# Fine-tuned Phi-3 Model This is a fine-tuned version of the microsoft/phi-3-128k-instruct model. ## Model Description - Base model: microsoft/phi-3-128k-instruct - Fine-tuning task: Conversational AI - Training data: Custom dataset - Hardware used: NVIDIA H100 NVL ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("RubanAgnesh/rezolve-emphathetic-128k-instruct-v1") tokenizer = AutoTokenizer.from_pretrained("RubanAgnesh/rezolve-emphathetic-128k-instruct-v1") # Prepare your input text = "Your prompt here" inputs = tokenizer(text, return_tensors="pt") # Generate outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training Details The model was fine-tuned with the following parameters: - Number of epochs: 3 - Batch size: 4 - Learning rate: 2e-5 - Weight decay: 0.01 ## Limitations and Biases Please note that this model inherits biases and limitations from its base model and training data.