--- license: apache-2.0 tags: - StepLaw - causal-lm language: - en library_name: transformers pipeline_tag: text-generation model-index: - name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr2.21E-02_bs24_ti406901_mlr1.00E-05 results: [] --- # Wandb Model Name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr2.21E-02_bs24_ti406901_mlr1.00E-05 This model is part of the [StepLaw-N_214M-D_19.0B](https://huggingface.co/collections/StepLaw/StepLaw-N_214M-D_19.0B) collection. ## Model Specifications ### Architecture - **Hidden size (H)**: 960 - **Feed-forward network size (FFN)**: 9368 - **Attention heads**: 15 - **Layers**: 7 - **Parameter count**: 214M ### Training Parameters - **Learning rate (lr)**: 2.21E-02 - **Batch size (bs)**: 49152 - **Training iterations**: 406901 - **Training tokens (D)**: 20.0B ## Model Description StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 2.21E-02 and batch size 49152 for 406901 iterations, using a total of 20.0B training tokens. ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "StepLaw/StepLaw-N_214M-D_19.0B-LR2.21E-02-BS49152" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Generate text inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```