MiniMax-M2 函数调用(Function Call)功能指南
简介
MiniMax-M2 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-M2 的函数调用功能。
基础示例
以下 Python 脚本基于 OpenAI SDK 实现了一个天气查询函数的调用示例:
from openai import OpenAI
import json
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
def get_weather(location: str, unit: str):
return f"Getting the weather for {location} in {unit}..."
tool_functions = {"get_weather": get_weather}
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
}]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[{"role": "user", "content": "What's the weather like in San Francisco? use celsius."}],
tools=tools,
tool_choice="auto"
)
print(response)
tool_call = response.choices[0].message.tool_calls[0].function
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
print(f"Result: {get_weather(**json.loads(tool_call.arguments))}")
输出示例:
Function called: get_weather
Arguments: {"location": "San Francisco, CA", "unit": "celsius"}
Result: Getting the weather for San Francisco, CA in celsius...
手动解析模型输出
如果您无法使用已支持 MiniMax-M2 的推理引擎的内置解析器,或者需要使用其他推理框架(如 transformers、TGI 等),可以使用以下方法手动解析模型的原始输出。这种方法需要您自己解析模型输出的 XML 标签格式。
使用 Transformers 的示例
以下是使用 transformers 库的完整示例:
from transformers import AutoTokenizer
def get_default_tools():
return [
{
"name": "get_current_weather",
"description": "Get the latest weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "A certain city, such as Beijing, Shanghai"
}
},
}
"required": ["location"],
"type": "object"
}
]
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "What's the weather like in Shanghai today?"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
]
# 启用函数调用工具
tools = get_default_tools()
# 应用聊天模板,并加入工具定义
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
tools=tools
)
# 发送请求(这里使用任何推理服务)
import requests
payload = {
"model": "MiniMaxAI/MiniMax-M2",
"prompt": text,
"max_tokens": 4096
}
response = requests.post(
"http://localhost:8000/v1/completions",
headers={"Content-Type": "application/json"},
json=payload,
stream=False,
)
# 模型输出需要手动解析
raw_output = response.json()["choices"][0]["text"]
print("原始输出:", raw_output)
# 使用下面的解析函数处理输出
function_calls = parse_tool_calls(raw_output, tools)
🛠️ 函数调用的定义
函数结构体
函数调用需要在请求体中定义 tools 字段,每个函数由以下部分组成:
{
"tools": [
{
"name": "search_web",
"description": "搜索函数。",
"parameters": {
"properties": {
"query_list": {
"description": "进行搜索的关键词,列表元素个数为1。",
"items": { "type": "string" },
"type": "array"
},
"query_tag": {
"description": "query的分类",
"items": { "type": "string" },
"type": "array"
}
},
"required": [ "query_list", "query_tag" ],
"type": "object"
}
}
]
}
字段说明:
name: 函数名称description: 函数功能描述parameters: 函数参数定义properties: 参数属性定义,key 是参数名,value 包含参数的详细描述required: 必填参数列表type: 参数类型(通常为 "object")
模型内部处理格式
在 MiniMax-M2 模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中。以下是一个完整的示例:
]~!b[]~b]system
You are a helpful assistant.
# Tools
You may call one or more tools to assist with the user query.
Here are the tools available in JSONSchema format:
<tools>
<tool>{"name": "search_web", "description": "搜索函数。", "parameters": {"type": "object", "properties": {"query_list": {"type": "array", "items": {"type": "string"}, "description": "进行搜索的关键词,列表元素个数为1。"}, "query_tag": {"type": "array", "items": {"type": "string"}, "description": "query的分类"}}, "required": ["query_list", "query_tag"]}}</tool>
</tools>
When making tool calls, use XML format to invoke tools and pass parameters:
<minimax:tool_call>
<invoke name="tool-name-1">
<parameter name="param-key-1">param-value-1</parameter>
<parameter name="param-key-2">param-value-2</parameter>
...
</invoke>
[e~[
]~b]user
OpenAI 和 Gemini 的最近一次发布会都是什么时候?[e~[
]~b]ai
<think>
格式说明:
]~!b[]~b]system: System 消息开始标记[e~[: 消息结束标记]~b]user: User 消息开始标记]~b]ai: Assistant 消息开始标记]~b]tool: Tool 结果消息开始标记<tools>...</tools>: 工具定义区域,每个工具用<tool>标签包裹,内容为 JSON Schema<minimax:tool_call>...</minimax:tool_call>: 工具调用区域<think>: 生成时的思考过程标记(可选)
模型输出格式
MiniMax-M2使用结构化的 XML 标签格式:
<minimax:tool_call>
<invoke name="search_web">
<parameter name="query_tag">["technology", "events"]</parameter>
<parameter name="query_list">["\"OpenAI\" \"latest\" \"release\""]</parameter>
</invoke>
<invoke name="search_web">
<parameter name="query_tag">["technology", "events"]</parameter>
<parameter name="query_list">["\"Gemini\" \"latest\" \"release\""]</parameter>
</invoke>
</minimax:tool_call>
每个函数调用使用 <invoke name="函数名"> 标签,参数使用 <parameter name="参数名"> 标签包裹。
手动解析函数调用结果
解析函数调用
MiniMax-M2使用结构化的 XML 标签,需要不同的解析方式。核心函数如下:
import re
import json
from typing import Any, Optional, List, Dict
def extract_name(name_str: str) -> str:
"""从引号包裹的字符串中提取名称"""
name_str = name_str.strip()
if name_str.startswith('"') and name_str.endswith('"'):
return name_str[1:-1]
elif name_str.startswith("'") and name_str.endswith("'"):
return name_str[1:-1]
return name_str
def convert_param_value(value: str, param_type: str) -> Any:
"""根据参数类型转换参数值"""
if value.lower() == "null":
return None
param_type = param_type.lower()
if param_type in ["string", "str", "text"]:
return value
elif param_type in ["integer", "int"]:
try:
return int(value)
except (ValueError, TypeError):
return value
elif param_type in ["number", "float"]:
try:
val = float(value)
return val if val != int(val) else int(val)
except (ValueError, TypeError):
return value
elif param_type in ["boolean", "bool"]:
return value.lower() in ["true", "1"]
elif param_type in ["object", "array"]:
try:
return json.loads(value)
except json.JSONDecodeError:
return value
else:
# 尝试 JSON 解析,失败则返回字符串
try:
return json.loads(value)
except json.JSONDecodeError:
return value
def parse_tool_calls(model_output: str, tools: Optional[List[Dict]] = None) -> List[Dict]:
"""
从模型输出中提取所有工具调用
Args:
model_output: 模型的完整输出文本
tools: 工具定义列表,用于获取参数类型信息,格式可以是:
- [{"name": "...", "parameters": {...}}]
- [{"type": "function", "function": {"name": "...", "parameters": {...}}}]
Returns:
解析后的工具调用列表,每个元素包含 name 和 arguments 字段
Example:
>>> tools = [{
... "name": "get_weather",
... "parameters": {
... "type": "object",
... "properties": {
... "location": {"type": "string"},
... "unit": {"type": "string"}
... }
... }
... }]
>>> output = '''<minimax:tool_call>
... <invoke name="get_weather">
... <parameter name="location">San Francisco</parameter>
... <parameter name="unit">celsius</parameter>
... </invoke>
... </minimax:tool_call>'''
>>> result = parse_tool_calls(output, tools)
>>> print(result)
[{'name': 'get_weather', 'arguments': {'location': 'San Francisco', 'unit': 'celsius'}}]
"""
# 快速检查是否包含工具调用标记
if "<minimax:tool_call>" not in model_output:
return []
tool_calls = []
try:
# 匹配所有 <minimax:tool_call> 块
tool_call_regex = re.compile(r"<minimax:tool_call>(.*?)</minimax:tool_call>", re.DOTALL)
invoke_regex = re.compile(r"<invoke name=(.*?)</invoke>", re.DOTALL)
parameter_regex = re.compile(r"<parameter name=(.*?)</parameter>", re.DOTALL)
# 遍历所有 tool_call 块
for tool_call_match in tool_call_regex.findall(model_output):
# 遍历该块中的所有 invoke
for invoke_match in invoke_regex.findall(tool_call_match):
# 提取函数名
name_match = re.search(r'^([^>]+)', invoke_match)
if not name_match:
continue
function_name = extract_name(name_match.group(1))
# 获取参数配置
param_config = {}
if tools:
for tool in tools:
tool_name = tool.get("name") or tool.get("function", {}).get("name")
if tool_name == function_name:
params = tool.get("parameters") or tool.get("function", {}).get("parameters")
if isinstance(params, dict) and "properties" in params:
param_config = params["properties"]
break
# 提取参数
param_dict = {}
for match in parameter_regex.findall(invoke_match):
param_match = re.search(r'^([^>]+)>(.*)', match, re.DOTALL)
if param_match:
param_name = extract_name(param_match.group(1))
param_value = param_match.group(2).strip()
# 去除首尾的换行符
if param_value.startswith('\n'):
param_value = param_value[1:]
if param_value.endswith('\n'):
param_value = param_value[:-1]
# 获取参数类型并转换
param_type = "string"
if param_name in param_config:
if isinstance(param_config[param_name], dict) and "type" in param_config[param_name]:
param_type = param_config[param_name]["type"]
param_dict[param_name] = convert_param_value(param_value, param_type)
tool_calls.append({
"name": function_name,
"arguments": param_dict
})
except Exception as e:
print(f"解析工具调用失败: {e}")
return []
return tool_calls
使用示例:
# 定义工具
tools = [
{
"name": "get_weather",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
"unit": {"type": "string"}
},
"required": ["location", "unit"]
}
}
]
# 模型输出
model_output = """我来帮你查询天气。
<minimax:tool_call>
<invoke name="get_weather">
<parameter name="location">San Francisco</parameter>
<parameter name="unit">celsius</parameter>
</invoke>
</minimax:tool_call>"""
# 解析工具调用
tool_calls = parse_tool_calls(model_output, tools)
# 输出结果
for call in tool_calls:
print(f"调用函数: {call['name']}")
print(f"参数: {call['arguments']}")
# 输出: 调用函数: get_weather
# 参数: {'location': 'San Francisco', 'unit': 'celsius'}
执行函数调用
解析完成后,您可以执行对应的函数并构建返回结果:
def execute_function_call(function_name: str, arguments: dict):
"""执行函数调用并返回结果"""
if function_name == "get_weather":
location = arguments.get("location", "未知位置")
unit = arguments.get("unit", "celsius")
# 构建函数执行结果
return {
"role": "tool",
"content": [
{
"name": function_name,
"type": "text",
"text": json.dumps({
"location": location,
"temperature": "25",
"unit": unit,
"weather": "晴朗"
}, ensure_ascii=False)
}
]
}
elif function_name == "search_web":
query_list = arguments.get("query_list", [])
query_tag = arguments.get("query_tag", [])
# 模拟搜索结果
return {
"role": "tool",
"content": [
{
"name": function_name,
"type": "text",
"text": f"搜索关键词: {query_list}, 分类: {query_tag}\n搜索结果: 相关信息已找到"
}
]
}
return None
将函数执行结果返回给模型
成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息,拼接格式参考chat_template.jinja