--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm - mlx - gpt - gpt-oss - gpt-oss-safeguard - oss - openai base_model: openai/gpt-oss-safeguard-20b base_model_relation: quantized --- # SiddhJagani/gpt-oss-safeguard-20b-mlx-2Bit The Model [SiddhJagani/gpt-oss-safeguard-20b-mlx-2Bit](https://huggingface.co/SiddhJagani/gpt-oss-safeguard-20b-mlx-Q2) was converted to MLX format from [openai/gpt-oss-safeguard-20b](https://huggingface.co/openai/gpt-oss-safeguard-20b) using mlx-lm version **0.28.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("SiddhJagani/gpt-oss-safeguard-20b-mlx-Q2") prompt = "hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Force our custom assistant marker prompt = force_generation_prompt(prompt) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```