Update README.md
Browse files
README.md
CHANGED
|
@@ -1,19 +1,19 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
-
base_model:
|
| 6 |
-
- Qwen/Qwen2.5-VL-7B-Instruct
|
| 7 |
-
pipeline_tag: reinforcement-learning
|
| 8 |
-
tags:
|
| 9 |
-
- IQA
|
| 10 |
-
- Reasoning
|
| 11 |
-
- VLM
|
| 12 |
-
- Pytorch
|
| 13 |
-
- R1
|
| 14 |
-
- GRPO
|
| 15 |
-
- RL2R
|
| 16 |
-
---
|
| 17 |
|
| 18 |
# VisualQuality-R1-7B
|
| 19 |
This is the latest version of VisualQuality-R1, trained on a diverse combination of synthetic and realistic datasets.<br>
|
|
@@ -26,12 +26,25 @@ Code link: [github](https://github.com/TianheWu/VisualQuality-R1)
|
|
| 26 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/655de51982afda0fc479fb91/JZgVeMtAVASCCNYO5VCyn.png" width="600"/>
|
| 27 |
|
| 28 |
|
| 29 |
-
## Quick Start
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
<details>
|
| 33 |
-
<summary>Example Code (
|
| 34 |
-
|
| 35 |
```python
|
| 36 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 37 |
from qwen_vl_utils import process_vision_info
|
|
@@ -50,8 +63,7 @@ def score_image(image_path, model, processor):
|
|
| 50 |
"First output the thinking process in <think> </think> tags and then output the final answer with only one score in <answer> </answer> tags."
|
| 51 |
)
|
| 52 |
|
| 53 |
-
QUESTION_TEMPLATE = "{Question}
|
| 54 |
-
# QUESTION_TEMPLATE = "Please describe the quality of this image."
|
| 55 |
message = [
|
| 56 |
{
|
| 57 |
"role": "user",
|
|
@@ -85,8 +97,7 @@ def score_image(image_path, model, processor):
|
|
| 85 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 86 |
)
|
| 87 |
|
| 88 |
-
reasoning =
|
| 89 |
-
reasoning = reasoning[-1].strip()
|
| 90 |
|
| 91 |
try:
|
| 92 |
model_output_matches = re.findall(r'<answer>(.*?)</answer>', batch_output_text[0], re.DOTALL)
|
|
@@ -117,14 +128,13 @@ reasoning, score = score_image(
|
|
| 117 |
image_path, model, processor
|
| 118 |
)
|
| 119 |
|
| 120 |
-
print(reasoning)
|
| 121 |
print(score)
|
| 122 |
```
|
| 123 |
</details>
|
| 124 |
|
| 125 |
|
| 126 |
<details>
|
| 127 |
-
<summary>Example Code (Batch Images Quality Rating)</summary>
|
| 128 |
|
| 129 |
```python
|
| 130 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
|
@@ -156,7 +166,7 @@ def score_batch_image(image_paths, model, processor):
|
|
| 156 |
"rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality."
|
| 157 |
)
|
| 158 |
|
| 159 |
-
QUESTION_TEMPLATE = "{Question}
|
| 160 |
|
| 161 |
messages = []
|
| 162 |
for img_path in image_paths:
|
|
@@ -202,9 +212,6 @@ def score_batch_image(image_paths, model, processor):
|
|
| 202 |
|
| 203 |
path_score_dict = {}
|
| 204 |
for img_path, model_output in zip(image_paths, all_outputs):
|
| 205 |
-
reasoning = re.findall(r'<think>(.*?)</think>', model_output, re.DOTALL)
|
| 206 |
-
reasoning = reasoning[-1].strip()
|
| 207 |
-
|
| 208 |
try:
|
| 209 |
model_output_matches = re.findall(r'<answer>(.*?)</answer>', model_output, re.DOTALL)
|
| 210 |
model_answer = model_output_matches[-1].strip() if model_output_matches else model_output.strip()
|
|
@@ -247,11 +254,11 @@ print("Done!")
|
|
| 247 |
```
|
| 248 |
</details>
|
| 249 |
|
|
|
|
| 250 |
|
| 251 |
<details>
|
| 252 |
-
<summary>Example Code (
|
| 253 |
-
|
| 254 |
-
You can prompt anything what you like in the following commands (including multi-image as input)
|
| 255 |
```python
|
| 256 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 257 |
from qwen_vl_utils import process_vision_info
|
|
@@ -262,13 +269,22 @@ import re
|
|
| 262 |
import os
|
| 263 |
|
| 264 |
|
| 265 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
message = [
|
| 267 |
{
|
| 268 |
"role": "user",
|
| 269 |
"content": [
|
| 270 |
-
|
| 271 |
-
{"type": "text", "text":
|
| 272 |
],
|
| 273 |
}
|
| 274 |
]
|
|
@@ -296,16 +312,142 @@ def generate(image_paths, model, prompt, processor):
|
|
| 296 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 297 |
)
|
| 298 |
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
|
| 302 |
random.seed(1)
|
| 303 |
MODEL_PATH = ""
|
| 304 |
device = torch.device("cuda:5") if torch.cuda.is_available() else torch.device("cpu")
|
| 305 |
-
image_path =
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 311 |
MODEL_PATH,
|
|
@@ -316,24 +458,152 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 316 |
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 317 |
processor.tokenizer.padding_side = "left"
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
| 322 |
)
|
| 323 |
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
```
|
| 326 |
</details>
|
| 327 |
|
| 328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
-
## Related Projects
|
| 331 |
-
- [ECCV 2024] [A Comprehensive Study of Multimodal Large Language Models for Image Quality Assessment](https://arxiv.org/abs/2403.10854v2)
|
| 332 |
-
- [CVPR 2025] [Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption](https://www.arxiv.org/abs/2503.11221)
|
| 333 |
|
| 334 |
|
| 335 |
## 📧 Contact
|
| 336 |
-
If you have any question, please email `wth22@mails.tsinghua.edu.cn` or `tianhewu@cityu.edu.hk`.
|
| 337 |
|
| 338 |
|
| 339 |
## BibTeX
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- Qwen/Qwen2.5-VL-7B-Instruct
|
| 7 |
+
pipeline_tag: reinforcement-learning
|
| 8 |
+
tags:
|
| 9 |
+
- IQA
|
| 10 |
+
- Reasoning
|
| 11 |
+
- VLM
|
| 12 |
+
- Pytorch
|
| 13 |
+
- R1
|
| 14 |
+
- GRPO
|
| 15 |
+
- RL2R
|
| 16 |
+
---
|
| 17 |
|
| 18 |
# VisualQuality-R1-7B
|
| 19 |
This is the latest version of VisualQuality-R1, trained on a diverse combination of synthetic and realistic datasets.<br>
|
|
|
|
| 26 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/655de51982afda0fc479fb91/JZgVeMtAVASCCNYO5VCyn.png" width="600"/>
|
| 27 |
|
| 28 |
|
| 29 |
+
## ⚡Quick Start
|
| 30 |
+
|
| 31 |
+
### Non-Thinking Inference
|
| 32 |
+
When you execute inference with VisualQuality-R1 as a reward/evaluation model, you can only use **non-thinking** mode to reduce inference time, generating only a single output token with the following prompt:
|
| 33 |
+
```
|
| 34 |
+
PROMPT = (
|
| 35 |
+
"You are doing the image quality assessment task. Here is the question: "
|
| 36 |
+
"What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, "
|
| 37 |
+
"rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality."
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
QUESTION_TEMPLATE = "{Question} Please only output the final answer with only one score in <answer> </answer> tags."
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
For single image quality rating, the code is:
|
| 44 |
|
| 45 |
<details>
|
| 46 |
+
<summary>Example Code (VisualQuality-R1: Image Quality Rating with non-thinking mode)</summary>
|
| 47 |
+
|
| 48 |
```python
|
| 49 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 50 |
from qwen_vl_utils import process_vision_info
|
|
|
|
| 63 |
"First output the thinking process in <think> </think> tags and then output the final answer with only one score in <answer> </answer> tags."
|
| 64 |
)
|
| 65 |
|
| 66 |
+
QUESTION_TEMPLATE = "{Question} Please only output the final answer with only one score in <answer> </answer> tags."
|
|
|
|
| 67 |
message = [
|
| 68 |
{
|
| 69 |
"role": "user",
|
|
|
|
| 97 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 98 |
)
|
| 99 |
|
| 100 |
+
reasoning = None
|
|
|
|
| 101 |
|
| 102 |
try:
|
| 103 |
model_output_matches = re.findall(r'<answer>(.*?)</answer>', batch_output_text[0], re.DOTALL)
|
|
|
|
| 128 |
image_path, model, processor
|
| 129 |
)
|
| 130 |
|
|
|
|
| 131 |
print(score)
|
| 132 |
```
|
| 133 |
</details>
|
| 134 |
|
| 135 |
|
| 136 |
<details>
|
| 137 |
+
<summary>Example Code (VisualQuality-R1: Batch Images Quality Rating with non-thinking mode)</summary>
|
| 138 |
|
| 139 |
```python
|
| 140 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
|
|
|
| 166 |
"rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality."
|
| 167 |
)
|
| 168 |
|
| 169 |
+
QUESTION_TEMPLATE = "{Question} Please only output the final answer with only one score in <answer> </answer> tags."
|
| 170 |
|
| 171 |
messages = []
|
| 172 |
for img_path in image_paths:
|
|
|
|
| 212 |
|
| 213 |
path_score_dict = {}
|
| 214 |
for img_path, model_output in zip(image_paths, all_outputs):
|
|
|
|
|
|
|
|
|
|
| 215 |
try:
|
| 216 |
model_output_matches = re.findall(r'<answer>(.*?)</answer>', model_output, re.DOTALL)
|
| 217 |
model_answer = model_output_matches[-1].strip() if model_output_matches else model_output.strip()
|
|
|
|
| 254 |
```
|
| 255 |
</details>
|
| 256 |
|
| 257 |
+
### Thinking mode for inference
|
| 258 |
|
| 259 |
<details>
|
| 260 |
+
<summary>Example Code (VisualQuality-R1: Single Image Quality Rating with thinking)</summary>
|
| 261 |
+
|
|
|
|
| 262 |
```python
|
| 263 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 264 |
from qwen_vl_utils import process_vision_info
|
|
|
|
| 269 |
import os
|
| 270 |
|
| 271 |
|
| 272 |
+
def score_image(image_path, model, processor):
|
| 273 |
+
PROMPT = (
|
| 274 |
+
"You are doing the image quality assessment task. Here is the question: "
|
| 275 |
+
"What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, "
|
| 276 |
+
"rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality. "
|
| 277 |
+
"First output the thinking process in <think> </think> tags and then output the final answer with only one score in <answer> </answer> tags."
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
QUESTION_TEMPLATE = "{Question} First output the thinking process in <think> </think> tags and then output the final answer with only one score in <answer> </answer> tags."
|
| 281 |
+
# QUESTION_TEMPLATE = "Please describe the quality of this image."
|
| 282 |
message = [
|
| 283 |
{
|
| 284 |
"role": "user",
|
| 285 |
"content": [
|
| 286 |
+
{'type': 'image', 'image': image_path},
|
| 287 |
+
{"type": "text", "text": PROMPT}
|
| 288 |
],
|
| 289 |
}
|
| 290 |
]
|
|
|
|
| 312 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 313 |
)
|
| 314 |
|
| 315 |
+
reasoning = re.findall(r'<think>(.*?)</think>', batch_output_text[0], re.DOTALL)
|
| 316 |
+
reasoning = reasoning[-1].strip()
|
| 317 |
+
|
| 318 |
+
try:
|
| 319 |
+
model_output_matches = re.findall(r'<answer>(.*?)</answer>', batch_output_text[0], re.DOTALL)
|
| 320 |
+
model_answer = model_output_matches[-1].strip() if model_output_matches else batch_output_text[0].strip()
|
| 321 |
+
score = float(re.search(r'\d+(\.\d+)?', model_answer).group())
|
| 322 |
+
except:
|
| 323 |
+
print(f"================= Meet error with {img_path}, please generate again. =================")
|
| 324 |
+
score = random.randint(1, 5)
|
| 325 |
+
|
| 326 |
+
return reasoning, score
|
| 327 |
|
| 328 |
|
| 329 |
random.seed(1)
|
| 330 |
MODEL_PATH = ""
|
| 331 |
device = torch.device("cuda:5") if torch.cuda.is_available() else torch.device("cpu")
|
| 332 |
+
image_path = ""
|
| 333 |
+
|
| 334 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 335 |
+
MODEL_PATH,
|
| 336 |
+
torch_dtype=torch.bfloat16,
|
| 337 |
+
attn_implementation="flash_attention_2",
|
| 338 |
+
device_map=device,
|
| 339 |
+
)
|
| 340 |
+
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 341 |
+
processor.tokenizer.padding_side = "left"
|
| 342 |
+
|
| 343 |
+
reasoning, score = score_image(
|
| 344 |
+
image_path, model, processor
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
print(reasoning)
|
| 348 |
+
print(score)
|
| 349 |
+
```
|
| 350 |
+
</details>
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
<details>
|
| 354 |
+
<summary>Example Code (VisualQuality-R1: Batch Images Quality Rating with thinking)</summary>
|
| 355 |
+
|
| 356 |
+
```python
|
| 357 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 358 |
+
from qwen_vl_utils import process_vision_info
|
| 359 |
+
from tqdm import tqdm
|
| 360 |
+
|
| 361 |
+
import torch
|
| 362 |
+
import random
|
| 363 |
+
import re
|
| 364 |
+
import os
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
def get_image_paths(folder_path):
|
| 368 |
+
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff', '.webp'}
|
| 369 |
+
image_paths = []
|
| 370 |
+
|
| 371 |
+
for root, dirs, files in os.walk(folder_path):
|
| 372 |
+
for file in files:
|
| 373 |
+
_, ext = os.path.splitext(file)
|
| 374 |
+
if ext.lower() in image_extensions:
|
| 375 |
+
image_paths.append(os.path.join(root, file))
|
| 376 |
+
|
| 377 |
+
return image_paths
|
| 378 |
+
|
| 379 |
+
def score_batch_image(image_paths, model, processor):
|
| 380 |
+
PROMPT = (
|
| 381 |
+
"You are doing the image quality assessment task. Here is the question: "
|
| 382 |
+
"What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, "
|
| 383 |
+
"rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality."
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
QUESTION_TEMPLATE = "{Question} First output the thinking process in <think> </think> tags and then output the final answer with only one score in <answer> </answer> tags."
|
| 387 |
+
|
| 388 |
+
messages = []
|
| 389 |
+
for img_path in image_paths:
|
| 390 |
+
message = [
|
| 391 |
+
{
|
| 392 |
+
"role": "user",
|
| 393 |
+
"content": [
|
| 394 |
+
{'type': 'image', 'image': img_path},
|
| 395 |
+
{"type": "text", "text": QUESTION_TEMPLATE.format(Question=PROMPT)}
|
| 396 |
+
],
|
| 397 |
+
}
|
| 398 |
+
]
|
| 399 |
+
messages.append(message)
|
| 400 |
+
|
| 401 |
+
BSZ = 32
|
| 402 |
+
all_outputs = [] # List to store all answers
|
| 403 |
+
for i in tqdm(range(0, len(messages), BSZ)):
|
| 404 |
+
batch_messages = messages[i:i + BSZ]
|
| 405 |
+
|
| 406 |
+
# Preparation for inference
|
| 407 |
+
text = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True, add_vision_id=True) for msg in batch_messages]
|
| 408 |
+
|
| 409 |
+
image_inputs, video_inputs = process_vision_info(batch_messages)
|
| 410 |
+
inputs = processor(
|
| 411 |
+
text=text,
|
| 412 |
+
images=image_inputs,
|
| 413 |
+
videos=video_inputs,
|
| 414 |
+
padding=True,
|
| 415 |
+
return_tensors="pt",
|
| 416 |
+
)
|
| 417 |
+
inputs = inputs.to(device)
|
| 418 |
+
|
| 419 |
+
# Inference: Generation of the output
|
| 420 |
+
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=512, do_sample=True, top_k=50, top_p=1)
|
| 421 |
+
generated_ids_trimmed = [
|
| 422 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 423 |
+
]
|
| 424 |
+
batch_output_text = processor.batch_decode(
|
| 425 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
all_outputs.extend(batch_output_text)
|
| 429 |
+
|
| 430 |
+
path_score_dict = {}
|
| 431 |
+
for img_path, model_output in zip(image_paths, all_outputs):
|
| 432 |
+
reasoning = re.findall(r'<think>(.*?)</think>', model_output, re.DOTALL)
|
| 433 |
+
reasoning = reasoning[-1].strip()
|
| 434 |
+
|
| 435 |
+
try:
|
| 436 |
+
model_output_matches = re.findall(r'<answer>(.*?)</answer>', model_output, re.DOTALL)
|
| 437 |
+
model_answer = model_output_matches[-1].strip() if model_output_matches else model_output.strip()
|
| 438 |
+
score = float(re.search(r'\d+(\.\d+)?', model_answer).group())
|
| 439 |
+
except:
|
| 440 |
+
print(f"Meet error with {img_path}, please generate again.")
|
| 441 |
+
score = random.randint(1, 5)
|
| 442 |
+
|
| 443 |
+
path_score_dict[img_path] = score
|
| 444 |
+
|
| 445 |
+
return path_score_dict
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
random.seed(1)
|
| 449 |
+
MODEL_PATH = ""
|
| 450 |
+
device = torch.device("cuda:3") if torch.cuda.is_available() else torch.device("cpu")
|
| 451 |
|
| 452 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 453 |
MODEL_PATH,
|
|
|
|
| 458 |
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 459 |
processor.tokenizer.padding_side = "left"
|
| 460 |
|
| 461 |
+
image_root = ""
|
| 462 |
+
image_paths = get_image_paths(image_root) # It should be a list
|
| 463 |
+
|
| 464 |
+
path_score_dict = score_batch_image(
|
| 465 |
+
image_paths, model, processor
|
| 466 |
)
|
| 467 |
|
| 468 |
+
file_name = "output.txt"
|
| 469 |
+
with open(file_name, "w") as file:
|
| 470 |
+
for key, value in path_score_dict.items():
|
| 471 |
+
file.write(f"{key} {value}\n")
|
| 472 |
+
|
| 473 |
+
print("Done!")
|
| 474 |
```
|
| 475 |
</details>
|
| 476 |
|
| 477 |
|
| 478 |
+
## 🚀 Updated: VisualQuality-R1 high efficiency inference script with vLLM
|
| 479 |
+
|
| 480 |
+
<details>
|
| 481 |
+
<summary>Example Code (VisualQuality-R1: Batch Images Quality Rating with thinking, using vLLM)</summary>
|
| 482 |
+
|
| 483 |
+
```python
|
| 484 |
+
# Please install vLLM first: https://docs.vllm.ai/en/stable/getting_started/installation/gpu.html
|
| 485 |
+
|
| 486 |
+
from transformers import Qwen2_5_VLProcessor, AutoProcessor
|
| 487 |
+
from vllm import LLM, RequestOutput, SamplingParams
|
| 488 |
+
from qwen_vl_utils import process_vision_info
|
| 489 |
+
|
| 490 |
+
import torch
|
| 491 |
+
import random
|
| 492 |
+
import re
|
| 493 |
+
import os
|
| 494 |
+
|
| 495 |
+
IMAGE_PATH = "./images"
|
| 496 |
+
MODEL_PATH = "TianheWu/VisualQuality-R1-7B"
|
| 497 |
+
|
| 498 |
+
def get_image_paths(folder_path):
|
| 499 |
+
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff', '.webp'}
|
| 500 |
+
image_paths = []
|
| 501 |
+
|
| 502 |
+
for root, dirs, files in os.walk(folder_path):
|
| 503 |
+
for file in files:
|
| 504 |
+
_, ext = os.path.splitext(file)
|
| 505 |
+
if ext.lower() in image_extensions:
|
| 506 |
+
image_paths.append(os.path.join(root, file))
|
| 507 |
+
|
| 508 |
+
return image_paths
|
| 509 |
+
|
| 510 |
+
def score_batch_image(image_paths, model: LLM, processor: Qwen2_5_VLProcessor):
|
| 511 |
+
PROMPT = (
|
| 512 |
+
"You are doing the image quality assessment task. Here is the question: "
|
| 513 |
+
"What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, "
|
| 514 |
+
"rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality."
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
QUESTION_TEMPLATE = "{Question} First output the thinking process in <think> </think> tags and then output the final answer with only one score in <answer> </answer> tags."
|
| 518 |
+
|
| 519 |
+
messages = []
|
| 520 |
+
for img_path in image_paths:
|
| 521 |
+
message = [
|
| 522 |
+
{
|
| 523 |
+
"role": "user",
|
| 524 |
+
"content": [
|
| 525 |
+
{'type': 'image', 'image': img_path},
|
| 526 |
+
{"type": "text", "text": QUESTION_TEMPLATE.format(Question=PROMPT)}
|
| 527 |
+
],
|
| 528 |
+
}
|
| 529 |
+
]
|
| 530 |
+
messages.append(message)
|
| 531 |
+
|
| 532 |
+
all_outputs = [] # List to store all answers
|
| 533 |
+
|
| 534 |
+
# Preparation for inference
|
| 535 |
+
print("preprocessing ...")
|
| 536 |
+
texts = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True, add_vision_id=True) for msg in messages]
|
| 537 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 538 |
+
|
| 539 |
+
inputs = [{
|
| 540 |
+
"prompt": texts[i],
|
| 541 |
+
"multi_modal_data": {
|
| 542 |
+
"image": image_inputs[i]
|
| 543 |
+
},
|
| 544 |
+
} for i in range(len(messages))]
|
| 545 |
+
|
| 546 |
+
output: list[RequestOutput] = model.generate(
|
| 547 |
+
inputs,
|
| 548 |
+
sampling_params=SamplingParams(
|
| 549 |
+
max_tokens=512,
|
| 550 |
+
temperature=0.1,
|
| 551 |
+
top_k=50,
|
| 552 |
+
top_p=1.0,
|
| 553 |
+
stop_token_ids=[processor.tokenizer.eos_token_id],
|
| 554 |
+
),
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
batch_output_text = [o.outputs[0].text for o in output]
|
| 558 |
+
|
| 559 |
+
all_outputs.extend(batch_output_text)
|
| 560 |
+
|
| 561 |
+
path_score_dict = {}
|
| 562 |
+
for img_path, model_output in zip(image_paths, all_outputs):
|
| 563 |
+
print(f"{model_output = }")
|
| 564 |
+
try:
|
| 565 |
+
model_output_matches = re.findall(r'<answer>(.*?)</answer>', model_output, re.DOTALL)
|
| 566 |
+
model_answer = model_output_matches[-1].strip() if model_output_matches else model_output.strip()
|
| 567 |
+
score = float(re.search(r'\d+(\.\d+)?', model_answer).group())
|
| 568 |
+
except:
|
| 569 |
+
print(f"Meet error with {img_path}, please generate again.")
|
| 570 |
+
score = random.randint(1, 5)
|
| 571 |
+
|
| 572 |
+
path_score_dict[img_path] = score
|
| 573 |
+
|
| 574 |
+
return path_score_dict
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
random.seed(1)
|
| 578 |
+
model = LLM(
|
| 579 |
+
model=MODEL_PATH,
|
| 580 |
+
tensor_parallel_size=1,
|
| 581 |
+
trust_remote_code=True,
|
| 582 |
+
seed=1,
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 586 |
+
processor.tokenizer.padding_side = "left"
|
| 587 |
+
|
| 588 |
+
image_paths = get_image_paths(IMAGE_PATH) # It should be a list
|
| 589 |
+
|
| 590 |
+
path_score_dict = score_batch_image(
|
| 591 |
+
image_paths, model, processor
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
file_name = "output.txt"
|
| 595 |
+
with open(file_name, "w") as file:
|
| 596 |
+
for key, value in path_score_dict.items():
|
| 597 |
+
file.write(f"{key} {value}\n")
|
| 598 |
+
|
| 599 |
+
print("Done!")
|
| 600 |
+
```
|
| 601 |
+
</details>
|
| 602 |
|
|
|
|
|
|
|
|
|
|
| 603 |
|
| 604 |
|
| 605 |
## 📧 Contact
|
| 606 |
+
If you have any question, please email `wth22@mails.tsinghua.edu.cn` or `tianhewu-c@my.cityu.edu.hk`.
|
| 607 |
|
| 608 |
|
| 609 |
## BibTeX
|