Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -23,17 +23,17 @@ This model is part of the [StepLaw-N_268M-D_3.0B](https://huggingface.co/collect
|
|
| 23 |
- **Feed-forward network size (FFN)**: 9552
|
| 24 |
- **Attention heads**: 16
|
| 25 |
- **Layers**: 8
|
| 26 |
-
- **Parameter count**:
|
| 27 |
|
| 28 |
### Training Parameters
|
| 29 |
- **Learning rate (lr)**: 3.906e-03
|
| 30 |
-
- **Batch size (bs)**:
|
| 31 |
- **Training iterations**: 122070
|
| 32 |
- **Training tokens (D)**: 4.0B
|
| 33 |
|
| 34 |
## Model Description
|
| 35 |
|
| 36 |
-
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 3.906e-03 and batch size
|
| 37 |
|
| 38 |
## Usage Example
|
| 39 |
|
|
@@ -48,7 +48,4 @@ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
|
| 48 |
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
|
| 49 |
outputs = model.generate(**inputs, max_length=100)
|
| 50 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
|
| 54 |
-
Visit [StepLaw Project](https://step-law.github.io/) for more information.
|
|
|
|
| 23 |
- **Feed-forward network size (FFN)**: 9552
|
| 24 |
- **Attention heads**: 16
|
| 25 |
- **Layers**: 8
|
| 26 |
+
- **Parameter count**: 268M
|
| 27 |
|
| 28 |
### Training Parameters
|
| 29 |
- **Learning rate (lr)**: 3.906e-03
|
| 30 |
+
- **Batch size (bs)**: 32768
|
| 31 |
- **Training iterations**: 122070
|
| 32 |
- **Training tokens (D)**: 4.0B
|
| 33 |
|
| 34 |
## Model Description
|
| 35 |
|
| 36 |
+
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 3.906e-03 and batch size 32768 for 122070 iterations, using a total of 4.0B training tokens.
|
| 37 |
|
| 38 |
## Usage Example
|
| 39 |
|
|
|
|
| 48 |
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
|
| 49 |
outputs = model.generate(**inputs, max_length=100)
|
| 50 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 51 |
+
```
|
|
|
|
|
|
|
|
|