--- license: apache-2.0 datasets: - HPAI-BSC/medical-specialities language: - en base_model: - dmis-lab/biobert-base-cased-v1.1 pipeline_tag: text-classification --- # 🧠 BioBERT-Medical-Specialities **BioBERT-Medical-Specialities** is a fine-tuned [BioBERT](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) model for multi-class medical text classification. It classifies short medical questions or symptom descriptions into one of **35 clinical specialities**. ## 📊 Labels This model predicts the following 35 medical specialties: None, Cardiology, Hematology, Oncology, Endocrinology, Respiratory, Allergy, Dermatology, Nephrology, Gastroenterology, Rheumatology, Otorhinolaryngology, Anesthesiology, Biochemistry, Pharmacology, Psychiatry, Microbiology, Physiology, Pathology, Obstetrics, Gynecology, Surgery, Emergency, Orthopedics, Neurology, Urology, Anatomy, Genetics, Radiology, Ophthalmology, Odontology, Pediatrics, Geriatrics, Nursing, Chemistry, Psychology ## 📦 Model Details - **Base model**: [`dmis-lab/biobert-base-cased-v1.1`](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) - **Fine-tuned on**: [`HPAI-BSC/medical-specialities`](https://huggingface.co/datasets/HPAI-BSC/medical-specialities) - **Task**: Multi-class medical text classification - **Languages**: English 🇬🇧 - **License**: Apache 2.0 --- ## 🚀 How to Use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer model_name = "your-username/biobert-medical-specialities" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Example input text = "I have constant chest pain and shortness of breath." # Tokenize and predict inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() predicted_label = model.config.id2label[predicted_class_id] print(f"Predicted medical speciality: {predicted_label}")