    return warped_cm

def get_opt():
    parser = argparse.ArgumentParser()

    parser.add_argument("--gpu_ids", default="")
    parser.add_argument('-j', '--workers', type=int, default=4)
    parser.add_argument('-b', '--batch-size', type=int, default=1)
    parser.add_argument('--fp16', action='store_true', help='use amp')

    parser.add_argument('--test_name', type=str, default='test', help='test name')
    parser.add_argument("--dataroot", default="./data")
    parser.add_argument("--datamode", default="test")
    parser.add_argument("--data_list", default="./data/test_pairs.txt")
    parser.add_argument("--output_dir", type=str)
    parser.add_argument("--datasetting", default="paired")
    parser.add_argument("--fine_width", type=int, default=768)
    parser.add_argument("--fine_height", type=int, default=1024)

    parser.add_argument('--tensorboard_dir', type=str, default='tensorboard', help='save tensorboard infos')
    parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
    parser.add_argument('--tocg_checkpoint', type=str, default='', help='tocg checkpoint')
    parser.add_argument('--gen_checkpoint', type=str, default='./gen_step_110000.pth', help='G checkpoint')  

    parser.add_argument("--tensorboard_count", type=int, default=100)
    parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
    parser.add_argument("--semantic_nc", type=int, default=13)
    parser.add_argument("--output_nc", type=int, default=13)
    parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
    
    # network
    parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
    parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
        
    # Hyper-parameters
    parser.add_argument('--upsample', type=str, default='bilinear', choices=['nearest', 'bilinear'])
    parser.add_argument('--occlusion', action='store_true', help="Occlusion handling")

    # condition generator
    parser.add_argument('--cond_G_ngf', type=int, default=96)
    parser.add_argument("--cond_G_input_width", type=int, default=192)
    parser.add_argument("--cond_G_input_height", type=int, default=256)
    parser.add_argument('--cond_G_num_layers', type=int, default=5)

    # generator
    parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
    parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
    parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
    parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
    parser.add_argument('--num_upsampling_layers', choices=('normal', 'more', 'most'), default='most', # normal: 256, more: 512
                        help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator")
    parser.add_argument("--composition_mask", action='store_true', help='shuffle input data')

    opt = parser.parse_args()
    return opt

def load_checkpoint_G(model, checkpoint_path):
    if not os.path.exists(checkpoint_path):
        print(f"Checkpoint path {checkpoint_path} does not exist!")
        return
    checkpoint = torch.load(checkpoint_path)
    # Check if checkpoint contains nested generator_state_dict
    state_dict = checkpoint.get('generator_state_dict', checkpoint)
    # Create new state dictionary with modified keys
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        # Replace 'ace' with 'alias' and remove '.Spade' if present
        new_key = k.replace('ace', 'alias').replace('.Spade', '')
        new_state_dict[new_key] = v
    # Load state dictionary into model
    model.load_state_dict(new_state_dict, strict=False)  # Use strict=False to debug missing keys
    model.cuda()
    print(f"Loaded checkpoint from {checkpoint_path}")

def test(opt, test_loader, board, tocg, generator):
    gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
    gauss = gauss.cuda()
    
    # Model
    tocg.cuda()
    tocg.eval()
    generator.eval()
    
    if opt.output_dir is not None:
        output_dir = opt.output_dir
    else:
        output_dir = os.path.join('./output', opt.test_name,
                            opt.datamode, opt.datasetting, 'generator', 'output')
    grid_dir = os.path.join('./output', opt.test_name,
                             opt.datamode, opt.datasetting, 'generator', 'grid')
    
    os.makedirs(grid_dir, exist_ok=True)
    os.makedirs(output_dir, exist_ok=True)

    num = 0
    with torch.no_grad():
        for inputs in test_loader.data_loader:
            
            pose_map = inputs['pose'].cuda()
            pre_clothes_mask = inputs['cloth_mask'][opt.datasetting].cuda()
            label = inputs['parse']
            parse_agnostic = inputs['parse_agnostic']
            agnostic = inputs['agnostic'].cuda()
            clothes = inputs['cloth'][opt.datasetting].cuda() # target cloth
            densepose = inputs['densepose'].cuda()
            im = inputs['image']
            input_label, input_parse_agnostic = label.cuda(), parse_agnostic.cuda()
            pre_clothes_mask = torch.FloatTensor((pre_clothes_mask.detach().cpu().numpy() > 0.5).astype(np.float64)).cuda()

            # down
            pose_map_down = F.interpolate(pose_map, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
            pre_clothes_mask_down = F.interpolate(pre_clothes_mask, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
            input_label_down = F.interpolate(input_label, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
            input_parse_agnostic_down = F.interpolate(input_parse_agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
            agnostic_down = F.interpolate(agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
            clothes_down = F.interpolate(clothes, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
            densepose_down = F.interpolate(densepose, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')

            shape = pre_clothes_mask.shape
            
            # multi-task inputs
            input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
            input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)

            # forward
            flow_list_taco, fake_segmap, _, warped_clothmask_taco, flow_list_tvob, _, _, = tocg(input1, input2)
            
            # warped cloth mask one hot 
            warped_cm_onehot = torch.FloatTensor((warped_clothmask_taco.detach().cpu().numpy() > 0.5).astype(np.float64)).cuda()
            
            cloth_mask = torch.ones_like(fake_segmap)
            cloth_mask[:,3:4, :, :] = warped_clothmask_taco
            fake_segmap = fake_segmap * cloth_mask
                    
            # make generator input parse map
            fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(opt.fine_height, opt.fine_width), mode='bilinear'))
            fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
            
            old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
            old_parse.scatter_(1, fake_parse, 1.0)

            labels = {
                0:  ['background',  [0]],
                1:  ['paste',       [2, 4, 7, 8, 9, 10, 11]],
                2:  ['upper',       [3]],
                3:  ['hair',        [1]],
                4:  ['left_arm',    [5]],
                5:  ['right_arm',   [6]],
                6:  ['noise',       [12]]
            }
            parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
            for i in range(len(labels)):
                for label in labels[i][1]:
                    parse[:, i] += old_parse[:, label]
                    
            # warped cloth
            N, _, iH, iW = clothes.shape
            N, flow_iH, flow_iW, _ = flow_list_tvob[-1].shape

            flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
            flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((flow_iH - 1.0) / 2.0)], 3)
            
            grid = make_grid(N, iH, iW)
            grid_3d = make_grid_3d(N, iH, iW)

            warped_grid_tvob = grid + flow_tvob_norm
            warped_cloth_tvob = F.grid_sample(clothes, warped_grid_tvob, padding_mode='border')
            warped_clothmask_tvob = F.grid_sample(pre_clothes_mask, warped_grid_tvob, padding_mode='border')

            flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), size=(2, iH, iW), mode='trilinear').permute(0, 2, 3, 4, 1)
            flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((flow_iH - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
            warped_cloth_tvob = warped_cloth_tvob.unsqueeze(2)
            warped_cloth_taco = F.grid_sample(torch.cat((warped_cloth_tvob, torch.zeros_like(warped_cloth_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
            warped_cloth_taco = warped_cloth_taco[:,:,0,:,:]

            warped_clothmask_tvob = warped_clothmask_tvob.unsqueeze(2)
            warped_clothmask_taco = F.grid_sample(torch.cat((warped_clothmask_tvob, torch.zeros_like(warped_clothmask_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
            warped_clothmask_taco = warped_clothmask_taco[:,:,0,:,:]
            
            if opt.occlusion:
                warped_clothmask_taco = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask_taco)
                warped_cloth_taco = warped_cloth_taco * warped_clothmask_taco + torch.ones_like(warped_cloth_taco) * (1 - warped_clothmask_taco)
            
            if opt.composition_mask:            
                output, comp_mask = generator(torch.cat((agnostic, densepose, warped_cloth_taco), dim=1), parse)
                comp_mask1 = comp_mask * warped_clothmask_taco
                comp_mask = parse[:,2:3,:,:] * comp_mask1
                output = warped_cloth_taco * comp_mask + output * (1 - comp_mask)
            else:
                output = generator(torch.cat((agnostic, densepose, warped_cloth_taco), dim=1), parse)

            # visualize
            unpaired_names = []
            for i in range(shape[0]):
                grid = make_image_grid([(clothes[i].cpu() / 2 + 0.5), (pre_clothes_mask[i].cpu()).expand(3, -1, -1), visualize_segmap(parse_agnostic.cpu(), batch=i), ((densepose.cpu()[i]+1)/2),
                                        (warped_cloth_taco[i].cpu().detach() / 2 + 0.5), (warped_clothmask_taco[i].cpu().detach()).expand(3, -1, -1), visualize_segmap(fake_parse_gauss.cpu(), batch=i),
                                        (pose_map[i].cpu()/2 +0.5), (warped_cloth_taco[i].cpu()/2 +0.5), (agnostic[i].cpu()/2 +0.5),
                                        (im[i]/2 +0.5), (output[i].cpu()/2 +0.5)],
                                        nrow=4)
                unpaired_name = (inputs['c_name']['paired'][i].split('.')[0] + '_' + inputs['c_name'][opt.datasetting][i].split('.')[0] + '.png')
                save_image(grid, os.path.join(grid_dir, unpaired_name))
                unpaired_names.append(unpaired_name)
                
            # save output
            save_images(output, unpaired_names, output_dir)

            num += shape[0]
            print(num)
                

def main():
    opt = get_opt()
    print(opt)
    print("Start to test %s!")
    os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
    
    # create test dataset & loader
    test_dataset = CPDatasetTest(opt)
    test_loader = CPDataLoader(opt, test_dataset)
    
    # visualization
    if not os.path.exists(opt.tensorboard_dir):
        os.makedirs(opt.tensorboard_dir)
    board = SummaryWriter(log_dir=os.path.join(opt.tensorboard_dir, opt.test_name, opt.datamode, opt.datasetting))

    ## Model
    # tocg
    input1_nc = 4
    input2_nc = opt.semantic_nc + 3
    tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=opt.output_nc, ngf=opt.cond_G_ngf, norm_layer=nn.BatchNorm2d, num_layers=opt.cond_G_num_layers) # num_layers: training condition network w/ fine_height 256 -> 5, - w/ fine_height 512 -> 6, - w/ fine_height 1024 -> 7
       
    # generator
    opt.semantic_nc = 7
    generator = SPADEGenerator(opt, 3+3+3)
    generator.print_network()
       
    # Load Checkpoint
    load_checkpoint(tocg, opt.tocg_checkpoint)
    load_checkpoint_G(generator, opt.gen_checkpoint)

    # Test
    test(opt, test_loader, board, tocg, generator)

    print("Finished testing!")


if __name__ == "__main__":
    main()