File size: 10,626 Bytes
091845d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af14512
091845d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4765844
 
091845d
def8ac1
 
 
 
 
 
 
c27b644
a417f9a
091845d
 
 
 
 
 
 
 
 
 
 
 
 
 
af14512
091845d
af14512
091845d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af14512
091845d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25de4f6
091845d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25de4f6
091845d
 
 
 
 
 
 
 
 
 
 
711cc68
091845d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711cc68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
---
license: cc-by-4.0
language:
- en
pipeline_tag: automatic-speech-recognition
library_name: nemo
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- Transducer
- TDT
- FastConformer
- Conformer
- pytorch
- NeMo
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
  src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
  src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: Quantum_STT_V2.0
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: AMI (Meetings test)
      type: edinburghcstr/ami
      config: ihm
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 11.16
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Earnings-22
      type: revdotcom/earnings22
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 11.15
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: GigaSpeech
      type: speechcolab/gigaspeech
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 9.74
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (clean)
      type: librispeech_asr
      config: other
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 1.69
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (other)
      type: librispeech_asr
      config: other
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 3.19
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: SPGI Speech
      type: kensho/spgispeech
      config: test
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 2.17
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: tedlium-v3
      type: LIUM/tedlium
      config: release1
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 3.38
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Vox Populi
      type: facebook/voxpopuli
      config: en
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 5.95
metrics:
- wer
base_model:
- Quantamhash/Quantum_STT
---
<div align="center">
<img src="https://huggingface.co/datasets/Quantamhash/Assets/resolve/main/images/dark_logo.png"
     alt="Title card" 
     style="width: 500px;
            height: auto;
            object-position: center top;">
</div>

# **Quantum_STT_V2.0**

<style>
img {
 display: inline;
}
</style>

[![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--TDT-blue#model-badge)](#model-architecture)
| [![Model size](https://img.shields.io/badge/Params-0.6B-green#model-badge)](#model-architecture)
| [![Language](https://img.shields.io/badge/Language-en-orange#model-badge)](#datasets)


## <span style="color:#466f00;">Description:</span>

`Quantum_STT_V2.0` is a 600-million-parameter automatic speech recognition (ASR) model designed for high-quality English transcription, featuring support for punctuation, capitalization, and accurate timestamp prediction. Try Demo here: https://huggingface.co/spaces/Quantamhash/Quantum_STT_V2.0 

This XL variant of the FastConformer [1] architecture integrates the TDT [2] decoder and is trained with full attention, enabling efficient transcription of audio segments up to 24 minutes in a single pass.

**Key Features**
- Accurate word-level timestamp predictions  
- Automatic punctuation and capitalization  
- Robust performance on spoken numbers, and song lyrics transcription 


This model is ready for commercial/non-commercial use.


## <span style="color:#466f00;">License/Terms of Use:</span>

GOVERNING TERMS: Use of this model is governed by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode.en) license.


### <span style="color:#466f00;">Deployment Geography:</span>
Global


### <span style="color:#466f00;">Use Case:</span>

This model serves developers, researchers, academics, and industries building applications that require speech-to-text capabilities, including but not limited to: conversational AI, voice assistants, transcription services, subtitle generation, and voice analytics platforms.


### <span style="color:#466f00;">Release Date:</span>

14/05/2025

### <span style="color:#466f00;">Model Architecture:</span>

**Architecture Type**: 

FastConformer-TDT

**Network Architecture**:

* This model was developed based on [FastConformer encoder](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) architecture[1] and TDT decoder[2]
* This model has 600 million model parameters.

### <span style="color:#466f00;">Input:</span>
- **Input Type(s):** 16kHz Audio
- **Input Format(s):** `.wav` and `.flac` audio formats
- **Input Parameters:** 1D (audio signal)
- **Other Properties Related to Input:**  Monochannel audio

### <span style="color:#466f00;">Output:</span>
- **Output Type(s):**  Text
- **Output Format:**  String
- **Output Parameters:**  1D (text)
- **Other Properties Related to Output:** Punctuations and Capitalizations included.

Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA's hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. 

## <span style="color:#466f00;">How to Use this Model:</span>

To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
```bash
pip install -U nemo_toolkit["asr"]
``` 
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

#### Automatically instantiate the model

```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name="Quantamhash/Quantum_STT_V2.0")
```

#### Transcribing using Python
First, let's get a sample
```bash
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```python
output = asr_model.transcribe(['2086-149220-0033.wav'])
print(output[0].text)
```

#### Transcribing with timestamps

To transcribe with timestamps:
```python
output = asr_model.transcribe(['2086-149220-0033.wav'], timestamps=True)
# by default, timestamps are enabled for char, word and segment level
word_timestamps = output[0].timestamp['word'] # word level timestamps for first sample
segment_timestamps = output[0].timestamp['segment'] # segment level timestamps
char_timestamps = output[0].timestamp['char'] # char level timestamps

for stamp in segment_timestamps:
    print(f"{stamp['start']}s - {stamp['end']}s : {stamp['segment']}")
```


## <span style="color:#466f00;">Software Integration:</span>

**Runtime Engine(s):**
* NeMo 2.2  


**[Preferred/Supported] Operating System(s):**

- Linux

**Hardware Specific Requirements:**

Atleast 2GB RAM for model to load. The bigger the RAM, the larger audio input it supports.

#### Model Version

Current version: Quantum_STT_V2.0. Previous versions can be [accessed](https://huggingface.co/Quantamhash/Quantum_STT) here. 

## <span style="color:#466f00;">Performance</span>

#### Huggingface Open-ASR-Leaderboard Performance
The performance of Automatic Speech Recognition (ASR) models is measured using Word Error Rate (WER). Given that this model is trained on a large and diverse dataset spanning multiple domains, it is generally more robust and accurate across various types of audio.

### Base Performance
The table below summarizes the WER (%) using a Transducer decoder with greedy decoding (without an external language model):

| **Model** | **Avg WER** | **AMI** | **Earnings-22** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI Speech** | **TEDLIUM-v3** | **VoxPopuli** |
|:-------------|:-------------:|:---------:|:------------------:|:----------------:|:-----------------:|:-----------------:|:------------------:|:----------------:|:---------------:|
| Quantum_STT_V2.0 | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |

### Noise Robustness
Performance across different Signal-to-Noise Ratios (SNR) using MUSAN music and noise samples:

| **SNR Level** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** |
|:---------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
| Clean | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
| SNR 50 | 6.04 | 11.11 | 11.12 | 9.74 | 1.70 | 3.18 | 2.18 | 3.34 | 5.98 | +0.25% |
| SNR 25 | 6.50 | 12.76 | 11.50 | 9.98 | 1.78 | 3.63 | 2.54 | 3.46 | 6.34 | -7.04% |
| SNR 5 | 8.39 | 19.33 | 13.83 | 11.28 | 2.36 | 5.50 | 3.91 | 3.91 | 6.96 | -38.11% |

### Telephony Audio Performance 
Performance comparison between standard 16kHz audio and telephony-style audio (using μ-law encoding with 16kHz→8kHz→16kHz conversion):

| **Audio Format** | **Avg WER** | **AMI** | **Earnings** | **GigaSpeech** | **LS test-clean** | **LS test-other** | **SPGI** | **Tedlium** | **VoxPopuli** | **Relative Change** |
|:-----------------|:-------------:|:----------:|:------------:|:----------------:|:-----------------:|:-----------------:|:-----------:|:-------------:|:---------------:|:-----------------:|
| Standard 16kHz | 6.05 | 11.16 | 11.15 | 9.74 | 1.69 | 3.19 | 2.17 | 3.38 | 5.95 | - |
| μ-law 8kHz | 6.32 | 11.98 | 11.16 | 10.02 | 1.78 | 3.52 | 2.20 | 3.38 | 6.52 | -4.10% |

These WER scores were obtained using greedy decoding without an external language model.