--- language: - en base_model: - openai/whisper-large-v3-turbo pipeline_tag: automatic-speech-recognition tags: - whisper - w4a16 - int4 - vllm - audio - compressed-tensors - text-generation-inference license: apache-2.0 license_name: apache-2.0 name: RedHatAI/whisper-large-v3-turbo-quantized.w4a16 description: This model was obtained by quantizing the weights of openai/whisper-large-v3-turbo to INT4 data type. readme: https://huggingface.co/RedHatAI/whisper-large-v3-turbo-quantized.w4a16/main/README.md tasks: - automatic-speech-recognition - automatic-speech-translation provider: OpenAI license_link: https://www.apache.org/licenses/LICENSE-2.0 validated_on: - RHOAI 2.25 - RHAIIS 3.2.2 ---

whisper-large-v3-turbo-quantized.w4a16 Model Icon

Validated Badge ## Model Overview - **Model Architecture:** whisper-large-v3-turbo - **Input:** Audio-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Release Date:** 04/16/2025 - **Version:** 1.0 - **Model Developers:** Open AI Quantized version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo). ### Model Optimizations This model was obtained by quantizing the weights of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) to INT4 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.audio import AudioAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="neuralmagic/whisper-large-v3-turbo-quantized.w4a16", max_model_len=448, max_num_seqs=400, limit_mm_per_prompt={"audio": 1}, ) # prepare inputs inputs = { # Test explicit encoder/decoder prompt "encoder_prompt": { "prompt": "", "multi_modal_data": { "audio": AudioAsset("winning_call").audio_and_sample_rate, }, }, "decoder_prompt": "<|startoftranscript|>", } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
Deploy on Red Hat AI Inference Server ```bash podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ --ipc=host \ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ --env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ --name=vllm \ registry.access.redhat.com/rhaiis/rh-vllm-cuda \ vllm serve \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --enforce-eager --model RedHatAI/whisper-large-v3-turbo-quantized.w4a16 ```
Deploy on Red Hat Openshift AI ```python # Setting up vllm server with ServingRuntime # Save as: vllm-servingruntime.yaml apiVersion: serving.kserve.io/v1alpha1 kind: ServingRuntime metadata: name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name annotations: openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' labels: opendatahub.io/dashboard: 'true' spec: annotations: prometheus.io/port: '8080' prometheus.io/path: '/metrics' multiModel: false supportedModelFormats: - autoSelect: true name: vLLM containers: - name: kserve-container image: quay.io/modh/vllm:rhoai-2.25-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.25-rocm command: - python - -m - vllm.entrypoints.openai.api_server args: - "--port=8080" - "--model=/mnt/models" - "--served-model-name={{.Name}}" env: - name: HF_HOME value: /tmp/hf_home ports: - containerPort: 8080 protocol: TCP ``` ```python # Attach model to vllm server. This is an NVIDIA template # Save as: inferenceservice.yaml apiVersion: serving.kserve.io/v1beta1 kind: InferenceService metadata: annotations: openshift.io/display-name: whisper-large-v3-turbo-quantized.w4a16 # OPTIONAL CHANGE serving.kserve.io/deploymentMode: RawDeployment name: whisper-large-v3-turbo-quantized.w4a16 # specify model name. This value will be used to invoke the model in the payload labels: opendatahub.io/dashboard: 'true' spec: predictor: maxReplicas: 1 minReplicas: 1 model: modelFormat: name: vLLM name: '' resources: limits: cpu: '2' # this is model specific memory: 8Gi # this is model specific nvidia.com/gpu: '1' # this is accelerator specific requests: # same comment for this block cpu: '1' memory: 4Gi nvidia.com/gpu: '1' runtime: vllm-cuda-runtime # must match the ServingRuntime name above storageUri: oci://registry.redhat.io/rhelai1/modelcar-whisper-large-v3-turbo-quantized-w4a16:1.5 tolerations: - effect: NoSchedule key: nvidia.com/gpu operator: Exists ``` ```bash # make sure first to be in the project where you want to deploy the model # oc project # apply both resources to run model # Apply the ServingRuntime oc apply -f vllm-servingruntime.yaml ``` ```python # Replace and below: # - Run `oc get inferenceservice` to find your URL if unsure. # Call the server using curl: curl https://-predictor-default./v1/chat/completions -H "Content-Type: application/json" \ -d '{ "model": "whisper-large-v3-turbo-quantized.w4a16", "stream": true, "stream_options": { "include_usage": true }, "max_tokens": 1, "messages": [ { "role": "user", "content": "How can a bee fly when its wings are so small?" } ] }' ``` See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code ```bash python quantize.py --model_path openai/whisper-large-v3-turbo --quant_path "output_dir/whisper-large-v3-turbo-quantized.w4a16" --calib_size 1024 --group_size 64 --dampening_frac 0.01 --actorder weight ``` ```python import torch import argparse from datasets import load_dataset from transformers import WhisperProcessor from llmcompressor import oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration import os from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy, ActivationOrdering, QuantizationScheme from llmcompressor.modifiers.smoothquant import SmoothQuantModifier parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str) parser.add_argument('--quant_path', type=str) parser.add_argument('--calib_size', type=int, default=256) parser.add_argument('--dampening_frac', type=float, default=0.1) parser.add_argument('--observer', type=str, default="minmax") parser.add_argument('--actorder', type=str, default="dynamic") parser.add_argument('--group_size', type=int, default=128) parser.add_argument('--save_dir', type=str, required=True) args = parser.parse_args() model_id = args.model_path model = TraceableWhisperForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto", ) model.config.forced_decoder_ids = None processor = WhisperProcessor.from_pretrained(model_id) # Configure processor the dataset task. processor.tokenizer.set_prefix_tokens(language="en", task="transcribe") # Select calibration dataset. DATASET_ID = "MLCommons/peoples_speech" DATASET_SUBSET = "test" DATASET_SPLIT = "test" # Select number of samples for calibration. 512 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = args.calib_size MAX_SEQUENCE_LENGTH = 2048 dampening_frac=args.dampening_frac actorder_arg=args.actorder group_size=args.group_size # Load dataset and preprocess. ds = load_dataset( DATASET_ID, DATASET_SUBSET, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]", trust_remote_code=True, ) def preprocess(example): return { "array": example["audio"]["array"], "sampling_rate": example["audio"]["sampling_rate"], "text": " " + example["text"].capitalize(), } ds = ds.map(preprocess, remove_columns=ds.column_names) # Process inputs. def process(sample): inputs = processor( audio=sample["array"], sampling_rate=sample["sampling_rate"], text=sample["text"], add_special_tokens=True, return_tensors="pt", ) inputs["input_features"] = inputs["input_features"].to(dtype=model.dtype) inputs["decoder_input_ids"] = inputs["labels"] del inputs["labels"] return inputs ds = ds.map(process, remove_columns=ds.column_names) # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} ignore=["lm_head"] # Recipe recipe = GPTQModifier( targets="Linear", config_groups={ "config_group": QuantizationScheme( targets=["Linear"], weights=QuantizationArgs( num_bits=4, type=QuantizationType.INT, strategy=QuantizationStrategy.GROUP, group_size=group_size, symmetric=True, dynamic=False, actorder=getattr(ActivationOrdering, actorder_arg.upper()), ), ), }, sequential_targets=["WhisperEncoderLayer", "WhisperDecoderLayer"], ignore=["re:.*lm_head"], update_size=NUM_CALIBRATION_SAMPLES, dampening_frac=dampening_frac ) # Apply algorithms. oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, data_collator=data_collator, ) # Save to disk compressed. save_name = f"{model_id.split('/')[-1]}-quantized.w4a16" save_path = os.path.join(args.save_dir, save_name) print("Saving model:", save_path) model.save_pretrained(save_path, save_compressed=True) processor.save_pretrained(save_path) ```
## Evaluation The model was evaluated on [LibriSpeech](https://huggingface.co/datasets/lmms-lab/librispeech) and [Fleurs](https://huggingface.co/datasets/lmms-lab/fleurs) datasets using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval), via the following commands:
Evaluation Commands Librispeech: ``` lmms-eval \ --model=whisper_vllm \ --model_args="pretrained=neuralmagic-ent/whisper-large-v3-turbo-quantized.w4a16" \ --batch_size 64 \ --output_path \ --tasks librispeech ``` Fleurs: ``` lmms-eval \ --model=whisper_vllm \ --model_args="pretrained=neuralmagic-ent/whisper-large-v3-turbo-quantized.w4a16" \ --batch_size 64 \ --output_path \ --tasks fleurs ```
Benchmark Split BF16 W4A16 Recovery (%)
LibriSpeech (WER) test-clean 2.1876 2.1951 99.66%
test-other 3.8992 4.0411 96.49%
Fleurs (X→en, WER) cmn_hans_cn 7.8019 8.3448 93.49%
en 4.0236 4.0580 99.15
yue_hant_hk 9.4210 11.8108 97.77%