OsamaAlwjih's picture
Create app.py
0b19a48 verified
!pip install gradio -q
import gradio as gr
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from PIL import Image
model = load_model('final_emotion_model.keras')
emotion_english = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
def classify_emotion(img):
img_gray = img.convert('L').resize((48, 48))
img_array = image.img_to_array(img_gray)
img_array = np.expand_dims(img_array, axis=0) / 255.0
predictions = model.predict(img_array)[0]
results = {emotion_english[i]: float(predictions[i]) for i in range(len(emotion_english))}
return results, img_gray
with gr.Blocks() as demo:
gr.Markdown("## تصنيف المشاعر من الصور")
with gr.Row():
input_image = gr.Image(type="pil", label="تحميل صورة")
processed = gr.Image(label="معالجة (رمادي 48x48)", interactive=False)
with gr.Row():
classify_btn = gr.Button("تصنيف")
output_label = gr.Label()
classify_btn.click(fn=classify_emotion, inputs=input_image, outputs=[output_label, processed])
demo.launch(share=True)